[Editor’s Note: Mad Scientist tracks convergence trends that are changing the character of future warfare. The democratization of technologies and the global proliferation of information is one of these trends that has expanded the arena of high-end threat capabilities beyond nation-states to now include non-state actors and super-empowered individuals. Today’s post illustrates how the democratization of one such capability, biotechnology, affects the Future Operational Environment.]
As discussed during theMad Scientist Bio Convergence and Soldier 2050 Conference, co-hosted with SRI International at Menlo Park, California last Spring, the broad advancement of biotechnologies will provide wide access to dangerous and powerful bioweapons and human enhancement. The low cost and low expertise entry point into gene editing, human performance enhancement, and bioweapon production has spurred a string of new explorations into this arena by countries with large defense budgets (e.g., China), non-state criminal and terrorist organizations (e.g., ISIS), and even super-empowered individuals willing to subject their bodies to experimental and risky treatments or augmentations.
China has invested billions of dollars into biotechnology – including in several U.S. biotechnology firms – and plans on focusing on their own bio revolution. Gene editing is one of the areas where China has sought to leapfrog the United States through ambitious Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) projects, editing the genes of 86 individuals, while the United States is just now approaching human trials. Additionally, Elsa Kania, an expert on Chinese emerging technology from the Center for the New American Security (CNAS), noted that China is now seeking to build its own innovation base rather than focusing on intellectual property theft and technology transfers.
Listen to Ms. Kania’s discussion addressing technological priorities and how they overlay on the Chinese government’s strategic objectives in the China’s Quest for Enhanced Military Technology podcast, hosted by our colleagues at Modern War Institute.
Non-state actors – mainly terrorist organizations – have focused more on weaponizing biotechnology. A personal laptop belonging to ISIS that was captured in Syria, was found to contain lessons on making bubonic plague bombs and the employment of various weapons of mass destruction (WMDs). The possession of this dangerous information by the most notorious terrorist organization across the globe is a testament to the worldwide proliferation of information. This challenge of weaponized biotechnology is exacerbated by the relative ease of obtaining material to carry out such attacks.
Watch Dr. Gary Ackerman‘s presentation on Non-State Actors and their Uses of Technology from the Mad Scientist Artificial Intelligence, Robotics, and Autonomy: Visioning Mult-Domain Battle in 2030-2050 Conference at Georgetown University, 7-8 March 2017.
There is a growing community of individual biohackers and “do it yourselfers” (DIYers), super-empowered individuals pushing the boundaries of DNA editing, implants, embedded technologies (embeds), and unapproved chemical and biological injections. One of the most prominent biohackers, Josiah Zayner, a former NASA employee with a biophysics PhD, who livestreamed his self-injection of CRISPR and has even started a company selling DIY CRISPR kits ranging from several hundred to over 1000 dollars, effectively enabling biohackers to cheaply change their physiology, alter their appearance, and go beyond human biological norms. None of these treatments and augmentations are approved by regulatory agencies and DIYers run the serious risk of harming themselves or unleashing destructive and disruptive biological agents upon an unwitting population.
Biotechnology is just one example of how potentially game changing capabilities that were once only within the purview of our strategic competitors will be democratized via the global proliferation of information. In the Future Operational Environment, we can also expect to see artificial intelligence, multi-domain swarming, and space capabilities in the hands of non-state and super-empowered individuals.
“The rapid innovation, development, and fielding of new technologies promises to radically enhance our abilities to live, create, think, and prosper. The accelerated pace of human interaction and widespread connectivity through the Internet of Things (IoT), and the concept of convergence are also factors affecting these trends. Convergence of societal trends and technologies will create new capabilities or societal implications that are greater than the sum of their individual parts, and at times are unexpected.”
Falcon 9 made history in 2012 when it delivered Dragon into the correct orbit for rendezvous with the International Space Station, making SpaceX the first commercial company ever to visit the station / Source: https://www.spacex.com/galleries
With the advent of the Twenty-First Century, there has been a steady shift in who is driving innovation within the U.S. The private company SpaceX made history in 2012 when its Falcon 9 and Dragon became the first commercial rocket and spacecraft in history to deliver cargo to the International Space Station and safely return cargo to Earth, a feat previously achieved only by national governments.
The dramatic shift in the funding, driving, and demand signals of innovation from the U.S. Government to the commercial sector will lead to a critical need for agile prototyping and experimentation in the military, focusing on niche areas of interest to the Government.
In the past, Government funding has accelerated many technologies that are now not only commonplace, but almost necessary for modern life. Research and Development that led to the creation of GPS, the microchip, the touch screen, and the internet was funded, in-part, by the Government. Recent data from the National Institutes of Health (NIH) has shown that there now is an inverse relationship between how novel a concept is and the amount of Government funding it receives. There has also been a decrease in Government R&D spending as a percentage of overall GDP. These two trends have led to a stifling of Government-driven innovation and exploration of new technologies.
Private industry and academia are now the driving force behind innovation. While there are some benefits to this – such as shorter development times – there are also risks. For example, investments in industry are mainly driven by market demand which can lead to a lack of investment in areas that are vital to National Defense, but have low to no consumer demand. In academia, a majority of graduate students in STEM fields are foreign nationals, comprising over 80% of electrical and petroleum engineering programs. The U.S. will need to find a way to maintain its technological superiority, even when most of the expertiseeventually leaves the country.
In order to compete with our strategic competitors, Government funding of research in academia and increased funding for the more novel, higher risk proposals could prove beneficial. In the private sector, Government investment in areas vital to National Defense, as well as areas of market failure, is crucial.
A successful example of this cooperation and investment between the Government and private industry is Tesla, Inc. The United States Department of Energy loaned $465 million to Tesla from the 2007 Advanced Technology Vehicles Manufacturing Loan Program. Tesla not only innovated a variety of technologies in electric and autonomous automobiles, but also in power generation and storage – all areas of military interest. In order to drive innovation, particularly in areas with small markets (e.g., like explosives research), or very novel, high risk technologies (e.g., Directed Energy Weapons), the Army should continue these types of investments.
If you enjoyed this post about innovation, please read the following Mad Scientist Laboratory blog posts:
[Editor’s Note: Mad Scientist Laboratory is pleased to review proclaimed Mad Scientist Dr. Alexander Kott’s paper,Ground Warfare in 2050: How It Might Look, published by the US Army Research Laboratory in August 2018. This paper offers readers with a technological forecast of autonomous intelligent agents and robots and their potential for employment on future battlefields in the year 2050. In this post, Mad Scientist reviews Dr. Kott’s conclusions and provides links to our previously published posts that support his findings.]
In his paper, Dr. Kott addresses two major trends (currently under way) that will continue to affect combat operations for the foreseeable future. They are:
• The employment of small aerial drones for Intelligence, Surveillance, and Reconnaissance (ISR) will continue, making concealment difficult and eliminating distance from opposing forces as a means of counter-detection. This will require the development and use of decoy capabilities (also intelligent robotic devices). This counter-reconnaissance fight will feature prominently on future battlefields between autonomous sensors and countermeasures – “a robot-on-robot affair.”
• The continued proliferation of intelligent munitions, operating at greater distances, collaborating in teams to seek out and destroy designated targets, and able to defeat armored and other hardened targets, as well as defiladed and entrenched targets.
• Intelligent munitions will be neutralized “primarily by missiles and only secondarily by armor and entrenchments. Specialized autonomous protection vehicles will be required that will use their extensive load of antimissiles to defeat the incoming intelligent munitions.”
• Forces will exploit “very complex terrain, such as dense forest and urban environments” for cover and concealment, requiring the development of highly mobile “ground robots with legs and limbs,” able to negotiate this congested landscape.
• The proliferation of autonomous combat systems on the battlefield will generate an additional required capability — “a significant number of specialized robotic vehicles that will serve as mobile power generation plants and charging stations.”
• “To gain protection from intelligent munitions, extended subterranean tunnels and facilities will become important. This in turn will necessitate the tunnel-digging robotic machines, suitably equipped for battlefield mobility.”
• All of these autonomous, yet simultaneously integrated and networked battlefield systems will be vulnerable to Cyber-Electromagnetic Activities (CEMA). Consequently, the battle within the Cyber domain will “be fought largely by various autonomous cyber agents that will attack, defend, and manage the overall network of exceptional complexity and dynamics.”
• The “high volume and velocity of information produced and demanded by the robot-intensive force” will require an increasingly autonomous Command and Control (C2) system, with humans increasingly being on, rather than in, the loop.
If you enjoyed reading this post, please watch Dr. Alexander Kott’s presentation, “The Network is the Robot,” from the Mad Scientist Robotics, Artificial Intelligence, and Autonomy: Visioning Multi-Domain Warfare in 2030-2050 Conference, co-sponsored by the Georgia Tech Research Institute (GTRI), in Atlanta, Georgia, 7-8 March 2017.
Dr. Alexander Kott serves as the ARL’s Chief Scientist. In this role he provides leadership in development of ARL technical strategy, maintaining technical quality of ARL research, and representing ARL to external technical community. He published over 80 technical papers and served as the initiator, co-author and primary editor of over ten books, including most recently Cyber Defense and Situational Awareness (2015) and Cyber Security of SCADA and other Industrial Control Systems (2016), and the forthcoming Cyber Resilience of Systems and Networks (2019).
[Editor’s Note: Mad Scientist Laboratory is pleased to present the following guest blog post by Dr. Jason R. Dorvee, Mr. Richard G. Kidd IV, and Mr. John R. Thompson. The Army of the future will need installations that will enable strategic support areas critical to Multi-Domain Operations (MDO). There are 156 installations that serve as the initial platform of maneuver for Army readiness. Due to increasing connectivity of military bases (and the Soldiers, Airmen, Marines, Sailors, and Civilians who live and work there) to the Internet of Things (IoT), DoD and Army installations will not be the sanctuaries they once were. These threats are further discussed in Mr. Kidd’s AUSA article last December, entitled “Threats to Posts: Army Must Rethink Base Security.” The following story posits the resulting “what if,” should the Army fail to address installation resilience (to include Soldiers, their families, and surrounding communities) when modernizing the overall force to face Twenty-first Century threats.]
“Army Installations are no longer sanctuaries” — Mr. Richard G. Kidd IV, Deputy Assistant Secretary of the Army (Installations, Energy and Environment), Strategic Integration
Why the most powerful Army the world had ever seen… never showed up to the fight.
The adversary, recognizing that they could not defeat the U.S. Army in a straight-up land fight, kept the Army out of the fight by creating hundreds of friction points around Army installations that disrupted, delayed, and ultimately prevented the timely application of combat power.
The year was 2030. New weapons, doctrine, training, and individual readiness came together to make the US Army the most capable land force in the world. Fully prepared, the Army was ready to fight and win in the complex environments of multi domain operations. The Army Futures Command generated a series of innovations empowering the Army to overcome the lethargy and distractions of protracted counter-insurgency warfare.
Heavy Duty by rOEN911 / Source: DeviantArt
New equipment gave the Army technical and operational overmatch against all strategic competitors, rogue states, and emerging threats.
With virtualized synthetic training environments, the Army—active duty, Reserve, and National Guard— achieved a continuous, high-level state of unit readiness. The Army’s Soldiers achieved personalized elite-level fitness following tailored diet and physical fitness training regimens. No adversary stood a chance… after the Army arrived.
In the years leading up to 2030, the U.S. Army enjoyed the status of being the world’s most powerful land force. The United States’ national security was squarely centered on deterrence with diplomatic advantage deriving from military superiority. It was a somewhat surprising curiosity when this superiority was challenged by a land invasion of an allied state in the middle of Eurasia. This would not be the only surprise experienced by the Army.
The overseas contest unfolded along a fairly predictable pattern, one that was anticipated in multiple war games and exercises. A near-peer competitor engaged in a hybrid of operations against a partner nation. They first acted to destabilize the country, and then, within the confusion created, they invaded. In response to the partner’s request for assistance, the U.S authorized mobilization and deployment of active and reserve component forces to counter the invasion. The mission was straightforward: retake lost ground, expel the adversary, and restore local government control. This was a task the Army had trained for and was more than capable of successfully executing. It just had to get there. While the partner nation struggled with an actual invasion, a different struggle was taking place in the U.S. homeland. The adversary combined a series of relatively minor cyber, information, and physical disruptions, which taken together, overwhelmed the Army Enterprise. Each act focused on clogging individual systems or processes needed to execute the mobilization and deployment functions.
Cyber-mercenaries, paid in cryptocurrency, attacked the information environment and undermined the communication mechanisms essential for mobilizing the Army. Building on earlier trials in Korea and Europe, a range of false orders were sent to units and individuals. These false orders focused on early entry forces and reserve units needed to open ports and railheads in the United States. Compounding the situation, misleading information was simultaneously placed on social media and the news that indicated the mobilization had been cancelled. These efforts created so much uncertainty in the minds of individual Soldiers over their place of duty, initial musters for key reserve component units ran at less than 40% strength. Days were added to mobilization timelines as it took time for accurate information to be disseminated and formations to build to full strength.
Focused cyber attention was given toindividuals with critical enabling jobs – not just commanders or senior NCOs – but those with access to arms rooms and motor pools. Long-standing efforts to collect PII from these individuals allowed the adversary to compromise credit scores, alter social media presence, and target family members. Soldiers with mission-related demands already on their hands, now found themselves unable to use their credit cards, fuel their vehicles, or operate their cell phones. Instead of focusing on getting troops to the battle, they were caught in an array of falsesocial media messages about themselves or their loved ones. Sorting fact from fiction and regaining their financial functionality competed for their time and attention. Time was lost as Soldiers were distracted and overwhelmed. Arms rooms remained locked, access to the motor pool was delayed, and deployments were disrupted.
The communities surrounding Army installations also came under attack. Systems below the threshold of “critical,” such as street lights, traffic lights, and railroad crossings, were all locked in the “off” position, making road travel hazardous. The dispatch systems of key civilian first-responders were overwhelmed with misleading calls reporting false accidents, overwhelming response mechanisms and diverting or delaying much needed assistance. Soldiers were prevented from getting to their duty stations or transitioning quickly from affected communities. In parallel, an information warfare campaign was waged with the aim of undermining trust between civilian and military personnel. False narratives about spills of hazardous military materials and soldiers being contaminated by exposure to diseases created by malfunctioning vaccines added to the chaos.
Key utility, water, and energy control systems on or adjacent to Army installations, understandably a “hard” target from the cyber context, were of such importance that they came under near constant attack across all their operations from transmission to customer billing. Only those few installations that had invested in advanced micro-grids, on-site power generation, and storage were able to maintain coherent operations beyond 72 hours. For most installations, backup generators that worked singularly when the maintenance teams were present for annual servicing, cascaded into collective failure when they all operated at once. For the Army, only the 10th and 24th Infantry Divisions were able to deploy, thanks to onsite energy resilience.
Small, but significant physical attacks occurred as well. Standard shipping containers, pieces of luggage, and Amazon Prime boxes were “weaponized” as drone transports, with their cargo activated on command. In the key out-loading ports of Savannah and Galveston, shore cranes were disabled by homemade thermite charges placed on gears and cables by such drones using photo recognition and artificial intelligence. Repairing and verifying the safety of these cranes added days to timelines and disrupted shipping schedules. Other drones deployed, having been “trained” with thousands of photo’s to fly into the air intakes of jet engines, either military or civilian. Only two downed airliners and a few near misses were sufficient to shut down air transportation across the country and initiate a multi-month inspection of all truck stops, docks, airports, and rail yards trying to find the “last” possible container. Perhaps the most effective drone attacks occurred when such drones dispersed chemical agents in municipal water supplies for those communities adjacent to installations or along lines of communication. The effects of these later attacks were compounded by shrewdinformation warfare operations to generate mass panic. Roads were clogged with evacuees, out-loading operations were curtailed, and key military assets that should have been supporting the deployment were diverted to provide support to civil authorities.
Cumulatively, these cyber, informational, social, and physical attacks within the homeland and across Army installations and formations took their toll. Every step in the deployment and mobilization processes was disrupted and delayed as individuals and units had to work through the fog of friction, confusion, and hysteria that was generated. The Army was gradually overwhelmed and immobilized. In the end, the war for the partner country in Eurasia was lost. The adversary’s attacks on the homeland had given it sufficient time to complete all of its military objectives. The most lethal Army in history was “stuck,” unable to arrive in time. US command authorities now faced a much more difficult military problem and the dilemma of choosing between all out war, or accepting a limited defeat.
There’s a saying from the Northeastern United States about infrastructure. It refers to the tangled mess of roads and paths in New England, specifically Maine. Spoken in the Mainer or “Mainah” accent, it goes:
“You cahn’t ghet thah from hehah.”
That was the US Army in 2030. Ignoring its infrastructure and its vulnerabilities at home, it got caught in a Mainah Scenario. This was a classic “Pink Flamingo;” the US Army knew its homeland operations were a vulnerability, but it failed to prepare.
There were some attempts to recognize the potential problem:
– The National Defense Strategy of 2018 laid out the following:
It is now undeniable that the homeland is no longer a sanctuary. America is a target, whether from terrorists seeking to attack our citizens; malicious cyber activity against personal, commercial, or government infrastructure; or political and information subversion. New threats to commercial and military uses of space are emerging, while increasing digital connectivity of all aspects of life, business, government, and military creates significant vulnerabilities. During conflict, attacks against our critical defense, government, and economic infrastructure must be anticipated.
– Even earlier (in 2015), The Army’s Energy Security and Sustainability Strategy clearly stated with respect to Army installations:
We will seek to use multi-fuel platforms and infrastructure that can provide flexible operations during energy and water shortages at fixed installations and forward locations. If a subsystem fails or is temporarily unavailable, other parts of the system will continue to operate at an acceptable level until full functionality is restored…. Implement integrated and distributed technologies and procedures to ensure critical systems remain operational in the face of disruptive events…. Advance the capability for systems, installations, personnel, and units to respond to unforeseen disruptions and quickly recover while continuing critical activities.
And despite numerous other examples across industry, academia, and the military, only a few locations, installations, or organizations across the Army embraced the notion of resilience for homeland operations. Installations were not considered a true “weapons system” and were left behind in the modernization process, creating a vulnerability that our enemies could exploit.
Installations are a flock of 156 pink flamingos wading around the beach of national security. They are vulnerable to disruption that would have a very real impact on readiness and the timely application of combat power. With the advance of technology-applications, these threats are not for the Army of tomorrow—they affect the Army today. Let us not get stranded in a Mainah Scenario.
Dr. Jason R. Dorvee serves as the U.S. Army Engineer Research and Development Center’s liaison to the Office of the Assistant Secretary of the Army for Installations Energy and the Environment (ASA IE&E), where he is assisting with the Installations of the Future Initiative. Mr. Richard G. Kidd IV serves as the Deputy Assistant Secretary of the Army for Strategic Integration, leading the strategic effort to examine options for future Army installations and the strategy development, resource requirements, and overall business transformation processes for the Office of the ASA IE&E. Mr. John R. Thompson serves as the Strategic Planner, Office of the ASA IE&E, Strategic Integration.
[Editor’s Note: Mad Scientist Laboratory is pleased to publish yet another in our series of “The Tenth Man” posts (read our previous posts here andhere). This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging. The Mad Scientist Laboratory offers it as a platform for the contrarians in our network to share their alternative perspectives and analyses regarding the Future Operational Environment. Today’s post is by guest blogger Dr. Peter Layton, challenging the commonly held belief of the persistent and abiding nature of war.]
There’s a debate underway about the nature of war. Some say it’s immutable, others say hogwash; ironically both sides quote Clausewitz for support.[i] Interestingly, Secretary of Defense Mattis, once an ‘immutable’ defender, has nowdeclared he’s not sure anymore, given recentArtificial intelligence (AI)developments.[ii]
At the core of the immutable case is the belief that war has always been violent, chaotic, destructive, and murderous – and will thus always be so. Buried within this is the view that wars are won by infantry occupying territory; as Admiral Wylie opined “the ultimate determinant in war is a man on the scene with a gun.”[iii] It is the clash of infantry forces that is decisive, with both sides experiencing the deadly violence of war in a manner that would have been comprehendible by Athenian hoplites 2,500 years ago.
Technology though really has changed this. Firstly, the lethality of modern weapons has emptied out the battlefield.[iv] What can be ‘seen’ by sensors of diverse types can be targeted by increasingly precise direct and indirect fires. The Russo-Ukraine war in the Donbas hints that in future wars between state-based military forces, tactical units will need to remain unseen to survive and that they will now ‘occupy’ territory principally through long-range firepower.[v]Secondly, Phillip Meilinger makes a strong case that drone crews firing missiles at insurgents from 3,000 miles away or navies blockading countries and staving their people into submission do not experience war the same as those hoplite infantry did years ago.[vi] The experience of violence in some wars has become one-sided, while wars are now increasingly waged against civilians well behind any defensive front lines.
Source: Griffith Asia Institute
AI may deepen both trends. AI has the potential to sharply enhance the defense continuing to empty out the battlefield, turning it into a no-man’s zone where automated systems and semi-autonomous devices wage attrition warfare.[vii] If both sides have intelligent machines, war may become simply a case of machines being violent to other machines. In a re-run of World War One, strategic stalemate would seem the likely outcome with neither side able to win meaningful battlefield victories.[viii]
If so, the second aspect of war’s changing nature comes into play. If a nation’s borders cannot be penetrated and its critical centers of gravity attacked using kinetic means, perhapsnon-kinetic means are the offensive style of the future. Indeed, World War One’s battlefield stalemate was resolved as the naval blockade caused significant civilian starvation and the collapse of the homefront.
The application of information warfare by strategic competitors against the US political system hints at new cyber techniques that AI may greatly enhance.[ix] Instead of destroying another’s capabilities and national infrastructures, they might be exploited and used as bearers to spread confusion and dissent amongst the populace. In this century, starvation may not be necessary to collapse the homefront; AI may offer more efficacious methods. War may no longer be violent and murderous but it may still be as Clausewitz wrote a “true political instrument.”[x] Secretary Mattis may be right; perhaps war’s nature is not immutable but rather ripe for our disruption and innovation.
If you enjoyed this guest post, please also read proclaimed Mad Scientist Dr. Lydia Kostopoulos’ paper addressing this topic, entitled War is Having an Identity Crisis, hosted by our colleagues at Small Wars Journal.
Dr. Peter Layton is a Visiting Fellow at the Griffith Asia Institute, Griffith University. A former RAAF Group Captain, he has extensive defense experience, including in the Pentagon and at National Defense University. He holds a doctorate in grand strategy. He is the author of the book ‘Grand Strategy.’
[vi]The Mutable Nature of War: The Author Replies, Air & Space Power Journal, Summer 2011, pp 21-22. And also: Phillip S. Meilinger (2010), The Mutable Nature of War, Air & Space Power Journal, Winter 2010, pp 25-28.