193. Cyborg Soldier 2050: Human/Machine Fusion and the Implications for the Future of the DOD

[Editor’s Note:  Mad Science Laboratory is pleased to excerpt below the Executive Summary from a DoD Biotechnologies for Health and Human Performance Council (BHPC) study group report entitled, Cyborg Soldier 2050: Human/Machine Fusion and the Implications for the Future of the DOD. This report, authored by Peter Emanuel, Scott Walper, Diane DiEuliis, Natalie Klein, James B. Petro, and James Giordano (proclaimed Mad Scientist); and published by the U.S. Army Combat Capabilities Development Command Chemical Biological Center (CCDC CBC), culminates a year-long assessment to forecast and evaluate the military implications of machines that are physically integrated with the human body to augment and enhance human performance over the next 30 years. This report summarizes this assessment and findings; identifies four potential military-use cases for new technologies in this area; and makes seven recommendations on how the U.S. should proceed regarding human/machine enhancement technologies. Enjoy!]

A DoD BHPC study group surveyed a wide range of current and emerging technologies relevant to assisting and augmenting human performance in many domains. The team used this information to develop a series of vignettes as case studies for discussion and analysis including feasibility; military application; and ethical, legal, and social implication (ELSI) considerations.

Ultimately, the team selected four vignettes as being technically feasible by 2050 or earlier. The following vignettes are relevant to military needs and offer capabilities beyond current military systems:

    • ocular enhancements to imaging, sight, and situational awareness;
    • restoration and programmed muscular control through an optogenetic bodysuit
      sensor web;
    • auditory enhancement for communication and protection; and
    • direct neural enhancement of the human brain for two-way data transfer.

Although each of these technologies will offer the potential to incrementally enhance performance beyond the normal human baseline, the BHPC study group analysis suggested that the development of direct neural enhancements of the human brain for two-way data transfer would create a revolutionary advancement in future military capabilities. This technology is predicted to facilitate read/write capability between humans and machines and between humans through brain-to-brain interactions. These interactions would allow warfighters direct communication with unmanned and autonomous systems, as well as with other humans, to optimize command and control systems and operations. The potential for direct data exchange between human neural networks and microelectronic systems could revolutionize tactical warfighter communications, speed the transfer of knowledge throughout the chain of command, and ultimately dispel the “fog” of war. Direct neural enhancement of the human brain through neuro-silica interfaces could improve target acquisition and engagement and accelerate defensive and offensive systems.

Although the control of military hardware, enhanced situational awareness, and faster data assimilation afforded by direct neural control would fundamentally alter the battlefield by the year 2050, the other three cyborg technologies are also likely to be adopted in some form by warfighters and civil society. The BHPC study group predicted that human/machine enhancement technologies will become widely available before the year 2050 and will steadily mature, largely driven by civilian demand and a robust bio-economy that is at its earliest stages of development in today’s global market. The global healthcare market will
fuel human/machine enhancement technologies primarily to augment the loss of functionality from injury or disease, and defense applications will likely not drive the market in its later stages. The BHPC study group anticipated that the gradual introduction of beneficial restorative cyborg technologies will, to an extent, acclimatize the population to their use.

The BHPC study group projected that introduction of augmented human beings into the general population, DOD active duty personnel, and near-peer competitors will accelerate in the years following 2050 and will lead to imbalances, inequalities, and inequities in established legal, security, and ethical frameworks. Each of these technologies will afford some level of performance improvement to end users, which will widen the performance gap between enhanced and unenhanced individuals and teams. The BHPC study group analyzed case studies and posed a series of questions to drive its assessment of the impact to DOD programs, policies, and operations. The following are the resulting recommendations (not listed in order of priority):

1. DOD personnel must conduct global assessments of societal awareness and perceptions of human/machine enhancement technologies. A generalized perception exists in the United States that our adversaries are more likely to adopt technologies that U.S. populations are reluctant or unwilling to field because of ethical concerns. However, the attitudes of our adversaries toward these technologies have never been verified. Societal apprehension following the introduction of new technologies can lead to unanticipated political barriers and slow domestic adoption, irrespective of value or realistic risk. Assessment of global attitudes will predict where it may be difficult to introduce new technologies because of sociopolitical barriers to adoption and when adversarial adoption of offset technologies may likely be more readily accepted.

2. U.S. leadership should use existing and newly developed forums (e.g., NATO) to discuss impacts to interoperability with allied partners as we
approach the year 2050.
This will help develop policies and practices that will maximize interoperability of forces.
The rapid development pace of cyborg technologies has implications for interoperability of military forces. The DOD requirement to maintain interoperability with allied partners within NATO and other global alliance frameworks warrants the undertaking of efforts to align cyborg assets with existing allied partnership doctrine.

3. DOD should invest in the development of dynamic legal, security, and ethical frameworks under its control that anticipate emerging technologies. The current legal, security, and ethical frameworks are insufficient because of the speed at which these technologies are developing in the United States and other nations around the world (allied and adversarial). Therefore, the DOD should support the development of forward-leaning policies (internal and external) that protect individual privacy, sustain security, and manage personal and organizational risk, while maximizing defined benefits to the United States and its allies and assets. Because operationalization of technology for national security is at the core of the DOD mission, these frameworks should be structured to be agile and responsive to new technologies developed within the United States or elsewhere.

4. Efforts should be undertaken to reverse negative cultural narratives of enhancement technologies. Across popular social and open-source media, literature, and film, the use of machines to enhance the physical condition of the human species has received a distorted and dystopian narrative in the name of entertainment. A more realistic and balanced (if not more positive) narrative, along with transparency in the government’s approach to technology adoption, will serve to better educate the public, mitigate societal apprehensions, and remove barriers to productive adoption of these new technologies.*   A more informed public will also help illuminate valid social concerns, such as those surrounding privacy, so that DOD personnel can develop mitigation strategies, whenever possible. Although not intrinsically a DOD mission, defense leadership should understand that negative public and social perceptions will need to be overcome, if these technologies are to be fielded.

Source: CIO Australia / Royal Australian Air Force

5. DOD personnel should conduct tabletop wargames and targeted threat assessments to determine the doctrine and tactics of allied and adversarial forces. Wargames are an established mechanism to gauge the impact of asymmetric technologies on tactics, techniques, and procedures. Tabletop exercises exploring varied scenarios of the integration and use of human/machine technologies by the United States or its adversaries will predict offset advantages, identify NATO and other allied organizational interoperability friction points, and inform senior military strategists and science and technology investors. DOD personnel should support these efforts using targeted intelligence assessments of this emerging field.

6. The U.S. Government should support efforts to establish a whole-of-nation approach to human/machine enhancement technologies versus a whole-of-government approach. Federal and commercial investments in these areas are uncoordinated and are being outpaced by Chinese research and development efforts, which could result in a loss of U.S. dominance in human/machine enhancement technologies within the projected timeframe of this study. Near-peer dominance in the commercial sector will place U.S. interests in the defense sector at a disadvantage and could lead to an offset disadvantage in the realm of human/machine enhancement by the year 2050. A national effort to sustain U.S. dominance in cyborg technologies is in the best interests of the DOD and the nation.

7. The DOD should support foundational research to validate human/ machine fusion technologies before fielding them and to track the long-term safety and impact on individuals and groups. The benefits afforded by human/machine fusions will be significant and will have positive quality-of-life impacts on humankind through the restoration of any functionality lost due to illness or injury. The military community will also see capability opportunities that will impact operations and training. As these technologies evolve, it is vital that the scientific and engineering communities move cautiously to maximize their potential and focus on the safety of our society. Commensurate investments in these areas will work to mitigate the misuse or unintended consequences of these technologies.

If you enjoyed this post, please see:

Cyborg Soldier 2050: Human/Machine Fusion and the Implications for the Future of the DOD complete report here.

… read the following related MadSci Lab blog posts:

… watch Dr. Alexander Kott‘s presentation The Network is the Robot, presented at the Mad Scientist Robotics, Artificial Intelligence, & Autonomy: Visioning Multi Domain Battle in 2030-2050 Conference, at the Georgia Tech Research Institute, 8-9 March 2017, in Atlanta, Georgia.

… and see Hank Greely‘s presentation on Future Legal and Ethical Implications of Bio Technology from the Mad Scientist Bio Convergence and Soldier 2050 Conference, at SRI International, 8-9 March 2018 in Menlo Park, California.

Disclaimer: The findings in this report are not an official policy or position of the Department of the Army, the National Defense University, the Department of Defense, or the U.S. Government.


* Wurzman R.; Yaden D.; Giordano J. Neuroscience Fiction as Eidola: Social Reflection and Neuroethical Obligations in Depictions of Neuroscience in Film. Camb Q Health Care Ethics-Neuroethics Now 2017, 26 (2), 292-312.

 

192. New Skills Required to Compete & Win in the Future Operational Environment

[Editor’s Note: The U.S. Army Training and Doctrine Command (TRADOC) recruits, trains, educates, develops, and builds the Army, driving constant improvement and change to ensure that the Army can successfully compete and deter, fight, and decisively win on any battlefield. The pace of change, however, is accelerating with the convergence of new and emergent technologies that are driving the changing character of warfare in the future Operational Environment (OE).  Preparing to compete and win in this future OE is one of the toughest challenges facing the Army. TRADOC must identify the requisite new Knowledge, Skills, and Behaviors (KSBs) that our Soldiers and leaders will need to compete and win, and then program and implement the associated policy changes, improvements to training facilities, development of leader programs, and the integration of required equipment into the Multi-Domain force.]

The future OE will compel a change in the character of warfare driven by the diffusion of power, economic disparity, and the democratization and convergence of technology. There are no longer defined transitions from peace to war, or from competition to conflict. “Steady State” now consists of continuous, dynamic, and simultaneous competition and conflict that is not necessarily cyclical. Russia and China, our near-peer competitors, confront us globally, converging capabilities with hybrid strategies to expand the battlefield across all domains and create hemispheric threats challenging us from home stations to the Close Area. They seek to achieve national objectives through competition short of conflict and synthesize emerging technologies with military doctrine and operations to deploy capabilities that create multiple layers of multi-domain stand-off. Additionally, regional competitors and non-state actors such as Iran, North Korea, and regional and transnational terrorist organizations, will effectively compete and fight in similar ways shaped to their strategic situations, but with lesser scope and scale in terms of capabilities.

The convergence and availability of cutting-edge technologies will act as enablers and force multipliers for our adversaries. Artificial intelligence (AI), quantum information sciences, and the Internet of Things will flatten decision making structures and increase speed on the battlefield, while weaponized information will empower potential foes, enabling them to achieve effects at a fraction of the cost of conventional weapons, without risking armed conflict. Space will become a contested domain, as our adversaries will enhance their ability to operate in that domain while working to deny us what was once a key area of advantage.

Preparing for this new era is one of the toughest challenges the Army will face in the next 25 years. A key component of this preparation is identifying the skills and attributes required for the Soldiers and Leaders operating in our multi-domain formations.

The U.S. Army currently has more than 150 Military Occupational Specialties (MOSs), each requiring a Soldier to learn unique tasks, skills, and knowledge. The emergence of a number of new technologies – drones, AI autonomy, immersive mixed reality, big data storage and analytics, etc. – coupled with the changing character of warfare means that many of these MOSs will need to change, while new ones will need to be created. This already has been seen in the wider U.S. and global economy, where the growth of internet services, smartphones, social media, and cloud technology over the last ten years has introduced a host of new occupations that previously did not exist.

Acquiring and developing the talent pool and skills for a new MOS requires policy changes, improvements to training facilities, development of leader programs, and the integration of required equipment into current and planned formations. The Army’s recent experience building a cyber MOS offers many lessons learned. The Army needed to change policies for direct entry into the force, developed cyber training infrastructure at Fort Gordon, incorporated cyber operations into live training exercises at home station and the Combat Training Centers, built the Army Cyber Institute at West Point, and developed concepts and equipment baselines for cyber protection teams. This effort required action from Department of the Army and each of the subordinate Army commands. Identifying, programming, and implementing new knowledge, skills, and attributes is a multi-year effort that requires synchronizing the delivery of Soldiers possessing the requisite skills with the fielding of a Multi-Domain Operations (MDO)-capable force in 2028 and the MDO-ready force in 2035.

The Army’s MDO concept offers a clear glimpse of the types of new skills that will be required to win on the future battlefield. A force with all warfighting functions enabled by big data and AI will require Soldiers with data science expertise and some basic coding experience to improve AI integration and to maintain proper transparency and biases supporting leader decision making. The Internet of Battle things connecting Soldiers and systems will require Soldiers with technical integration skills and cyber security experience. The increased numbers of air and land robots and associated additive manufacturing systems to support production and maintenance means a new series of maintenance skills now only found in manufacturing centers, Amazon warehouses, and universities. There are many more emerging skill requirements. Not all of these will require a new MOS, but in some cases, the introduction of new skill identifiers and functional areas may be required.

Some of the needed skills may be inherent within the next generation(s) of recruits. Many of the games, drones, and other everyday technologies that already are, or soon will be very common – narrow AI, app development and general programming, and smart devices – will yield a variety of intrinsic skills that recruits will have prior to entering the Army. Just like we no longer train Soldiers on how to use a computer, games like Fortnite©, with no formal relationship with the military, will provide players with militarily-useful skills such as communications, problem solving, and creative thinking, all while attempting to survive against persistent attack. Due to these trends, recruits may come into the Army with fundamental technical skills and baseline military thinking attributes that flatten the learning curve for Initial Entry Training (IET).

While these new recruits may have a set of some required skills, there will still be a premium placed on premier skillsets in fields such as AI and machine learning, robotics, big data management, and quantum information sciences. Due to the high demand for these skillsets, the Army will have to compete for talent with private industry, battling them on compensation, benefits, perks, and a less restrictive work environment. In light of this, the Army may have to consider adjusting or relaxing its current recruitment processes, business practices, and force structuring to ensure it is able to attract and retain expertise. It also may have to reconsider how it adapts and utilizes its civilian workforce to undertake these types of tasks in new and creative ways.

If you enjoyed reading this, please see the following MadSci blog posts:

… and the Mad Scientist Learning in 2050 Conference Final Report.

191. Competition in 2035: Anticipating Chinese Exploitation of Operational Environments

[Editor’s Note:  In today’s post, Mad Scientist Laboratory explores China’s whole-of-nation approach to exploiting operational environments, synchronizing government, military, and industry activities to change geostrategic power paradigms via competition in 2035. Excerpted from products previously developed and published by the TRADOC G-2’s Operational Environment and Threat Analysis Directorate (see links below), this post describes China’s approach to exploitation and identifies the implications for the U.S. Army — Enjoy!]

The Operational Environment is envisioned as a continuum, divided into two eras: the Era of Accelerated Human Progress (now through 2035) and the Era of Contested Equality (2035 through 2050). This latter era is marked by significant breakthroughs in technology and convergences in terms of capabilities, which lead to significant changes in the character of warfare. During this period, traditional aspects of warfare undergo dramatic, almost revolutionary changes which at the end of this timeframe may even challenge the very nature of warfare itself. In this era, no one actor is likely to have any long-term strategic or technological advantage, with aggregate power between the U.S. and its strategic competitors being equivalent, but not necessarily symmetric. Prevailing in this period will depend on an ability to synchronize multi-domain capabilities against an artificial intelligence-enhanced adversary with an overarching capability to visualize and understand the battlespace at even greater ranges and velocities. Equally important will be controlling information and the narrative surrounding the conflict. Adversaries will adopt sophisticated information operations and narrative strategies to change the context of the conflict and thus defeat U.S. political will.

The future strategic environment will be characterized by a persistent state of competition where global competitors seek to exploit the conditions of operational environments to gain advantage. Adversaries understand that the application of any or all elements of national power in competition just below the threshold of armed conflict is an effective strategy against the U.S.

Chinese DF-17 carrying the DF-ZF Hypersonic Glide Vehicle / Source: Bill Bostock, Business Insider Australia, via Wikimedia Commons

China is rapidly modernizing its armed forces and developing new approaches to warfare. Beijing has invested significant resources into research and development of a wide array of advanced technologies. Coupled with its time-honored practice of reverse engineering technologies or systems it purchases or acquires through espionage, this effort likely will allow China to surpass Russia as our most capable threat sometime around 2030.

China’s Approach to Exploitation

China’s whole-of-nation approach, which involves synchronization of actions across government, military, and industry, will facilitate exploitation of operational environments and enable it to gain global influence through economic exploitation.

China will leverage the international system to advance its own interests while attempting to constrain others, including the U.S.

Preferred Conditions and Methods

The following conditions and methods are conducive to exploitation by China, enabling them to shape the strategic environment in 2035:

    • Infrastructure Capacity Challenges:  China targets undeveloped and fragile environments where their capital investments, technology, and human capital can produce financial gains and generate political influence.
    • Interconnected Economies:  China looks for partners and opportunities to become a significant stakeholder in a wide variety of economies in order to capitalize on its investments as well as generate political influence.
    • Specialized Economies:  China looks for opportunities to partner with specialized markets and leverage their vulnerabilities for gain.
    • Technology Access Gaps:  China targets areas where their capital investments in technology provide partners with key resources and competitive advantages by filling technology gaps.

Implications for the U.S. Army:

    • The Chinese People’s Liberation Army (PLA) deployed armored medical vehicles and personnel to Germany for the Combined Aid 2019 Joint Exercise with the Bundeswehr this past summer.

      Traditional Army threat paradigms may not be sufficient for competition.

    • The Army could be drawn into unanticipated escalation as a result of China’s activities during the competition phase.
    • Army military partnerships will likely be undermined by China in 2035.
    • Army operations and engagements will be increasingly impacted by the pervasiveness of Chinese goods, technology, infrastructure, and systems.

If you enjoyed this post, please see the original paper and associated infographic of the same title, both by the TRADOC G-2’s Operational Environment and Threat Analysis Directorate and hosted on their All Partners Access Network (APAN) site

… and read the following MadSci Laboratory blog posts:

A view of the Future: 2035-2050

China’s Drive for Innovation Dominance and Quantum Surprise on the Battlefield?, by Elsa Kania

A Closer Look at China’s Strategies for Innovation: Questioning True Intent, by Cindy Hurst

Critical Projection: Insights from China’s Science Fiction, by Lt Col Dave Calder

190. Weaponized Information: One Possible Vignette

[Editor’s Note:  The Information Environment (IE) is the point of departure for all events across the Multi-Domain Operations (MDO) spectrum. It’s a unique space that demands our understanding, as the Internet of Things (IoT) and hyper-connectivity have democratized accessibility, extended global reach, and amplified the effects of weaponized information. Our strategic competitors and adversaries have been quick to grasp and employ it to challenge our traditional advantages and exploit our weaknesses.

    • Our near-peers confront us globally, converging IE capabilities with hybrid strategies to expand the battlefield across all domains and create hemispheric threats challenging us from home station installations (i.e., the Strategic Support Area) to the Close Area fight.
    • Democratization of weaponized information empowers regional hegemons and non-state actors, enabling them to target the U.S. and our allies and achieve effects at a fraction of the cost of conventional weapons, without risking armed conflict.
    • The IE enables our adversaries to frame the conditions of future competition and/or escalation to armed conflict on their own terms.

Today’s post imagines one such vignette, with Russia exploiting the IE to successfully out-compete us and accomplish their political objectives, without expending a single bullet!]

Ethnic Russian minorities’ agitation against their respective governments in Estonia, Lithuania, and Latvia spike. Simultaneously, the Russian Government ratchets up tensions, with inflammatory statements of support for these ethnic Russian minorities in the Baltic States; coordinated movements and exercises by Russian ground, naval, and air forces adjacent to the region; and clandestine support to ethnic Russians in these States. The Russian Government started a covert campaign to shape people’s views about the threats against the Russian diaspora. More than 200,000 twitter accounts send 3.6 million tweets trending #protectRussianseverywhere. This sprawling Russian disinformation campaign is focused on building internal support for the Russian President and a possible military action. The U.S. and NATO respond…

The 2nd Cav Regt is placed on alert; as it prepares to roll out of garrison for Poland, several videos surface across social media, purportedly showing the sexual assault of several underage German nationals by U.S. personnel. These disturbingly graphic deepfakes appear to implicate key Leaders within the Regiment. German political and legal authorities call for an investigation and host nation protests erupt outside the gates of Rose Barracks, Vilseck, disrupting the unit’s deployment.

Simultaneously, in units comprising the initial Force Package earmarked to deploy to Europe, key personnel (and their dependents) are targeted, distracting troops from their deployment preparations and disrupting unit cohesion:

    • Social media accounts are hacked/hijacked, with false threats by dependents to execute mass/school shootings, accusations of sexual abuse, hate speech posts by Leaders about their minority troops, and revelations of adulterous affairs between unit spouses.
    • Bank accounts are hacked: some are credited with excessive amounts of cash followed by faux “See Something, Say Something” hotline accusations being made about criminal and espionage activities; while others are zeroed out, disrupting families’ abilities to pay bills.

Russia’s GRU (Military Intelligence) employs AI Generative Adversarial Networks (GANs) to create fake persona injects that mimic select U.S. Active Army, ARNG, and USAR commanders making disparaging statements about their confidence in our allies’ forces, the legitimacy of the mission, and their faith in our political leadership. Sowing these injects across unit social media accounts, Russian Information Warfare specialists seed doubt and erode trust in the chain of command amongst a percentage of susceptible Soldiers, creating further friction in deployment preparations.

As these units load at railheads or begin their road march towards their respective ports of embarkation, Supervisory Control and Data Acquisition (SCADA) attacks are launched on critical rail, road, port, and airfield infrastructures, snarling rail lines, switching yards, and crossings; creating bottlenecks at key traffic intersections; and spoofing navigation systems to cause sealift asset collisions and groundings at key maritime chokepoints. The fly-by-wire avionics are hacked on a departing C-17, causing a crash with the loss of all 134 Soldiers onboard. All C-17s are grounded, pending an investigation.

Salvos of personalized, “direct inject” psychological warfare attacks are launched against Soldiers via immersive media (Augmented, Virtual, and Mixed Reality; 360o Video/Gaming), targeting them while they await deployment and are in-transit to Theater. Similarly, attacks are vectored at spouses, parents, and dependents, with horrifying imagery of their loved ones’ torn and maimed bodies on Artificial Intelligence-generated battlefields (based on scraped facial imagery from social media accounts).

Multi-Domain Operations has improved Jointness, but exacerbated problems with “the communications requirements that constitute the nation’s warfighting Achilles heel.” As units arrive in Theater, seams within and between these U.S. and NATO Intelligence, Surveillance, and Reconnaissance; Fires; Sustainment; and Command and Control inter-connected and federated tactical networks that facilitate partner-to-partner data exchanges are exploited with specifically targeted false injects, sowing doubt and distrust across the alliance for the Multi-Domain Common Operating Picture. Spoofing of these systems leads to accidental air defense engagements, resulting in Blue-on-Blue fratricide or the downing of a commercial airliner, with additional civilian deaths on the ground from spent ordnance, providing more opportunities for Russian Information Operations to spread acrimony within the alliance and create dissent in public opinion back home.

With the flow of U.S. forces into the Baltic Nations, real instances of ethnic Russians’ livelihoods being disrupted (e.g., accidental destruction of livestock and crops, the choking off of main routes to market, and damage to essential services [water, electricity, sewerage]) by maneuver units on exercise are captured on video and enhanced digitally to exacerbate their cumulative effects. Proliferated across the net via bots, these instances further stoke anti-Baltic / anti-U.S. opinion amongst Russian-sympathetic and non-aligned populations alike.

Following years of scraping global social media accounts and building profiles across the full political spectrum, artificial influencers are unleashed on-line that effectively target each of these profiles within the U.S. and allied civilian populations. Ostensibly engaging populations via key “knee-jerk” on-line affinities (e.g., pro-gun, pro-choice, etc.), these artificial influencers, ever so subtly, begin to shift public opinion to embrace a sympathetic position on the rights of the Russian diaspora to greater autonomy in the Baltic States.

The release of deepfake videos showing Baltic security forces massacring ethnic Russians creates further division and causes some NATO partners to hesitate, question, and withhold their support, as required under Article 5. The alliance is rent asunder — Checkmate!

Many of the aforementioned capabilities described in this vignette are available now. Threats in the IE space will only increase in verisimilitude with augmented reality and multisensory content interaction. Envisioning what this Bot 2.0 Competition will look like is essential in building whole-of-government countermeasures and instilling resiliency in our population and military formations.

The Mad Scientist Initiative will continue to explore the significance of the IE to Competition and Conflict and information weaponization throughout our FY20 events — stay tuned to the MadSci Laboratory for more information. In anticipation of this, we have published The Information Environment:  Competition and Conflict anthology, a collection of previously published blog posts that serves as a primer on this topic and examines the convergence of technologies that facilitates information weaponization — Enjoy!

189. What We are Learning about the Operational Environment

[Editor’s Note: The U.S Army Training and Doctrine Command and Army Futures Command recently updated and published The Operational Environment and the Changing Character of Warfare, and the accompanying Potential Game Changers handout to reflect what we are learning about the Operational Environment (OE). Addenda included insights gleaned from our recent Mad Scientist conferences and guest blog post submissions, as well as direct input received from you all — our Mad Scientist Community of Action — thank you! Today’s blog post provides a synopsis of these latest updates — Enjoy!]

At some point during The Era of Accelerated Human Progress (now through 2035), and really for the first time since the Second World War, it is likely that the United States could face a true strategic competitor who will have the ability to operate in multi-domains, the capability to deny domains to U.S. forces, and who will be able to operate with certain technological advantages over U.S. forces. This challenge is further compounded by our reliance on coalition warfare with allies who might not be able or willing to modernize at the same pace as the U.S.

As the world becomes further digitized, states will share their strategic environments with networked societies which could pose a threat by circumventing governments that are unresponsive to their citizens’ needs. These online organizations are capable of gaining power, influence, and capital to a degree that challenges traditional nation-states. Many states will face challenges from insurgents and global identity networks – ethnic, religious, regional, social, or economic – whose members may feel a stronger affinity to their online network than to their nationality, which could result in them either resisting state authority or ignoring it altogether.

The revolution in connected devices and virtual power projection will increase the potential for adversaries to target our installations. Hyper-connectivity increases the attack surface for cyber-attacks and the access to publicly available information on our Soldiers and their families, making personalized warfare and the use of psychological attacks and deepfakes likely. A force deploying to a combat zone will remain vulnerable from the Strategic Support Area – including individual Soldiers’ personal residences, home station installations, and ports of embarkation – all the way forward to the Close Area fight during its entire deployment.

The balkanization of the internet into multiple national “intranets” could provide fewer opportunities for influence platforms and impact cyber operations. The growing presence of fake news, data, and information, coupled with deepfakes and hyper-connectivity, changes the nature of information operations. The convergence of deepfakes, AI-generated bodies and faces, and AI writing technologies – that appear authentic – are corrosive to trust between governments and their populations, and present the potential for devastating impact on nation-states’ will to compete and fight.

Artificial Intelligence (AI) may be the most disruptive technology of our time: much of today’s “thought” is artificial, vice human. However, certain operational environments are data-scarce. Missing inputs caused by data gaps inhibit a narrow AI’s ability to provide the envisioned benefits in assessing the OE, limiting military application. Decision cycle times will decrease with AI-enabled intelligence systems conducting collection, collation, and analysis of battlefield information at machine speed, freeing up warfighters and commanders to do what they excel at – fight and make decisions. AI will become critical in processing and sustaining a clear common operating picture in this data-rich environment.

Passive sensing, especially when combined with artificial intelligence and big-data techniques may routinely outperform active sensors, leading to a counter-reconnaissance fight between autonomous sensors and countermeasures – “a robot-on-robot affair.” These capabilities will be augmented by increasingly sophisticated civilian capabilities, where commercial imagery services, a robust and mature Internet of Things, and near unlimited processing power generate a battlespace that is more transparent than ever before. This transparency may result in the demise of strategic and operational deception and surprise.

The proliferation of intelligent munitions will enable strikers to engage targets at greater distances, collaborate in teams to seek out and destroy designated targets, and defeat armored and other hardened targets, as well as defiladed and entrenched targets.

Unmanned systems, including advanced battlefield robotic systems acting both autonomously and as part of a wider trend in man-machine teaming, will account for a significant percentage of a combatant force. Swarms of small, cheap, scalable, and disposable unmanned systems will be used both offensively and defensively, creating targeting dilemmas for sophisticated, expensive defensive systems. Swarming systems on the future battlefield will include not only unmanned aerial systems (UAS) but also swarms across multiple domains with self-organizing, self-reconstituting, autonomous, ground, maritime (sub and surface), and subterranean unmanned systems. Advanced robotic vehicles could serve as mobile power generation plants and charging stations, while highly dexterous ground robots with legs and limbs could negotiate complex terrain allowing humans access to places otherwise denied. This raises the question: Is using a human Soldier in a dangerous situation ethical when there are robots available?

Biotechnology will see major advances, with many chemical and materials industries being replaced or augmented by a “bio-based economy” in which precision genetic engineering allows for bulk chemical production. Individualized genetics enable precise performance enhancements for cognition, health, longevity, and fitness. The low cost and low expertise entry points into genomic editing, bioweapon production, and human enhancements will enable explorations by state, non-state, criminal, and terrorist organizations. Competitors may not adopt the same legal regulations or ethics for enhancement as the U.S., causing asymmetry between the U.S. and those choosing to operate below our defined legal and ethical thresholds.

Space is becoming an increasingly congested, commercialized, democratized, and contested domain. A maneuver Brigade Combat Team has over 2,500 pieces of equipment dependent on space-based assets for PNT and Low Earth Orbit is cluttered with satellites, debris, and thousands of pieces of refuse.

Shifting demographics, such as youth bulges in Africa and aging populations of traditional allies and competitors, will threaten economic and political stability. These factors will be attenuated by a changing climate, which likely will become a direct security threat. Risks to U.S. security include extreme weather impacting installations, increased resource scarcity and food insecurity, climate migration increasing the number of refugees and internally displaced peoples, and the Arctic as a new sphere of competition.

Our understanding of technological innovations through 2035 has broadened in several areas:

    • Robotics: The advent of legged locomotion and robotic dexterity, with robots becoming less vehicle-like, able to replicate animal or a human characteristics.
    • Quantum Computing: The expansion of Quantum applications across to the full spectrum of sciences will affect Precision, Navigation, and Timing (PNT), especially relevant in GPS-denied environments, as well as improved sensors and imaging.
    • Space: Presence in this domain will expand to over 70 nations.
    • Missiles: The addition of maneuverability to hypersonic capabilities presents further challenges in the development of effective countermeasure systems.

We also refined our descriptions of several disruptive technologies anticipated through 2050:

    • Power: Proliferation of electric/battery powered vehicles, laser charging, small modular advanced nuclear power delivering electricity via directed energy (DE) and electric transportation, and the harnessing of Thermionic power — harvesting energy at the nano-level — which is scalable to megawatts.
    • Medical Advances: The ability to produce artificial cells on demand and the advent of tailored vaccines.
    • Insensitive Munitions: The development of multifunctional munitions, tailorable to specific mission sets and functions.
    • Information Environment: Instantaneous recall, sensor-saturated environment, unmanned asset intelligence collection, algorithmic processing of high volumes of information, and virtual and augmented reality.

We welcome your input on these or any additional aspects of the OE and the changing character of warfare — What are we missing?

If you enjoyed this post, please also see: