212. A Scenario for a Hypothetical Private Nuclear Program

[Editor’s Note: Mad Scientist Laboratory is pleased to publish today’s guest blog post by Mr. Alexander Temerev addressing the possible democratization and proliferation of nuclear weapons expertise, currently residing with only a handful of nation states (i.e., the U.S., Russia, China, the UK, France, India, Pakistan, and North Korea).  We vetted this post with nuclear subject matter experts within our community of action (who wish to remain anonymous) – the following initial comments are their collective input regarding Mr. Temerev’s guest post that follows – read on!]

What is proposed below “is not beyond the realm of possibility and, with enough wise investment, rather feasible — there are no secrets left in achievement of the basic nuclear physics package, and there haven’t been for a while (the key being obtaining the necessary fissile material). A side note — I was a friend and school-mate of the apocryphal Princeton University Physics Undergraduate Student in 1978 who, as part of his final degree project, developed a workable nuclear weapons design with nothing more than the pre-Internet Science Library as a resource. They still talk about the visit from the FBI on campus, and the fact that his professor only begrudgingly gave him an A- as a final grade.”

“Considering the advances since then, it’s likewise no surprise that such a thing could be accomplished today with even greater ease, there remaining the issue of obtaining sufficient fissile material to warrant the effort. Of course, even failure in this regard, done artfully, could still accomplish a sub-critical reaction [aka “a fizzle“– an explosion caused by the two sub-critical masses of the bomb being brought together too slowly] resulting in a militarily (and psychologically) effective detonation. So, as my colleague [name redacted] (far more qualified in matters scientific and technical) points out, with the advances since the advent of the Internet and World Wide Web, the opportunity to obtain the ‘Secret Sauce’ necessary to achieve criticality have likewise advanced exponentially. He has opined that it is quite feasible for a malevolent private actor, armed with currently foreseeable emerging capabilities, to seek and achieve nuclear capabilities utilizing Artificial Intelligence (AI)-based data and communications analysis modalities. Balancing against this emerging capability are the competing and ever-growing capabilities of the state to surveil and discover such endeavors and frustrate them before (hopefully) reaching fruition. Of course, you’ll understand if I only allude to them in this forum and say nothing further in that regard.”

“Nonetheless, for both good guy and bad, given enough speed and capacity, these will serve as the lever to move the incorporeal data world. This realization will move the quiet but deadly arms race in the shadows, that being the potential confluence of matured Artificial Intelligence (AI) and Quantum technologies at a point in the foreseeable future that changes everything. Such a confluence would enable the potential achievement of these, and even worse, WMD developmental approaches through big-data analysis currently considered infeasible. Conversely, state surveillance modes of the Internet would likewise profit through identifying clusters of seemingly unrelated data searches that could be analyzed to identify and frustrate malevolent actors”.

“It is quite conceivable, in this context, that the future of the Internet for our purposes revolves around one continuous game of cat and mouse as identities are sought and hidden between white hat and black hat players. A real, but unanticipated, version of Ray Kurtzweil’s singularity that nonetheless poses fundamental challenges for a free society. In the operational environment to 2050, cyber-operations will no longer be a new domain but one to be taken into account as a matter of course.”

“Once again, all credit goes to [my colleague] for providing the technical insight into this challenge, my contribution being entirely eccentric in nature. I believe the blog is worth publishing, provided that it serves as an opening for furthering discussion of the potential long-range implications such developments would pose.”

A Scenario for a Hypothetical Private Nuclear Program

Let’s assume there is a non-government actor willing to acquire nuclear weapons for some reason. Assume that the group has unlimited financing (or some significant amount of free and untraced money available — e.g., $1 billion in cryptocurrencies). What would be the best way for them to proceed, and what would be the most vulnerable points where they could be stopped?

Stealing existing nuclear weapons would probably not be an option (or will be of limited utility — see below). Modern nuclear devices are all equipped with PALs (permissive action links), rendering them unusable without unlocking codes (the key idea of PAL is removing some small amount of explosives from the implosion shell, different for each detonator – and compensating by adjusting precise timings when each detonator goes off; these timings are different for each device and can be released only by central command authority). Without knowing the entire set of PAL timings and the entire encrypted protocol between PAL controller and detonators, achieving a bona fide nuclear explosion is technically impossible. Some countries like Pakistan and perhaps North Korea do not possess sophisticated PAL systems for their devices; to compensate, their nuclear cores are tightly guarded by the military.

Fat Man Casing, Trinity Site / Source: Flickr by Ed Siasoco via Creative Commons Attribution 2.0 Generic

Therefore, even if weapon-grade nuclear materials are available (which is of course another near impossible problem), designing the nuclear explosive device de novo is still unavoidable. The principal design of nuclear weapons is not secret, and achieving the nuclear explosion is a clearly defined problem (in terms of timing, compression and explosion hydrodynamics) that can be solved by a small group of competent physicists. Indeed, the “Nth Country Experiment” by Lawrence Livermore National Laboratory in 1964 has shown that three bright physicists (without previous nuclear expertise) can deliver a plausible design for a working nuclear weapon (they were building an analogue of the Fat Man device, which is bulky and nearly undeliverable; today, more compact options should be pursued instead). A heavily redacted report is available online.

With modern computers, open information about nuclear weapons, some OSINT, and determination, the same feat could probably be accomplished in less than a year. (Some open source software and libraries that can be useful in such an endeavor, e.g., Castro for explosion hydrodynamics; there is also a guidebook for anyone with a deep interest in the field.) Many ideas for the critical part of the device – the neutron initiator — are also discussed in the open literature (here I will refrain from mentioning exact books and papers, but the information is still publicly available). Again, the task is clearly formulated — injecting the neutrons at the very precise moment during the explosion — this is only an engineering problem.

Assembling the device itself is no easy task; it requires precision engineering and the casting of high explosives, which cannot be done without significant pre-existing expertise. However, the brightest mechanical engineers and even explosives technicians can be legally hired on the open market, if not for the direct participation in the project, then for training and knowledge transfer for the project team. Private organizations have achieved even more complicated engineering feats (e.g., rocket engines at SpaceX), so this part looks feasible.

All current nuclear devices require periodic maintenance and re-casting of their plutonium pits with additional weapon-grade plutonium added every few years; otherwise their neutronic profile will gradually become too unfavorable to achieve a full nuclear explosion. If the group has acquired nuclear materials by stealing them, they will have to make use of them during the following few years. Nuclear programs of sovereign states, of course, have the entire weapon-grade plutonium production pipelines at their disposal, so the fresh plutonium is always available. This will be a much harder feat to achieve for a non-state actor. Ironically, the plutonium could be provided by disassembling PAL-equipped stolen or captured nuclear devices, which are less heavily guarded. While it is true that PAL will prevent their full scale explosion, they still can be the priceless source of weapon-grade plutonium.

Source: Nick Youngson via Picpedia, Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

Conclusion: Safeguarding weapon-grade nuclear materials is the highest priority, as the design details of nuclear devices are hardly a secret these days, and can be readily reproduced by many competent and determined organizations. Emergence of nuclear production pipelines (isotope separation, SILEX [Separation of Isotopes by Laser Excitation], plutonium separation, plutonium-producing reactors) should be monitored everywhere. Even PAL-equipped weapons need to be closely guarded, as they can be the sources of these materials. Groups and non-state actors willing to acquire nuclear capabilities without building the full production pipeline need to act fast and have the design and device prototypes (sans cores) ready before acquiring nuclear materials, as their utility is diminishing every year since acquisition.

If you enjoyed this post, please also see:

REMINDER: Don’t forget to join us tomorrow on-line at the Mad Scientist GEN Z and the OE Livestream Event! This event is open to all, on any device, anywhere (but is best streamed via a commercial, non-DoD network) — plan on joining us at 1330 EST on 21 February 2020 at: www.tradoc.army.mil/watch and engage in the discussion by submitting your questions and comments via this site’s moderated interactive chat room. You can also follow along on Twitter @ArmyMadSci. For more information, click here!

ALSO:  Help Mad Scientist expand the U.S. Army’s understanding of the Operational Environment (OE) — join the 662 others representing 46 nations who have already done so and take a few minutes to complete our short, on-line Global Perspectives Survey. Check out our initial findings here and stay tuned to future blog posts on the Mad Scientist Laboratory to learn what further insights we will have gleaned from this survey about OE trends, challenges, technologies, and disruptors.

FINALLY:  Don’t forget to enter The Operational Environment in 2035 Mad Scientist Writing Contest and share your unique insights on the future of warfighting — click here to learn more (submission deadline is 1 March 2020!)

Mr. Alexander Temerev is a consultant in complex systems dynamics and network analysis; he is CEO and founder of Reactivity – a boutique consulting company in Geneva, Switzerland.

Disclaimer: The views expressed in this blog post do not necessarily reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or the Training and Doctrine Command (TRADOC).

190. Weaponized Information: One Possible Vignette

[Editor’s Note:  The Information Environment (IE) is the point of departure for all events across the Multi-Domain Operations (MDO) spectrum. It’s a unique space that demands our understanding, as the Internet of Things (IoT) and hyper-connectivity have democratized accessibility, extended global reach, and amplified the effects of weaponized information. Our strategic competitors and adversaries have been quick to grasp and employ it to challenge our traditional advantages and exploit our weaknesses.

    • Our near-peers confront us globally, converging IE capabilities with hybrid strategies to expand the battlefield across all domains and create hemispheric threats challenging us from home station installations (i.e., the Strategic Support Area) to the Close Area fight.
    • Democratization of weaponized information empowers regional hegemons and non-state actors, enabling them to target the U.S. and our allies and achieve effects at a fraction of the cost of conventional weapons, without risking armed conflict.
    • The IE enables our adversaries to frame the conditions of future competition and/or escalation to armed conflict on their own terms.

Today’s post imagines one such vignette, with Russia exploiting the IE to successfully out-compete us and accomplish their political objectives, without expending a single bullet!]

Ethnic Russian minorities’ agitation against their respective governments in Estonia, Lithuania, and Latvia spike. Simultaneously, the Russian Government ratchets up tensions, with inflammatory statements of support for these ethnic Russian minorities in the Baltic States; coordinated movements and exercises by Russian ground, naval, and air forces adjacent to the region; and clandestine support to ethnic Russians in these States. The Russian Government started a covert campaign to shape people’s views about the threats against the Russian diaspora. More than 200,000 twitter accounts send 3.6 million tweets trending #protectRussianseverywhere. This sprawling Russian disinformation campaign is focused on building internal support for the Russian President and a possible military action. The U.S. and NATO respond…

The 2nd Cav Regt is placed on alert; as it prepares to roll out of garrison for Poland, several videos surface across social media, purportedly showing the sexual assault of several underage German nationals by U.S. personnel. These disturbingly graphic deepfakes appear to implicate key Leaders within the Regiment. German political and legal authorities call for an investigation and host nation protests erupt outside the gates of Rose Barracks, Vilseck, disrupting the unit’s deployment.

Simultaneously, in units comprising the initial Force Package earmarked to deploy to Europe, key personnel (and their dependents) are targeted, distracting troops from their deployment preparations and disrupting unit cohesion:

    • Social media accounts are hacked/hijacked, with false threats by dependents to execute mass/school shootings, accusations of sexual abuse, hate speech posts by Leaders about their minority troops, and revelations of adulterous affairs between unit spouses.
    • Bank accounts are hacked: some are credited with excessive amounts of cash followed by faux “See Something, Say Something” hotline accusations being made about criminal and espionage activities; while others are zeroed out, disrupting families’ abilities to pay bills.

Russia’s GRU (Military Intelligence) employs AI Generative Adversarial Networks (GANs) to create fake persona injects that mimic select U.S. Active Army, ARNG, and USAR commanders making disparaging statements about their confidence in our allies’ forces, the legitimacy of the mission, and their faith in our political leadership. Sowing these injects across unit social media accounts, Russian Information Warfare specialists seed doubt and erode trust in the chain of command amongst a percentage of susceptible Soldiers, creating further friction in deployment preparations.

As these units load at railheads or begin their road march towards their respective ports of embarkation, Supervisory Control and Data Acquisition (SCADA) attacks are launched on critical rail, road, port, and airfield infrastructures, snarling rail lines, switching yards, and crossings; creating bottlenecks at key traffic intersections; and spoofing navigation systems to cause sealift asset collisions and groundings at key maritime chokepoints. The fly-by-wire avionics are hacked on a departing C-17, causing a crash with the loss of all 134 Soldiers onboard. All C-17s are grounded, pending an investigation.

Salvos of personalized, “direct inject” psychological warfare attacks are launched against Soldiers via immersive media (Augmented, Virtual, and Mixed Reality; 360o Video/Gaming), targeting them while they await deployment and are in-transit to Theater. Similarly, attacks are vectored at spouses, parents, and dependents, with horrifying imagery of their loved ones’ torn and maimed bodies on Artificial Intelligence-generated battlefields (based on scraped facial imagery from social media accounts).

Multi-Domain Operations has improved Jointness, but exacerbated problems with “the communications requirements that constitute the nation’s warfighting Achilles heel.” As units arrive in Theater, seams within and between these U.S. and NATO Intelligence, Surveillance, and Reconnaissance; Fires; Sustainment; and Command and Control inter-connected and federated tactical networks that facilitate partner-to-partner data exchanges are exploited with specifically targeted false injects, sowing doubt and distrust across the alliance for the Multi-Domain Common Operating Picture. Spoofing of these systems leads to accidental air defense engagements, resulting in Blue-on-Blue fratricide or the downing of a commercial airliner, with additional civilian deaths on the ground from spent ordnance, providing more opportunities for Russian Information Operations to spread acrimony within the alliance and create dissent in public opinion back home.

With the flow of U.S. forces into the Baltic Nations, real instances of ethnic Russians’ livelihoods being disrupted (e.g., accidental destruction of livestock and crops, the choking off of main routes to market, and damage to essential services [water, electricity, sewerage]) by maneuver units on exercise are captured on video and enhanced digitally to exacerbate their cumulative effects. Proliferated across the net via bots, these instances further stoke anti-Baltic / anti-U.S. opinion amongst Russian-sympathetic and non-aligned populations alike.

Following years of scraping global social media accounts and building profiles across the full political spectrum, artificial influencers are unleashed on-line that effectively target each of these profiles within the U.S. and allied civilian populations. Ostensibly engaging populations via key “knee-jerk” on-line affinities (e.g., pro-gun, pro-choice, etc.), these artificial influencers, ever so subtly, begin to shift public opinion to embrace a sympathetic position on the rights of the Russian diaspora to greater autonomy in the Baltic States.

The release of deepfake videos showing Baltic security forces massacring ethnic Russians creates further division and causes some NATO partners to hesitate, question, and withhold their support, as required under Article 5. The alliance is rent asunder — Checkmate!

Many of the aforementioned capabilities described in this vignette are available now. Threats in the IE space will only increase in verisimilitude with augmented reality and multisensory content interaction. Envisioning what this Bot 2.0 Competition will look like is essential in building whole-of-government countermeasures and instilling resiliency in our population and military formations.

The Mad Scientist Initiative will continue to explore the significance of the IE to Competition and Conflict and information weaponization throughout our FY20 events — stay tuned to the MadSci Laboratory for more information. In anticipation of this, we have published The Information Environment:  Competition and Conflict anthology, a collection of previously published blog posts that serves as a primer on this topic and examines the convergence of technologies that facilitates information weaponization — Enjoy!

182. “Tenth Man” – Challenging our Assumptions about the Operational Environment and Warfare (Part 2)

[Editor’s Note: Mad Scientist Laboratory is pleased to publish our latest “Tenth Man” post. This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging. The Mad Scientist Laboratory offers it as a platform for the contrarians in our network to share their alternative perspectives and analyses regarding the Operational Environment (OE). We continue our series of “Tenth Man” posts examining the foundational assumptions of The Operational Environment and the Changing Character of Future Warfare, challenging them, reviewing the associated implications, and identifying potential signals and/or indicators of change. Enjoy!]

Assumption:  The character of warfare will change but the nature of war will remain human-centric.

The character of warfare will change in the future OE as it inexorably has since the advent of flint hand axes; iron blades; stirrups; longbows; gunpowder; breech loading, rifled, and automatic guns; mechanized armor; precision-guided munitions; and the Internet of Things. Speed, automation, extended ranges, broad and narrow weapons effects, and increasingly integrated multi-domain conduct, in addition to the complexity of the terrain and social structures in which it occurs, will make mid Twenty-first Century warfare both familiar and utterly alien.

The nature of warfare, however, is assumed to remain human-centric in the future. While humans will increasingly be removed from processes, cycles, and perhaps even decision-making, nearly all content regarding the future OE assumes that humans will remain central to the rationale for war and its most essential elements of execution. The nature of war has remained relatively constant from Thucydides through Clausewitz, and forward to the present. War is still waged because of fear, honor, and interest, and remains an expression of politics by other means. While machines are becoming ever more prevalent across the battlefield – C5ISR, maneuver, and logistics – we cling to the belief that parties will still go to war over human interests; that war will be decided, executed, and controlled by humans.

Implications:  If these assumptions prove false, then the Army’s fundamental understanding of war in the future may be inherently flawed, calling into question established strategies, force structuring, and decision-making models. A changed or changing nature of war brings about a number of implications:

– Humans may not be aware of the outset of war. As algorithmic warfare evolves, might wars be fought unintentionally, with humans not recognizing what has occurred until effects are felt?

– Wars may be fought due to AI-calculated opportunities or threats – economic, political, or even ideological – that are largely imperceptible to human judgement. Imagine that a machine recognizes a strategic opportunity or impetus to engage a nation-state actor that is conventionally (read that humanly) viewed as weak or in a presumed disadvantaged state. The machine launches offensive operations to achieve a favorable outcome or objective that it deemed too advantageous to pass up.

  • – Infliction of human loss, suffering, and disruption to induce coercion and influence may not be conducive to victory. Victory may be simply a calculated or algorithmic outcome that causes an adversary’s machine to decide their own victory is unattainable.

– The actor (nation-state or otherwise) with the most robust kairosthenic power and/or most talented humans may not achieve victory. Even powers enjoying the greatest materiel advantages could see this once reliable measure of dominion mitigated. Winning may be achieved by the actor with the best algorithms or machines.

  • These implications in turn raise several questions for the Army:

– How much and how should the Army recruit and cultivate human talent if war is no longer human-centric?

– How should forces be structured – what is the “right” mix of humans to machines if war is no longer human-centric?

– Will current ethical considerations in kinetic operations be weighed more or less heavily if humans are further removed from the equation? And what even constitutes kinetic operations in such a future?

– Should the U.S. military divest from platforms and materiel solutions (hardware) and re-focus on becoming algorithmically and digitally-centric (software)?

 

– What is the role for the armed forces in such a world? Will competition and armed conflict increasingly fall within the sphere of cyber forces in the Departments of the Treasury, State, and other non-DoD organizations?

– Will warfare become the default condition if fewer humans get hurt?

– Could an adversary (human or machine) trick us (or our machines) to miscalculate our response?

Signposts / Indicators of Change:

– Proliferation of AI use in the OE, with increasingly less human involvement in autonomous or semi-autonomous systems’ critical functions and decision-making; the development of human-out-of-the-loop systems

– Technology advances to the point of near or actual machine sentience, with commensurate machine speed accelerating the potential for escalated competition and armed conflict beyond transparency and human comprehension.

– Nation-state governments approve the use of lethal autonomy, and this capability is democratized to non-state actors.

– Cyber operations have the same political and economic effects as traditional kinetic warfare, reducing or eliminating the need for physical combat.

– Smaller, less-capable states or actors begin achieving surprising or unexpected victories in warfare.

– Kinetic war becomes less lethal as robots replace human tasks.

– Other departments or agencies stand up quasi-military capabilities, have more active military-liaison organizations, or begin actively engaging in competition and conflict.

If you enjoyed this post, please see:

    • “Second/Third Order, and Evil Effects” – The Dark Side of Technology (Parts I & II) by Dr. Nick Marsella.

… as well as our previous “Tenth Man” blog posts:

Disclaimer: The views expressed in this blog post do not necessarily reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).

179. A New Age of Terror: New Mass Casualty Terrorism Threats

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish today’s post by returning guest blogger Zachary Kallenborn, continuing his New Age of Terror series.  The democratization of unmanned air, ground, sea, and subsea systems and the proliferation of cyber-physical systems (e.g., automated plants) provide lesser states, non-state actors, and super-empowered individuals with new capabilities to conduct long-range precision fires and generate global non-kinetic effects resulting in mass casualty events. The potential weaponization of these otherwise benign capabilities pose new vulnerabilities to those who fail to remain vigilant and imagine the unthinkable — beware!]

A loud buzz pierced the quiet night air. A group of drones descended on a chemical plant near New York City. The drones disperse throughout the installation in search of storage tanks. A few minutes later, the buzz of the drone propellers was drowned out by loud explosions. A surge of fire leapt to the sky. A plume of gas followed, floating towards the nearby city. The gas killed thousands and thousands more were hospitalized with severe injuries.

The rapid proliferation of unmanned systems and cyber-physical systems offer terrorists new, easier means of carrying out mass casualty attacks. Drones allow terrorists to reduce their operational risk and acquire relatively low cost platforms. Cyber attacks require few resources and could cause significant harm, though a lack of expertise limits terrorist ability to inflict harm. Terrorists may prefer these methods to difficult-to-acquire and risky chemical, biological, radiological, and nuclear (CBRN) weapons.

Drones

Drones offer terrorists low cost methods of delivering harm with lower risk to attacker lives. Drone attacks can be launched from afar, in a hidden position, close to an escape route. Simple unmanned systems can be acquired easily: Amazon.com offers seemingly hundreds of drones for as low as $25. Of course, low cost drones also mean lower payloads that limit the harm caused, often significantly. Improvements to drone autonomy will allow terrorists to deploy more drones at once, including in true drone swarms.1 Terrorists can mount drone attacks across air, land, and sea.

Aerial drones allow attackers to evade ground-based defenses and could be highly effective in striking airports, chemical facilities, and other critical infrastructure. Houthi rebels in Yemen have repeatedly launched drone strikes on Saudi oil pipelines and refineries.2  Recent drone attacks eliminated half of Saudi oil production capacity.3  Attacks on chemical facilities are likely to be particularly effective. A chemical release would not require large amounts of explosives and could cause massive harm, as in the Bhopal gas accident that killed thousands. Current Department of Homeland Security Chemical Facility Anti-Terrorism Standards do not require any meaningful defenses against aerial attack.4  Alternatively, even small drones can cause major damage to airplane wings or engines, potentially risking bringing a plane down.5  In December 2018, that risk alone was enough to ground hundreds of flights at Gatwick airport south of London when drones were spotted close to the runway.

Self-driving cars also provide a means of mass casualty attack. Waymo, Uber, and several other companies seek to launch a self-driving taxi service, open to the public. Terrorists could request multiple taxis, load them with explosives or remotely operated weapons, and send them out to multiple targets. Alternatively, terrorists could launch multi-stage attacks on the same target: a first strike causes first responders to mass and subsequent attacks hit the responders. In fact, ISIS has reportedly considered this option.6

For a few hundred dollars, anyone can rent a semi-autonomous surface vessel that can carry up to 35lbs.7  No license or registration is necessary.8  Although a surface attack limits terrorists to maritime targets, potential still exists for significant harm. Terrorists can strike popular tourist sites like the Statue of Liberty or San Francisco’s Fisherman’s Wharf. U.S. military vessels are ideal targets too, such as the USS Cole bombing in October 2000.9  But drones are not the only new method of attack.

Cyber-physical systems

Like drones, cyber attacks are low cost and reduce operational risks. Cyber attacks can be launched from secure locations, even on the other side of the world. Terrorists also gain high levels of autonomy that will inhibit law enforcement responses.10  Although cyberterrorism requires significant technical know-how, terrorists require few resources other than a computer to carry out an attack.

Cyber attacks could target chemical facilities, airplanes, and other critical infrastructure targets. In 2000, Vitek Boden infiltrated computers controlling the sewage system of Maroochy Shire, Australia, and released hundreds of thousands of gallons of raw sewage into the surrounding area.11  Boden could have caused even more harm if he wished.12  Although Boden’s attack primarily harmed the environment, other attacks could threaten human life. Cyber attacks could disable safety systems at chemical facilities, risking an accidental toxic gas release or explosions. A cyber assault on a Saudi petrochemical facility in August 2017 reportedly had that exact goal.13

However, cyber expertise and specific target knowledge is likely to be a significant inhibitor. Although attacks on critical infrastructure may require specialist knowledge of the control system and administrative operations, protective measures are not always implemented, leaving targets vulnerable.14  Boden was successful in large part because he worked closely with the sewage system’s control systems. Although terrorists have defaced websites and conducted denial of service attacks, known terrorist organizations do not currently possess the capabilities to mount a major destructive cyber attack.15  The availability of the necessary human capital is a strong factor in whether terrorists pursue cyber attacks.16  Nonetheless, the risk is likely to grow as terrorists develop greater cyber capabilities, increased connectivity creates new opportunities for attack, and the black market for cybercrime tools grows.17

The Future Operational Environment

Hot-zone team members from Hawaii’s Chemical, Biological, Radiological, Nuclear, and High-Yield Explosive, Enhanced-Response-Force-Package Team (CERFP) process simulated casualties through a decontamination zone during an exercise this spring. /  Source: U.S. Air National Guard photo by Senior Airman John Linzmeier

If terrorists have new avenues of mass casualty attack, U.S. forces must devote more resources to force protection and emergency response. U.S. forces may be called upon to aid local, state, and federal emergency responders in the event of a mass casualty attack. Likewise, U.S. troops may face risks themselves: cyber and drone attacks could certainly target U.S. military installations. Even attacks that do not kill can cause significant harm: disrupting airport operations as in the 2018 Gatwick drone incident may delay troop resupply, troop deployment, or close air support to Soldiers in the field. The U.S. military and the broader national security community must rethink its approach to mass casualty terrorism to respond to these threats. Terrorist groups have typically required CBRN weapons to cause mass harm. But if you can kill thousands in a drone attack, why bother with risky, difficult-to-acquire CBRN weapons?

For more information on this threat trend, see Non-State Actors and Their Uses of Emerging Technology, presented by Dr. Gary Ackerman, National Consortium for the Study of Terrorism and Responses to Terrorism, University of Maryland, at the Mad Scientist Robotics, Artificial Intelligence & Autonomy Conference at the Georgia Tech Research Institute, Atlanta, Georgia, 7-8 March 2017…

… as well as the following related Mad Scientist Laboratory posts:

– Zachary Kallenborn‘s previous post, A New Age of Terror: The Future of CBRN Terrorism.

– Marie Murphy‘s post, Trouble in Paradise: The Technological Upheaval of Modern Political and Economic Systems

The Democratization of Dual Use Technology

Autonomy Threat Trends

The Future of the Cyber Domain

Emergent Threat Posed by Super-Empowered Individuals

… and crank up Love and Terror by The Cinematics!

Zachary Kallenborn is a freelance researcher and analyst, specializing in Chemical, Biological, Radiological, and Nuclear (CBRN) weapons, CBRN terrorism, drone swarms, and emerging technologies writ large. His research has appeared in the Nonproliferation Review, Studies in Conflict and Terrorism, Defense One, the Modern War Institute at West Point, and other outlets. His most recent study, Swarming Destruction: Drone Swarms and CBRN Weapons, examines the threats and opportunities of drone swarms for the full scope of CBRN weapons.

Disclaimer: The views expressed in this blog post do not necessarily reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).


1 Amy Hocraffer and Chang S. Nam, “A Meta-analysis of Human–System Interfaces in Unmanned Aerial Vehicle (UAV) Swarm Management,” Applied Ergonomics, Vol. 58 (2017), pp. 66–80, http://www.researchgate.net/profile/Chang_Nam5/publication/303782432_A_meta-analysis_of_human-system_interfaces_in_unmanned_aerial_vehicle_UAV_swarm_management/links/5767f71f08ae1658e2f8b435.pdf

2 Natasha Turak, “Oil Prices Jump as Saudi Energy Minister Reports Drone ‘Terrorism’ Against Pipeline Infrastructure,” CNBC, May 14, 2019, https://www.cnbc.com/2019/05/14/oil-jumps-as-saudi-energy-minister-reports-drone-terrorism-against-pipeline.html

3 John Defterios and Victoria Cavaliere, “Coordinated Strikes Knock Out Half of Saudi Oil Capacity, More Than 5 Million Barrels a Day,” CNN, September 15, 2019, https://www.cnn.com/2019/09/14/business/saudi-oil-output-impacted-drone-attack/index.html

4 Department of Homeland Security, “Risk-Based Performance Standards Guidance: Chemical Facility Anti-Terrorism Standards,” May 2009, 15, 85.

5 Peter Dockrill, “Here’s What it Looks Like When a Drone Smashes into a Plane Wing at 238 MPH,” ScienceAlert, October 22, 2018, https://www.sciencealert.com/this-is-what-it-looks-like-drone-smashes-into-plane-s-wing-238-mph-mid-air-collision-aircraft-impact

6 Lia Eustachewich, “Terrorist Wannabes Plotted Self-Driving Car Bomb Attack: Authorities,” New York Post, September 4, 2018, https://nypost.com/2018/09/04/terrorist-wannabes-plotted-self-driving-car-bomb-attack-authorities/

7 AllTerra, “AllTerra Rental Rates,” May 3, 2019, https://allterracentral.com/pub/media/wysiwyg/AllTerra_Rental_Rates-5.3.19.pdf

8 Phone conversation with USV retailer.

9 CNN Library, “USS Cole Bombing Fast Facts,” CNN, March 27, 2019, https://www.cnn.com/2013/09/18/world/meast/uss-cole-bombing-fast-facts/index.html

10 Steve S. Sin, Laura A. Blackerby, Elvis Asiamah, and Rhyner Washburn, “Determining Extremist Organisations’ Likelihood of Conducting Cyber Attacks,” 2016 8th International Conference on Cyber Conflict, May 31 to June 3, 2016, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7529428&tag=1

11 Marshall Abrams and Joe Weiss, “Malicious Control System Cyber Security Attack Case Study – Maroochy Water Services, Australia,” MITRE, July 23, 2008, https://www.mitre.org/sites/default/files/pdf/08_1145.pdf

12 Nabil Sayfayn and Stuart Madnick, “Cybersafety Analysis of the Maroochy Shire Sewage Spill (Preliminary Draft),” Cybersecurity Interdisciplinary Systems Laboratory, May 2017, http://web.mit.edu/smadnick/www/wp/2017-09.pdf

13 Nicole Perlroth and Clifford Krauss, “A Cyberattack in Saudi Arabia had a Deadly Goal. Experts Fear Another Try,” New York Times, March 15, 2018, https://www.nytimes.com/2018/03/15/technology/saudi-arabia-hacks-cyberattacks.html

14 Noguchi Mutsuo and Ueda Hirofumi, “An Analysis of the Actual Status of Recent Cyberattacks on Critical Infrastructure,” NEC Technical Journal, Vol. 12, No. 2, January 2018, https://www.nec.com/en/global/techrep/journal/g17/n02/pdf/170204.pdf

15 Tamara Evan, Eireann Leverett, Simon Ruffle, Andrew Coburn, James Bourdeau, Rohan Gunaratna, and Daniel Ralph, “Cyber Terrorism: Assessment of the Threat to Insurance,” Cambridge Centre for Risk Studies – Cyber Terrorism Insurance Futures 2017, November 2017, https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/risk/downloads/pool-re-cyber-terrorism.pdf

16 Steve S. Sin, et al, “Determining Extremist Organisations’ Likelihood of Conducting Cyber Attacks.”

17 Lillian Ablon, Martin C. Libicki, and Andrea A. Golay, “Markets for Cybercrime Tools and Stolen Data: Hacker’s Bazaar,” RAND, 2014, https://www.rand.org/content/dam/rand/pubs/research_reports/RR600/RR610/RAND_RR610.pdf

138. “The Monolith”

The Monolith set from the dawn of man sequence, 2001: A Space Odyssey, Metro-Goldwyn-Mayer (1968) / Source: Wikimedia Commons

[Editor’s Note: Mad Scientist Laboratory is pleased to introduce a new, quarterly feature, entitled “The Monolith.” Arthur C. Clarke and Stanley Kubrick fans alike will recognize and appreciate our allusion to the alien artifact responsible for “uplifting” mankind from primitive, defenseless hominids into tool using killers — destined for the stars — from their respective short story, “The Sentinel,” and movie, “2001: A Space Odyssey.” We hope that you will similarly benefit from this post (although perhaps in not quite so evolutionary a manner!), reflecting the Mad Scientist Teams’ collective book and movie recommendations — Enjoy!]

Originally published by PublicAffairs on 5 October 2017

The Future of War by Sir Lawrence Freedman. The evolution of warfare has taken some turns that were quite unexpected and were heavily influenced by disruptive technologies of the day. Sir Lawrence examines the changing character of warfare over the last several centuries, how it has been influenced by society and technology, the ways in which science fiction got it wrong and right, and how it might take shape in the future. This overarching look at warfare causes one to pause and consider whether we may be asking the right questions about future warfare.

 

Royal Scots Guardsmen engaging the enemy with a Lewis Machine Gun / Source:  Flickr

They Shall Not Grow Old directed by Sir Peter Jackson. This lauded 2018 documentary utilizes original film footage from World War I (much of it unseen for the past century) that has been digitized, colorized, upscaled, and overlaid with audio recordings from British servicemen who fought in the war. The divide between civilians untouched by the war and service members, the destructive impact of new disruptive technologies, and the change they wrought on the character of war resonate to this day and provide an excellent historical analogy from which to explore future warfare.

Gene Simmons plays a nefarious super empowered individual in Runaway

Runaway directed by Michael Crichton. This film, released in 1984, is set in the near future, where a police officer (Tom Selleck) and his partner (Cynthia Rhodes) specialize in neutralizing malfunctioning robots. A rogue killer robot – programmed to kill by the bad guy (Gene Simmons) – goes on homicidal rampage. Alas, the savvy officers begin to uncover a wider, nefarious plan to proliferate killer robots. This offbeat Sci-Fi thriller illustrates how dual-use technologies in the hands of super-empowered individuals could be employed innovatively in the Future Operational Environment. Personalized warfare is also featured, as a software developer’s family is targeted by the ‘bad guy,’ using a corrupted version of the very software he helped create. This movie illustrates the potential for everyday commercial products to be adapted maliciously by adversaries, who, unconstrained ethically, can out-innovate us with convergent, game changing technologies (robotics, CRISPR, etc.).

Originally published by Macmillan on 1 May 2018

The Military Science of Star Wars by George Beahm. Storytelling is a powerful tool used to visualize the future, and Science Fiction often offers the best trove of ideas. The Military Science of Star Wars by George Beahm dissects and analyzes the entirety of the Star Wars Universe to mine for information that reflects the real world and the future of armed conflict. Beahm tackles the personnel, weapons, technology, tactics, strategy, resources, and lessons learned from key battles and authoritatively links them to past, current, and future Army challenges. Beahm proves that storytelling, and even fantasy (Star Wars is more a fantasy story than a Science Fiction story), can teach us about the real world and help evolve our thinking to confront problems in new and novel ways. He connects the story to the past, present, and future Army and asks important questions, like “What makes Han Solo a great military Leader?”, “How can a military use robots (Droids) effectively?”, and most importantly, “What, in the universe, qualified Jar Jar Binks to be promoted to Bombad General?”.

Ex Machina, Universal Pictures (2014) / Source: Vimeo

Ex Machina directed by Alex Garland. This film, released in 2014, moves beyond the traditional questions surrounding the feasibility of Artificial Intelligence (AI) and the Turing test to explore the darker side of synthetic beings, knowing that it is achievable and that the test can be passed. The film is a cautionary tale of what might be possible at the extreme edge of AI computing and innovation where control may be fleeting or even an illusion. The Army may never face the same consequences that the characters in the film face, but it can learn from their lessons. AI is a hotly debated topic with some saying it will bring about the end of days, and others saying generalized AI will never exist. With a future this muddy, one must be cautious of exploring new and undefined technology spaces that carry so much risk. As more robotic entities are operationalized, and AI further permeates the battlefield, future Soldiers and Leaders would do well to stay abreast of the potential for volatility in an already chaotic environment. If Military AI progresses substantially, what will happen when we try to turn it off?

Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon / Source: NASA

Apollo 11 directed by Todd Douglas Miller. As the United States prepares to celebrate the fiftieth anniversary of the first manned mission to the lunar surface later this summer, this inspiring documentary reminds audiences of just how audacious an achievement this was. Using restored archival audio recordings and video footage (complemented by simple line animations illustrating each of the spacecrafts’ maneuver sequences), Todd Miller skillfully re-captures the momentousness of this historic event, successfully weaving together a comprehensive point-of-view of the mission. Watching NASA and its legion of aerospace contractors realize the dream envisioned by President Kennedy eight years before serves to remind contemporary America that we once dared and dreamed big, and that we can do so again, harnessing the energy of insightful and focused leadership with the innovation of private enterprise. This uniquely American attribute may well tip the balance in our favor, given current competition and potential future conflicts with our near-peer adversaries in the Future Operational Environment.

Originally published by Penguin Random House on 3 July 2018

Artemis by Andy Weir. In his latest novel, following on the heels of his wildly successful The Martian, Andy Weir envisions an established lunar city in 2080 through the eyes of Jasmine “Jazz” Bashara, one of its citizen-hustlers, who becomes enmeshed in a conspiracy to control the tremendous wealth generated from the space and lunar mineral resources refined in the Moon’s low-G environment. His suspenseful plot, replete with descriptions of the science and technologies necessary to survive (and thrive!) in the hostile lunar environment, posits a late 21st century rush to exploit space commodities. The resultant economic boom has empowered non-state actors as new competitors on the global — er, extraterrestrial stage — from the Kenya Space Corporation (blessed by its equatorial location and reduced earth to orbit launch costs) to the Sanchez Aluminum mining and refining conglomerate, controlled by a Brazilian crime syndicate scheming to take control of the lunar city. Readers are reminded that the economic hegemony currently enjoyed by the U.S., China, and the E.U. may well be eclipsed by visionary non-state actors who dare and dream big enough to exploit the wealth that lies beyond the Earth’s gravity well.

130. Trouble in Paradise: The Technological Upheaval of Modern Political and Economic Systems

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish the following post by returning guest blogger and proclaimed Mad Scientist Ms. Marie Murphy, addressing how advances in various technologies have the potential to upset the international order and empower individuals and non-state actors.  Read on to learn who will be the winners and losers in this technological upheaval!]

Access to new and advanced technologies has the potential to upset the current power dynamic of the world. From the proliferation of smartphones to commercially available software and hardware, individuals and states that were previously discounted as threats now have the potential to launch sophisticated attacks against powerful international players. Power will no longer remain in the upper echelons of society, where it is primarily held by national governments, multinational corporations, and national news services. These groups are losing their information dominance as individuals, local authorities, and other organizations now have the ability to access and distribute unfiltered information at their fingertips.1

A historical example of technology altering the balance of power are cassette tapes. Ayatollah Khomeini used cassette tape recordings to deliver sermons and direct the Iranian Revolution when exiled in Paris, while the United States observed the use of cassette tapes by the USSR in the spreading of communist propaganda.2 A new technology in the hands of empowered individuals and states allowed for events to transpire that otherwise would not have been possible with the same speed and effectiveness. Adaptation of technology created new agency for actors to direct movements from thousands of miles away, forever shaping the course of history. A more contemporary example is the role of smartphones and social media in the Arab Spring. These new disruptive technologies enabled the organizing of protests and the broadcasting of videos in real time, eclipsing traditional journalism’s ability to report.3

Near-term Analysis:

Technologically sophisticated international actors, such as the United States and the European Union, will maintain the capacity to manage the growth and use of technology within their own borders without adversely affecting governance. However, the increased availability of these technologies may strain civil/government relations in both developing countries and authoritarian systems.4 Technologies such as smartphones and the ability to instantly transmit data may force governments to be accountable for their actions, especially if their abuses of power are recorded and distributed globally by personal devices. At the same time however, “smart” devices may also be used by governments as instruments of social control, repression, and misinformation.

Technology also affords non-state actors new methods for recruiting and executing operations.  Technology-enabled platforms have allowed these groups to network near instantaneously across borders and around the world in a manner that would have been impossible prior to the advent of the digital age.5 A well-known example is the use of social media platforms by terrorist groups such as al-Qaeda and ISIS for propaganda and recruitment. These groups and others, such as Hezbollah and the political opposition in Venezuela, have deployed drones for both reconnaissance and as lethal weapons.6 The availability of these information age technologies has enabled these groups to garner more power and control than similar organizations could have done in the past, posing a real threat to major international actors.

Distant Future Analysis:

There is an extremely high chance of future political disruption stemming from technological advancement. There are some who predict a non-polar power balance emerging. In this scenario, the world is dominated by dozens of technologically capable actors with various capabilities. “Hyperconnected,” developed states such as Sweden, Finland, and Israel may become greater international players and brokers of technologically backed global power. “Partially-connected” nations, today’s developing world, will face multiple challenges and could possibly take advantage of new opportunities due to the proliferation of technology. Technologically empowered individuals, groups, or neighboring states may have the ability to question or threaten the legitimacy of an otherwise weak government. However, in these “partially-connected” states, technology will serve to break down social barriers to equalize social discourse among all strata of society. Other predictions suggest the dissolution of national boundaries and the creation of an “interconnected state” comprised of different national laws without borders in a virtual space.7

Democracy itself is evolving due to technological innovation. Increasing concerns about the roles of privacy, big data, internet security, and artificial intelligence in the digital age raise the following questions: how much does technology influence and control the lives of people in democratic countries, and what effect does this have on politics? Algorithms control the advertisements on the internet based on users’ search history, the collection and sale of personal data, and “fake news” which affects the opinions of millions.8  While these technologies provide convenience in the daily lives of internet-connected citizens, such as recommending items for purchase on Amazon and other platforms, they also lead to an erosion of public trust, a pillar upon which democracy is founded. Democracies must remain vigilant regarding how emerging technologies influence and affect their people and how governments use technology to interact with its citizens.

The changing geopolitical dynamics of the world is inextricably linked with economic power, and increasing economic power is positively correlated with technological advancement. Power is becoming more diffused as Brazil, Russia, India, China, and South Africa (i.e., the BRICS states), the Philippines, Mexico, Turkey, and others develop stronger economies. States with rising economic power may begin to shun traditional global political and economic institutions in favor of regional institutions and bilateral agreements.9 There will be many more emerging markets competing for market share,10 driving up competition and forcing greater innovation and integration to remain relevant.

One of the major factors of the changing economic landscape is the growth of robotics use. Today these technologies are exclusive to world economic leaders but are likely to proliferate as more technological advancements make them cost-effective for a wider range of industries and companies. The adaptation of artificial intelligence will also dictate the future success of businesses in developed and emerging economies. It is important for governments to consider “retraining programs” for those workers laid off by roboticization and AI domination of their career fields.11 Economically dominant countries of the future will be driven by technology and hold the majority of political power in the political arena. These states will harness these technologies and use them to increase their productivity while training their workforce to participate in a technologically aided market.

The Winners and Losers of the Future:

Winners:

  • Countries with stable governments and emerging economies which are able to adapt to the rapid pace of technological innovation without severe political disruption.
  • Current international powers which invest in the development and application of advanced technologies.

Losers:

  • Countries with fragile governments which can be overpowered by citizens, neighbors, or non-state actors armed with technology and authoritarian regimes who use technology as a tool of repression.
  • Traditional international powers which put themselves at risk of losing political and financial leverage if they only work to maintain the status quo. Those systems that do not adapt will struggle to remain relevant in a world dominated by a greater number of powers who fall into the “winners” category.

Conclusion

Modern power players in the world will have to adapt to the changing role of technology, particularly the influence of technology-empowered individuals. Technology will change how democracies and other political systems operate both domestically and on the world stage. The major international players of today will also have to accept that rising economic powers will gain more influence in the global market as they are more technologically enabled. As power becomes more diluted when states gain equalizing technology, the hegemony of the current powers that lead international institutions will begin to lose relevancy if they do not adapt.

If you enjoyed this post, please also see:

… and Ms. Murphy‘s previous posts:

… and crank up Bob Marley and the Wailers Get Up, Stand Up!

Marie Murphy is a junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is a regular contributor to the Mad Scientist Laboratory; interned at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative during the Summer of 2018; and is currently a Research Fellow for William and Mary’s Project on International Peace and Security.


1 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.” Strategy, A T Kearney, www.middle-east.atkearney.com/strategy/featured-article/-/asset_publisher/KwarGm4gaWhz/content/global-trends-2015-2025-divergence-disruption-and-innovation/10192?inheritRedirect=false&redirect=http://www.middle-east.atkearney.com/strategy/featured-article?p_p_id=101_INSTANCE_KwarGm4gaWhz&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1.

2 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.” Foreign Affairs, Foreign Affairs Magazine, 27 Oct. 2010, www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

3 Duffy, Matt J. “Smartphones in the Arab Spring.” Academia.edu – Share Research, 2011, www.academia.edu/1911044/Smartphones_in_the_Arab_Spring

4 China is a unique case here because it’s a major developer of technology and counter-technology systems which block the use of certain devices, applications, or programs within their borders. But Chinese people do find loopholes and other points of access in the system, defying the government.

5 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.” www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

6 “Drone Terrorism Is Now a Reality, and We Need a Plan to Counter the Threat.” International Security: Fragility, Violence and Conflict, World Economic Forum, 20 Aug. 2018, www.weforum.org/agenda/2018/08/drone-terrorism-is-now-a-reality-and-we-need-a-plan-to-counter-the-threat.

7 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.”  www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

8 Unver, Hamid Akin. “Artificial Intelligence, Authoritarianism and the Future of Political Systems.” SSRN, EDAM Research Reports, 2018, 26 Feb. 2019, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331635.

9 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.”

10 Stowell, Joshua. The Emerging Seven Countries Will Hold Increasing Levels of Global Economic Power by 2050. Global Security Review, 26 Apr. 2018, www.globalsecurityreview.com/will-global-economic-order-2050-look-like/.

11 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.”

94. The Wide Range of Competition

[Editor’s Note: Mad Scientist tracks convergence trends that are changing the character of future warfare. The democratization of technologies and the global proliferation of information is one of these trends that has expanded the arena of high-end threat capabilities beyond nation-states to now include non-state actors and super-empowered individuals. Today’s post illustrates how the democratization of one such capability,  biotechnology, affects the Future Operational Environment.]

As discussed during the Mad Scientist Bio Convergence and Soldier 2050 Conference, co-hosted with SRI International at Menlo Park, California last Spring, the broad advancement of biotechnologies will provide wide access to dangerous and powerful bioweapons and human enhancement. The low cost and low expertise entry point into gene editing, human performance enhancement, and bioweapon production has spurred a string of new explorations into this arena by countries with large defense budgets (e.g., China), non-state criminal and terrorist organizations (e.g., ISIS), and even super-empowered individuals willing to subject their bodies to experimental and risky treatments or augmentations.

China has invested billions of dollars into biotechnology – including in several U.S. biotechnology firms – and plans on focusing on their own bio revolution. Gene editing is one of the areas where China has sought to leapfrog the United States through ambitious Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) projects, editing the genes of 86 individuals, while the United States is just now approaching human trials. Additionally, Elsa Kania, an expert on Chinese emerging technology from the Center for the New American Security (CNAS), noted that China is now seeking to build its own innovation base rather than focusing on intellectual property theft and technology transfers.

Listen to Ms. Kania’s discussion addressing technological priorities and how they overlay on the Chinese government’s strategic objectives in the  China’s Quest for Enhanced Military Technology podcast, hosted by our colleagues at Modern War Institute.

Non-state actors – mainly terrorist organizations – have focused more on weaponizing biotechnology. A personal laptop belonging to ISIS that was captured in Syria, was found to contain lessons on making bubonic plague bombs and the employment of various weapons of mass destruction (WMDs). The possession of this dangerous information by the most notorious terrorist organization across the globe is a testament to the worldwide proliferation of information. This challenge of weaponized biotechnology is exacerbated by the relative ease of obtaining material to carry out such attacks.

Watch Dr. Gary Ackerman‘s presentation on Non-State Actors and their Uses of Technology from the Mad Scientist Artificial Intelligence, Robotics, and Autonomy: Visioning Mult-Domain Battle in 2030-2050 Conference at Georgetown University, 7-8 March 2017.

There is a growing community of individual biohackers and “do it yourselfers” (DIYers), super-empowered individuals pushing the boundaries of DNA editing, implants, embedded technologies (embeds), and unapproved chemical and biological injections. One of the most prominent biohackers, Josiah Zayner, a former NASA employee with a biophysics PhD, who livestreamed his self-injection of CRISPR and has even started a company selling DIY CRISPR kits ranging from several hundred to over 1000 dollars, effectively enabling biohackers to cheaply change their physiology, alter their appearance, and go beyond human biological norms. None of these treatments and augmentations are approved by regulatory agencies and DIYers run the serious risk of harming themselves or unleashing destructive and disruptive biological agents upon an unwitting population.

Read our Mad Scientist Laboratory blog post on the Emergent Threat Posed by Super-Empowered Individuals .

Biotechnology is just one example of how potentially game changing capabilities that were once only within the purview of our strategic competitors will be democratized via the global proliferation of information.  In the Future Operational Environment, we can also expect to see artificial intelligence, multi-domain swarming, and space capabilities in the hands of non-state and super-empowered individuals.

70. Star Wars 2050

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s guest post by returning blogger Ms. Marie Murphy, addressing the implication of space drones and swarms on space-based services critical to the U.S. Army.  Ms. Murphy’s previous post addressed Virtual Nations: An Emerging Supranational Cyber Trend.]

Drone technology continues to proliferate in militaries and industries around the world.  In the deep future, drones and drone swarms may extend physical conflict into the space domain.  As space becomes ever more critical to military operations, states will seek technologies to counter their adversaries’ capabilities.   Drones and swarms can blend in with space debris in order to provide a tactical advantage against vulnerable and expensive assets at a lower cost.

Source: AutoEvolution

Space was recently identified as a battlespace domain in recognition of threats increasing at an unexpected rate and, in 2013, the Army Space Training Strategy was released. The functions of the Army almost entirely depend on space systems for daily and specialized operations, particularly C4ISR and GPS capabilities. “Well over 2,500 pieces of equipment… rely on a space-based capability” in any given combat brigade, so an Army contingency plan for the loss of satellite communication is critical.[I]  It is essential for the Army, in conjunction with other branches of the military and government agencies, to best shield military assets in space and continue to develop technologies, such as outer space drones and swarms, to remain competitive and secure throughout this domain in the future.

Source: CCTV China

Drone swarms in particular are an attractive military option due to their relative inexpensiveness, autonomy, and durability as a whole. The U.S., China, and Russia are the trifecta of advanced drone and drone swarm technology and also pose the greatest threats in space. In May 2018, Chinese Company CETC launched 200 autonomous drones,[II] beating China’s own record of 119 from 2017.[III] The U.S. has also branched out into swarm technology with the testing of Perdix drones, although the U.S. is most known for its use of the high-tech Predator drone.[IV]

Source: thedrive.com

Non-state actors also possess rudimentary drone capabilities. In January 2018, Syrian rebels attacked a Russian installation with 13 drones in an attempt to overwhelm Russian defenses. The Russian military was able to neutralize the attack by shooting down seven and bringing the remaining six down with electronic countermeasures.[V] While this attack was quelled, it proves that drones are being used by less powerful or economically resourceful actors, making them capable of rendering many traditional defense systems ineffective. It is not a far leap to incorporate autonomous communication between vehicles, capitalizing on the advantages of a fully interactive and cooperative drone swarm.

NASA Homemade Drone; Source: NASA Swamp Works

The same logic applies when considering drones and drone swarms in space. However, these vehicles will need to be technologically adapted for space conditions. Potentially most similar to future space drones, the company Swarm Technology launched four nanosats called “SpaceBees” with the intention of using them to create a constellation supporting Internet of Things (IoT) networks; however, they did so from India without FCC authorization.[VI] Using nanosats as examples of small, survivable space vehicles, the issues of power and propulsion are the most dominant technological roadblocks. Batteries must be small and are subject to failure in extreme environmental conditions and temperatures.[VII] Standard drone propulsion mechanisms are not viable in space, where drones will have to rely on cold-gas jets to maneuver.[VIII] Drones and drone swarms can idle in orbit (potentially for weeks or months) until activated, but they may still need hours of power to reach their target. The power systems must also have the ability to direct flight in a specific direction, requiring more energy than simply maintaining orbit.

Source: University of Southampton

There is a distinct advantage for drones operating in space: the ability to hide in plain sight among the scattered debris in orbit. Drones can be sent into space on a private or government launch hidden within a larger, benign payload.[IX] Once in space, these drones could be released into orbit, where they would blend in with the hundreds of thousands of other small pieces of material. When activated, they would lock onto a target or targets, and swarms would converge autonomously and communicate to avoid obstacles. Threat detection and avoidance systems may not recognize an approaching threat or swarm pattern until it is too late to move an asset out of their path (it takes a few hours for a shuttle and up to 30 hours for the ISS to conduct object avoidance maneuvers). In the deep future, it is likely that there will be a higher number of larger space assets as well as a greater number of nanosats and CubeSats, creating more objects for the Space Surveillance Network to track, and more places for drones and swarms to hide.[X]

For outer space drones and drone swarms, the issue of space junk is a double-edged sword. While it camouflages the vehicles, drone and swarm attacks also produce more space junk due to their kinetic nature. One directed “kamikaze” or armed drone can severely damage or destroy a satellite, while swarm technology can be harnessed for use against larger, defended assets or in a coordinated attack. However, projecting shrapnel can hit other military or commercial assets, creating a Kessler Syndrome effect of cascading damage.[XI] Once a specific space junk removal program is established by the international community, the resultant debris effects from drone and swarm attacks can be mitigated to preclude collateral damage.  However, this reduction of space junk will also result in less concealment, limiting drones’ and swarms’ ability to loiter in orbit covertly.

Utilizing drone swarms in space may also present legal challenges.  The original governing document regarding space activities is the Outer Space Treaty of 1967. This treaty specifically prohibits WMDs in space and the militarization of the moon and other celestial bodies, but is not explicit regarding other forms of militarization, except to emphasize that space activities are to be carried out for the benefit of all countries. So far, military space activities have been limited to deploying military satellites and combatting cyber-attacks. Launching a kinetic attack in space would carry serious global implications and repercussions.

Such drastic and potentially destructive action would most likely stem from intense conflict on Earth. Norms about the usage of space would have to change. The Army must consider how widely experimented with and implemented drone and swarm technologies can be applied to targeting critical and expensive assets in orbit. Our adversaries do not have the same moral and ethical compunctions regarding space applications that the U.S. has as the world’s leading democracy. Therefore, the U.S. Army must prepare for such an eventuality.  Additionally, the Army must research and develop a more robust alternative to our current space-based GPS capability.  For now, the only war in space is the one conducted electronically, but kinetic operations in outer space are a realistic possibility in the deep future.

Marie Murphy is a rising junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative.

______________________________________________________

[I] Houck, Caroline, “The Army’s Space Force Has Doubled in Six Years, and Demand Is Still Going Up,” Defense One, 23 August 2017.

[II]China’s Drone Swarms,” OE Watch, Vol. 8.7, July 2018.

[III]China Launches Drone Swarm of 119 Fixed-Wing Unmanned Aerial Vehicles,” Business Standard, 11 June 2017.

[IV] Atherton, Kelsey D., “The Pentagon’s New Drone Swarm Heralds a Future of Autonomous War Machines,” Popular Science, 17 January 2017.

[V] Hruska, Joel, “Think One Military Drone is Bad? Drone Swarms Are Terrifyingly Difficult to Stop,” Extreme Tech, 8 March 2018.

[VI] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[VII] Chow, Eugene K., “America Is No Match for China’s New Space Drones,” The National Interest, 4 November 2017.

[VIII] Murphy, Mike, “NASA Is Working on Drones That Can Fly In Space,” Quartz, 31 July 2015.

[IX] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[X]Space Debris and Human Spacecraft,” NASA, 26 September 2013.

[XI] Scoles, Sarah, “The Space Junk Problem Is About to Get a Whole Lot Gnarlier,” WIRED, July 31, 2017.

 

 

 

 

 

 

 

 

 

65. “The Queue”

[Editor’s Note:  Now that another month has flown by, Mad Scientist Laboratory is pleased to present our June edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the past month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

Source: KUO CHENG LIAO

1. Collaborative Intelligence: Humans and AI are Joining Forces, by H. James Wilson and Paul R. Daugherty, Harvard Business Review, July – August 2018.

 

Source: OpenAI

A Team of AI Algorithms just crushed Expert Humans in a Complex Computer Game, by Will Knight, MIT Technology Review, June 25, 2018.

I know — I cheated and gave you two articles to read. These “dueling” articles demonstrate the early state of our understanding of the role of humans in decision-making. The Harvard Business Review article describes findings where human – Artificial Intelligence (AI) partnerships take advantage of the leadership, teamwork, creativity, and social skills of humans with the speed, scalability, and quantitative capabilities of AI. This is basically the idea of “centaur” chess which has been prevalent in discussions of human and AI collaboration. Conversely, the MIT Technology Review article describes the ongoing work to build AI algorithms that are incentivized to collaborate with other AI teammates. Could it be that collaboration is not a uniquely human attribute? The ongoing work on integration of AI into the workforce and in support of CEO decision-making could inform the Army’s investment strategy for AI. Julianne Gallina, one of our proclaimed Mad Scientists, described a future where everyone would have an entourage and Commanders would have access to a “Patton in the Pocket.” How the human operates on or in the loop and how Commanders make decisions at machine speed will be informed by this research. In August, the Mad Scientist team will conduct a conference focused on Learning in 2050 to further explore the ideas of human and AI teaming with intelligent tutors and mentors.

Source: Doubleday

2. Origin: A Novel, by Dan Brown, Doubleday, October 3, 2017, reviewed by Ms. Marie Murphy.

Dan Brown’s famous symbologist Robert Langdon returns to avenge the murder of his friend, tech developer and futurist Edmund Kirsch. Killed in the middle of presenting what he advertised as a life-changing discovery, Langdon teams up with Kirsch’s most faithful companion, his AI assistant Winston, in order to release Edmund’s presentation to the public. Winston is able to access Kirsch’s entire network, give real-time directions, and make decisions based on ambiguous commands — all via Kirsch’s smartphone. However, this AI system doesn’t appear to know Kirsch’s personal password, and can only enable Langdon in his mission to find it. An omnipresent and portable assistant like Winston could greatly aid future warfighters and commanders. Having this scope of knowledge on command is beneficial, but future AI will be able to not only regurgitate data, but present the Soldier with courses of action analyses and decision options based on the data. Winston was also able to mimic emotion via machine learning, which can reduce Soldier stress levels and present information in a humanistic manner. Once an AI has been attached to a Soldier for a period of time, it can learn the particular preferences and habits of that Soldier, and make basic or routine decisions and assumptions for that individual, anticipating their needs, as Winston does for Kirsch and Langdon.

Source: Getty Images adapted by CNAS

3. Technology Roulette: Managing Loss of Control as Many Militaries Pursue Technological Superiority, by Richard Danzig, Center for a New American Security, 30 May 2018.

Mad Scientist Laboratory readers are already familiar with the expression, “warfare at machine speed.” As our adversaries close the technology gap and potentially overtake us in select areas, there is clearly a “need for speed.”

“… speed matters — in two distinct dimensions. First, autonomy can increase decision speed, enabling the U.S. to act inside an adversary’s operations cycle. Secondly, ongoing rapid transition of autonomy into warfighting capabilities is vital if the U.S. is to sustain military advantage.” — Defense Science Board (DSB) Report on Autonomy, June 2016 (p. 3).

In his monograph, however, author and former Clinton Administration Secretary of the Navy Richard Danzig contends that “superiority is not synonymous with security;” citing the technological proliferation that almost inevitably follows technological innovations and the associated risks of unintended consequences resulting from the loss of control of military technologies. Contending that speed is a form of technological roulette, former Secretary Danzig proposes a control methodology of five initiatives to help mitigate the associated risks posed by disruptive technologies, and calls for increased multilateral planning with both our allies and opponents. Unfortunately, as with the doomsday scenario played out in Nevil Shute’s novel On the Beach, it is “… the little ones, the Irresponsibles…” that have propagated much of the world’s misery in the decades following the end of the Cold War. It is the specter of these Irresponsible nations, along with non-state actors and Super-Empowered Individuals, experimenting with and potentially unleashing disruptive technologies, who will not be contained by any non-proliferation protocols or controls. Indeed, neither will our near-peer adversaries, if these technologies promise to offer a revolutionary, albeit fleeting, Offset capability.

U.S. Vice Chairman of the Joint Chiefs of Staff Air Force Gen. Paul Selva, Source: Alex Wong/Getty Images

4. The US made the wrong bet on radiofrequency, and now it could pay the price, by Aaron Metha, C4ISRNET, 21 Jun 2018.

This article illustrates how the Pentagon’s faith in its own technology drove the Department of Defense to trust it would maintain dominance over the electromagnetic spectrum for years to come.  That decision left the United States vulnerable to new leaps in technology made by our near-peers. GEN Paul Selva, Vice Chairman of the Joint Chiefs of Staff, has concluded that the Pentagon must now keep up with near-peer nations and reestablish our dominance of electronic warfare and networking (spoiler alert – we are not!).  This is an example of a pink flamingo (a known, known), as we know our near-peers have surpassed us in technological dominance in some cases.  In looking at technological forecasts for the next decade, we must ensure that the U.S. is making the right investments in Science and Technology to keep up with our near-peers. This article demonstrates that timely and decisive policy-making will be paramount in keeping up with our adversaries in the fast changing and agile Operational Environment.

Source: MIT CSAIL

5. MIT Device Uses WiFi to ‘See’ Through Walls and Track Your Movements, by Kaleigh Rogers, MOTHERBOARD, 13 June 2018.

Researchers at MIT have discovered a way to “see” people through walls by tracking WiFi signals that bounce off of their bodies. Previously, the technology limited fidelity to “blobs” behind a wall, essentially telling you that someone was present but no indication of behavior. The breakthrough is using a trained neural network to identify the bouncing signals and compare those with the shape of the human skeleton. This is significant because it could give an added degree of specificity to first responders or fire teams clearing rooms. The ability to determine if an individual on the other side of the wall is potentially hostile and holding a weapon or a non-combatant holding a cellphone could be the difference between life and death. This also brings up questions about countermeasures. WiFi signals are seemingly everywhere and, with this technology, could prove to be a large signature emitter. Will future forces need to incorporate uniforms or materials that absorb these waves or scatter them in a way that distorts them?

Source: John T. Consoli / University of Maryland

6. People recall information better through virtual reality, says new UMD study, University of Maryland, EurekaAlert, 13 June 2018.

A study performed by the University of Maryland determined that people will recall information better when seeing it first in a 3D virtual environment, as opposed to a 2D desktop or mobile screen. The Virtual Reality (VR) system takes advantage of what’s called “spatial mnemonic encoding” which allows the brain to not only remember something visually, but assign it a place in three-dimensional space which helps with retention and recall. This technique could accelerate learning and enhance retention when we train our Soldiers and Leaders. As the VR hardware becomes smaller, lighter, and more affordable, custom mission sets, or the skills necessary to accomplish them, could be learned on-the-fly, in theater in a compressed timeline. This also allows for education to be distributed and networked globally without the need for a traditional classroom.

Source: Potomac Books

7. Strategy Strikes Back: How Star Wars Explains Modern Military Conflict, edited by Max Brooks, John Amble, ML Cavanaugh, and Jaym Gates; Foreword by GEN Stanley McChrystal, Potomac Books, May 1, 2018.

This book is fascinating for two reasons:  1) It utilizes one of the greatest science fiction series (almost a genre unto itself) in order to brilliantly illustrate some military strategy concepts and 2) It is chock full of Mad Scientists as contributors. One of the editors, John Amble, is a permanent Mad Scientist team member, while another, Max Brooks, author of World War Z, and contributor, August Cole, are officially proclaimed Mad Scientists.

The book takes a number of scenes and key battles in Star Wars and uses historical analogies to help present complex issues like civil-military command structure, counterinsurgency pitfalls, force structuring, and battlefield movement and maneuver.

One of the more interesting portions of the book is the concept of ‘droid armies vs. clone soldiers and the juxtaposition of that with the future testing of manned-unmanned teaming (MUM-T) concepts. There are parallels in how we think about what machines can and can’t do and how they think and learn.

 
If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

59. Fundamental Questions Affecting Army Modernization

[Editor’s Note:  The Operational Environment (OE) is the start point for Army Readiness – now and in the Future. The OE answers the question, “What is the Army ready for?”  Without the OE in training and Leader development, Soldiers and Leaders are “practicing” in a benign condition, without the requisite rigor to forge those things essential for winning in a complex, multi-domain battlefield.  Building the Army’s future capabilities, a critical component of future readiness, requires this same start point.  The assumptions the Army makes about the Future OE are the sine qua non start point for developing battlefield systems — these assumptions must be at the forefront of decision-making for all future investments.]

There are no facts about the future. Leaders interested in building future ready organizations must develop assumptions about possible futures and these assumptions require constant scrutiny. Leaders must also make decisions based on these assumptions to posture organizations to take advantage of opportunities and to mitigate risks. Making these decisions is fundamental to building future readiness.

Source: Evan Jensen, ARL

The TRADOC G-2 has made the following foundational assumptions about the future that can serve as launch points for important questions about capability requirements and capabilities under development. These assumptions are further described in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

1. Contested in all domains (air, land, sea, space, and cyber). Increased lethality, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions, further enabled by autonomy, robotics, and Artificial Intelligence (AI) with an increasing potential for overmatch. Adversaries will restrict us to temporary windows of advantage with periods of physical and electronic isolation.

Source: Army Technology

2. Concealment is difficult on the future battlefield. Hiding from advanced sensors — where practicable — will require dramatic reduction of heat, electromagnetic, and optical signatures. Traditional hider techniques such as camouflage, deception, and concealment will have to extend to “cross-domain obscuration” in the cyber domain and the electromagnetic spectrum. Canny competitors will monitor their own emissions in real-time to understand and mitigate their vulnerabilities in the “battle of signatures.” Alternately, “hiding in the open” within complex terrain clutter and near-constant relocation might be feasible, provided such relocation could outpace future recon / strike targeting cycles.   Adversaries will operate among populations in complex terrain, including dense urban areas.

3. Trans-regional, gray zone, and hybrid strategies with both regular and irregular forces, criminal elements, and terrorists attacking our weaknesses and mitigating our advantages. The ensuing spectrum of competition will range from peaceful, legal activities through violent, mass upheavals and civil wars to traditional state-on-state, unlimited warfare.

Source: Science Photo Library / Van Parys Media

4. Adversaries include states, non-state actors, and super-empowered individuals, with non-state actors and super empowered individuals now having access to Weapons of Mass Effect (WME), cyber, space, and Nuclear/Biological/ Chemical (NBC) capabilities. Their operational reach will range from tactical to global, and the application of their impact from one domain into another will be routine. These advanced engagements will also be interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Source: Northrop Grumman

5. Increased speed of human interaction, events and action with democratized and rapidly proliferating capabilities means constant co-evolution between competitors. Recon / Strike effectiveness is a function of its sensors, shooters, their connections, and the targeting process driving decisions. Therefore, in a contest between peer competitors with comparable capabilities, advantage will fall to the one that is better integrated and makes better and faster decisions.

These assumptions become useful when they translate to potential decision criteria for Leaders to rely on when evaluating systems being developed for the future battlefield. Each of the following questions are fundamental to ensuring the Army is prepared to operate in the future.

Source: Lockheed Martin

1. How will this system operate when disconnected from a network? Units will be disconnected from their networks on future battlefields. Capabilities that require constant timing and precision geo-locational data will be prioritized for disruption by adversaries with capable EW systems.

2. What signature does this system present to an adversary? It is difficult to hide on the future battlefield and temporary windows of advantage will require formations to reduce their battlefield signatures. Capabilities that require constant multi-directional broadcast and units with large mission command centers will quickly be targeted and neutralized.

Image credit: Alexander Kott

3. How does this system operate in dense urban areas? The physical terrain in dense urban areas and megacities creates concrete canyons isolating units electronically and physically. Automated capabilities operating in dense population areas might also increase the rate of false signatures, confusing, rather than improving, Commander decision-making. New capabilities must be able to operate disconnected in this terrain. Weapons systems must be able to slew and elevate rapidly to engage vertical targets. Automated systems and sensors will require significant training sets to reduce the rate of false signatures.

Source: Military Embedded Systems

4. How does this system take advantage of open and modular architectures? The rapid rate of technological innovations will offer great opportunities to militaries capable of rapidly integrating prototypes into formations.  Capabilities developed with open and modular architectures can be upgraded with autonomous and AI enablers as they mature. Early investment in closed-system capabilities will freeze Armies in a period of rapid co-evolution and lead to overmatch.

5. How does this capability help win in competition short of conflict with a near peer competitor? Near peer competitors will seek to achieve limited objectives short of direct conflict with the U.S. Army. Capabilities will need to be effective at operating in the gray zone as well as serving as deterrence. They will need to be capable of strategic employment from CONUS-based installations.

If you enjoyed this post, check out the following items of interest:

    • Join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live 11 June 2018 — click here to learn more!