126. Nowhere to Hide: Information Exploitation and Sanitization

[Editor’s Note:  In today’s post, Mad Scientist Laboratory explores how humankind’s recent exponential growth in interconnectivity will continue to affect warfare in the Future Operational Environment.  Using several contemporary use cases, we identify a number of vulnerabilities that have already been exploited by our adversaries.  The U.S. Army must learn how to sanitize its information signatures while simultaneously exploit those presented by our adversaries.  As previously stated on this site by COL Stefan J. Banach (USA-Ret.),  “Virtual Space is the decisive terrain and securing it is the decisive operation.]

Internet of Battle Things (IOBT) / Source: Alexander Kott, ARL

The timeless competition of finders vs. hiders is a key characteristic of the Future Operational Environment (FOE). Through the proliferation of sensors creating the Internet of Battlefield Things (IoBT), ubiquitous global communication, and pervasive personal electronic devices, the finders will be ascendant on the battlefield. They have more advantages and access than ever before – with the ability to make impactful non-kinetic action – and the hiders are creating bigger, enduring, and more conspicuous signatures. In the FOE, our ability to wade through the petabytes of raw sensor and communications data input to generate a Common Operating Picture and arrive at actionable courses of action will be significantly challenged. Will we be able to sanitize Blue Forces’ signatures to prevent our adversaries from detecting and exploiting similar information, while simultaneously seeing through Red Forces’ deception measures to strike decisively?

A recent example highlighting the inherent and unpredictable vulnerabilities presented by these emerging technologies is the incident involving personal fitness devices that track users via GPS. Many military personnel have used these devices to track personal performance while conducting physical fitness training.  The associated tracking information was transmitted back to fitness-tracking company Strava, where it was aggregated and then published as maps that were then made available to the public. Unfortunately, these maps contained articulate outlines of PT routes in and around military bases, the locations of which were not intended to be made public. This now publically available information inadvertently provided our adversaries with sensitive information that, in years past, would have required considerable time and other resources to acquire.

In response, the DoD issued a memorandum through Deputy Defense Secretary Patrick Shanahan effectively banning the use of geolocation capabilities in operational areas. While there was swift policy resolution in this case, albeit after-the-fact, there are a number of continuing and emergent threats presented by the information age that still need to be addressed.

In the previous example, the culprit was a smart watch or fitness tracking device that is a companion piece to the smart phone. Removing or prohibiting these devices is less detrimental to the overall morale, spirit, and will power of our Soldiers than removing their cell phones — their primary means of voice, data, and social media connectivity — oftentimes their sole link with their family back home. Adversaries have already employed tactics designed to exploit vulnerabilities arising from Soldier cellphone use. In the Ukraine, a popular Russian tactic is to send spoofed text messages to Ukrainian soldiers informing them that their support battalion has retreated, their bank account has been exhausted, or that they are simply surrounded and have been abandoned. Taking it one step further, they have even sent false messages to the families of soldiers informing them that their loved one was killed in action.

Russian 9a52-4 MLRS conducting a fire mission / Source: The National Interest

This sets off a chain of events where the family member will immediately call or text the soldier, followed by another spoofed message to the original phone. With a high number of messages to enough targets, an artillery strike is called in on the area where an excess of cellphone usage has been detected.

Similarly, a NATO red team was able to easily infiltrate their own forces through information gathered on social media sites – amassing locations, dates, and other data – to influence their Soldiers’ behavior.  Facebook and Instagram allowed them to track Soldiers, determine exact locations of exercises, and identify all members of a certain unit.

Hamas employed a similar tactic against Israeli Defense Force soldiers, using fake accounts to pose as attractive women in honey trap operations to access sensitive operational information.

Each of these examples illustrate recent, low-cost, and effective means of deception. Device exploitation, the over-sharing of sensitive data, and the challenge in determining information credibility will only increase as connected devices continue to both proliferate and transition from being portable and wearable to embeddable and implantable. The following questions must be addressed by the U.S. Army:

– How can we sanitize ourselves to mitigate these and other vulnerabilities from adversely affecting us operationally on future battlefields?

– How do we ensure that the information we are receiving and processing is legitimate and that we are not being spoofed?

– How are we preparing to exploit similar vulnerabilities in our adversaries?

Fictitious 1st Army Group patch. Commanded by then LTG George S. Patton, to deceive the Germans prior to the invasion of France

– Is this even possible in a hyper-connected and complex battlefield or are we destined to be on the wrong side of some future Operation Fortitude, where effective military deception helped ensure the success GEN Eisenhower’s Great Crusade to liberate Europe from the Nazis in World War II?

One final thought — geolocation information and high resolution remote sensing capabilities, which only a short decade and a half ago were limited to a handful of national intelligence services, have entered into a new, democratized era.  As recently demonstrated in three warzone use casesanyone (including non-spacefaring nations, non-state actors, and super-empowered individuals) can now access current and past imagery to generate high resolution, three dimensional views for geolocation, analysis, and (unfortunately) exploitation.  The convergence of this capability with the proliferation of personalized information signatures truly means that there is “Nowhere to Run, Nowhere to Hide.”  (Crank it up with Martha and the Vandellas!)

If you enjoyed this post, please also read the following blog posts addressing the weaponization of social media, the future of battlefield deception, and virtual warfare:

121. Emergent Global Trends Impacting on the Future Operational Environment

[Editor’s Note: Regular readers of the Mad Scientist Laboratory are familiar with a number of disruptive trends and their individual and convergent impacts on the Future Operational Environment (OE). In today’s post, we explore three recent publications to expand our understanding of these and additional emergent global trends.  We also solicit your input on any other trends that have the potential to transform the OE and change the character of future warfare.]

The U.S. Army finds itself at a historical inflection point, where disparate, yet related elements of the Operational Environment (OE) are converging, creating a situation where fast-moving trends across the Diplomatic, Information, Military, and Economic (DIME) spheres are rapidly transforming the nature of all aspects of society and human life – including the character of warfare.” — The Operational Environment and the Changing Character of Future Warfare

Last year, the Mad Scientist Initiative published several products that envisioned these fast-moving trends and how they are transforming the Future OE. These products included our:

• Updated Potential Game Changers information sheet, identifying a host of innovative technologies with the potential to disrupt future warfare during The Era of Accelerated Human Progress (now through 2035) and The Era of Contested Equality (2035 through 2050).

 

 

 

Black Swans and Pink Flamingos blog post, addressing both Black Swan events (i.e., unknown, unknowns) which, though not likely, might have significant impacts on how we think about warfighting and security; and Pink Flamingos, which are the known, knowns that are often discussed, but ignored by Leaders trapped by organizational cultures and rigid bureaucratic decision-making structures.

With the advent of 2019, three new predictive publications have both confirmed and expanded the Mad Scientist Initiative’s understanding of emergent trends and technologies:

• Government Accounting Office (GAO) Report to Congressional Committees: National Security Long Range Emerging Threats Facing the United States As Identified by Federal Agencies, December 2018

• Deloitte Insights Technology, Media, and Telecommunications Predictions 2019, January 2019

• World Economic Forum (WEF) The Global Risks Report 2019, 14th Edition, January 2019

Commonalities:

These three publications collectively confirmed Mad Scientist’s thoughts regarding the disruptive potential of Artificial Intelligence (AI), Quantum Computing, the Internet of Things (IoT), and Big Data; and individually echoed our concerns regarding Cyber, Additive Manufacturing, Space and Counterspace, Natural Disasters, and the continuing threat of Weapons of Mass Destruction. That said, the real value of these (and other) predictions is in informing us about the trends we might have missed, and expanding our understanding of those that we were already tracking.

New Insights:

From the GAO Report we learned:

Megacorporations as adversaries. Our list of potential adversaries must expand to include “large companies that have the financial resources and a power base to exert influence on par with or exceeding non-state actors.” Think super-empowered individual(s) enhanced further by the wealth, reach, influence, and cover afforded by a transnational corporation.

The rich population is shrinking, the poor population is not. Working-age populations are shrinking in wealthy countries and in China and Russia, and are growing in developing, poorer countries…. [with] the potential to increase economic, employment, urbanization and welfare pressures, and spur migration.”

Climate change, environment, and health issues will demand attention. More extreme weather, water and soil stress, and food insecurity will disrupt societies. Sea-level rise, ocean acidification, glacial melt, and pollution will change living patterns. Tensions over climate change will grow.”

Internal and International Migration. Governments in megacities … may not have the capacity to provide adequate resources and infrastructure…. Mass migration events may occur and threaten regional stability, undermine governments, and strain U.S. military and civilian responses.”

Infectious Diseases. New and evolving diseases from the natural environment—exacerbated by changes in climate, the movement of people into cities, and global trade and travel—may become a
pandemic. Drug-resistant forms of diseases previously considered treatable could become widespread again…. Diminishing permafrost could expand habitats for pathogens that cause disease.”

From Deloitte Insights Predictions we learned:

Intuitive AI development services may not require specialized knowledge. “Baidu recently released an AI training platform called EZDL that requires no coding experience and works even with small data training sets…. Cloud providers have developed pre-built machine learning APIs [application-programming interfaces] for technologies such as natural language processing that customers can access instead of building their own.”

Cryptocurrency growth may have driven Chinese semiconductor innovation. Chinese chipmakers’ Application-Specific Integrated Circuits (ASICs), initially designed to meet domestic bitmining demands, may also meet China’s growing demand for AI chipsets vice Graphics Processing Units (GPUs). “Not only could these activities spark more domestic innovation… China just might be positioned to have a larger impact on the next generation of cognitive technologies.”

Quantum-safe security was important yesterday. Malicious adversaries could store classically encrypted information today to decrypt in the future using a QC [Quantum Computer], in a gambit known as a ‘harvest-and-decrypt’ attack.”

From the WEF Report we learned:

This is an increasingly anxious, unhappy, and lonely world. Anger is increasing and empathy appears to be in short supply…. Depression and anxiety disorders increased [globally] between 1990 and 2013…. It is not difficult to imagine such emotional and psychological disruptions having serious diplomatic—and perhaps even military—consequences.”

The risk from biological pathogens is increasing. “Outbreaks since 2000 have been described as a ‘rollcall of near-miss catastrophes’” and they are on the rise. “Biological weapons still have attractions for malicious non-state actors…. it [is] difficult to reliably attribute a biological attack… the direct effects—fatalities and injuries—would be compounded by potentially grave societal and political disruption.”

Use of weather manipulation tools stokes geopolitical tensions. Could be used to disrupt … agriculture or military planning… if states decided unilaterally to use more radical geo-engineering technologies, it could trigger dramatic climatic disruptions.”

Food supply disruption emerges as a tool as geo-economic tensions intensify. Worsening trade wars might spill over into high-stakes threats to disrupt food or agricultural supplies…. Could lead to disruptions of domestic and cross-border flows of food. At the extreme, state or non-state actors could target the crops of an adversary state… with a clandestine biological attack.”

Taps run dry on Water Day Zero. “Population growth, migration, industrialization, climate change, drought, groundwater depletion, weak infrastructure, and poor urban planning” all stress megacities’ ability to meet burgeoning demands, further exacerbating existing urban / rural divides, and could potentially lead to conflicts over remaining supply sources.

What Are We Missing?

The aforementioned trends are by no means comprehensive. Mad Scientist invites our readers to assist us in identifying any other additional emergent global trends that will potentially transform the OE and change the character of future warfare. Please share them with us and our readers by scrolling down to the bottom of this post to the “Leave a Reply” section, entering them in the Comment Box with an accompanying rationale, and then selecting the “Post Comment” button. Thank you in advance for all of your submissions!

If you enjoyed reading these assessments about future trends, please also see the Statement for the Record:  Worldwide Threat Assessment of the US Intelligence Community, 29 January 2019, from the U.S. Senate Select Committee on Intelligence.

107. “The Queue”

[Editor’s Note: Mad Scientist Laboratory is pleased to present our November edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the previous month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment (OE). We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

1. Is China a global leader in research and development? China Power Project, Center for Strategic and International Studies (CSIS), 2018. 

The United States Army’s concept of Multi-Domain Operations 2028 describes Russia and China as strategic competitors working to synthesize emerging technologies, such as artificial intelligence, hypersonics, machine learning, nanotechnology, and robotics, with their analysis of military doctrine and operations. The Future OE’s Era of Contested Equality (i.e., 2035 through 2050) describes China’s ascent to a peer competitor and our primary pacing threat. The fuel for these innovations is research and development funding from the Chinese Government and businesses.

CSIS’s China Power Project recently published an assessment of the rise in China’s research and development funding. There are three key facts that demonstrate the remarkable increase in funding and planning that will continue to drive Chinese innovation. First, “China’s R&D expenditure witnessed an almost 30-fold increase from 1991 to 2015 – from $13 billion to $376 billion. Presently, China spends more on R&D than Japan, Germany, and South Korea combined, and only trails the United States in terms of gross expenditure. According to some estimates, China will overtake the US as the top R&D spender by 2020.”

Second, globally businesses are funding the majority of the research and development activities. China is now following this trend with its “businesses financing 74.7 percent ($282 billion) of the country’s gross expenditure on R&D in 2015.” Tracking the origin of this funding is difficult with the Chinese government also operating a number of State Owned Entities. This could prove to be a strength for the Chinese Army’s access to commercial innovation.

China’s Micius quantum satellite, part of their Quantum Experiments at Space Scale (QUESS) program

Third, the Chinese government is funding cutting edge technologies where they are seeking to be global leaders. “Expenditures by the Chinese government stood at 16.2 percent of total R&D usage in 2015. This ratio is similar to that of advanced economies, such as the United States (11.2 percent). Government-driven expenditure has contributed to the development of the China National Space Administration. The Tiangong-2 space station and the “Micius’ quantum satellite – the first of its kind – are just two such examples.”

2. Microsoft will give the U.S. military access to ‘all the technology we create’, by Samantha Masunaga, Los Angeles Times (on-line), 1 December 2018.

Success in the future OE relies on many key assumptions. One such assumption is that the innovation cycle has flipped. Where the DoD used to drive technological innovation in this country, we now see private industry (namely Silicon Valley) as the driving force with the Army consuming products and transitioning technology for military use. If this system is to work, as the assumption implies, the Army must be able to work easily with the country’s leading technology companies.  Microsoft’s President Brad Smith stated recently that his company will “provide the U.S. military with access to the best technology … all the technology we create. Full stop.”

This is significant to the DoD for two reasons: It gives the DoD, and thus the Army, access to one of the leading technology developers in the world (with cloud computing and AI solutions), and it highlights that the assumptions we operate under are never guaranteed. Most recently, Google made the decision not to renew its contract with the DoD to provide AI support to Project Maven – a decision motivated, in part, by employee backlash.

Our near-peer competitors do not appear to be experiencing similar tensions or friction between their respective governments and private industry.  China’s President Xi is leveraging private sector advances for military applications via a “whole of nation” strategy, leading China’s Central Military-Civil Fusion Development Commission to address priorities including intelligent unmanned systems, biology and cross-disciplinary technologies, and quantum technologies.  Russia seeks to generate innovation by harnessing its defense industries with the nation’s military, civilian, and academic expertise at their Era Military Innovation Technopark to concentrate on advances in “information and telecommunication systems, artificial intelligence, robotic complexes, supercomputers, technical vision and pattern recognition, information security, nanotechnology and nanomaterials, energy tech and technology life support cycle, as well as bioengineering, biosynthetic, and biosensor technologies.”

Microsoft openly declaring its willingness to work seamlessly with the DoD is a substantial step forward toward success in the new innovation cycle and success in the future OE.

3. The Truth About Killer Robots, directed by Maxim Pozdorovkin, Third Party Films, premiered on HBO on 26 November 2018.

This documentary film could have been a highly informative piece on the disruptive potential posed by robotics and autonomous systems in future warfare. While it presents a jumble of interesting anecdotes addressing the societal changes wrought by the increased prevalence of autonomous systems, it fails to deliver on its title. Indeed, robot lethality is only tangentially addressed in a few of the documentary’s storylines:  the accidental death of a Volkswagen factory worker crushed by autonomous machinery; the first vehicular death of a driver engrossed by a Harry Potter movie while sitting behind the wheel of an autonomous-driving Tesla in Florida, and the use of a tele-operated device by the Dallas police to neutralize a mass shooter barricaded inside a building.

Russian unmanned, tele-operated BMP-3 shooting its 30mm cannon on a test range / Zvezda Broadcasting via YouTube

Given his choice of title, Mr. Pozdorovkin would have been better served in interviewing activists from the Campaign to Stop Killer Robots and participants at the Convention on Certain Conventional Weapons (CCW) who are negotiating in good faith to restrict the proliferation of lethal autonomy. A casual search of the Internet reveals a number of relevant video topics, ranging from the latest Russian advances in unmanned Ground Combat Vehicles (GCV) to a truly dystopian vision of swarming killer robots.

Instead, Mr. Pozdorovkin misleads his viewers by presenting a number creepy autonomy outliers (including a sad Chinese engineer who designed and then married his sexbot because of his inability to attract a living female mate given China’s disproportionately male population due to their former One-Child Policy); employing a sinister soundtrack and facial recognition special effects; and using a number of vapid androids (e.g., Japan’s Kodomoroid) to deliver contrived narration hyping a future where the distinction between humanity and machines is blurred. Where are Siskel and Ebert when you need ’em?

4. Walmart will soon use hundreds of AI robot janitors to scrub the floors of U.S. stores,” by Tom Huddleston Jr., CNBC, 5 December 2018.

The retail superpower Walmart is employing hundreds of robots in stores across the country, starting next month. These floor-scrubbing janitor robots will keep the stores’ floors immaculate using autonomous navigation that will be able to sense both people and obstacles.

The introduction of these autonomous cleaners will not be wholly disruptive to Walmart’s workforce operations, as they are only supplanting a task that is onerous for humans. But is this just the beginning? As humans’ comfort levels grow with the robots, will there then be an introduction of robot stocking, not unlike what is happening with Amazon? Will robots soon handle routine exchanges? And what of the displaced or under-employed workers resulting from this proliferation of autonomy, the widening economic gap between the haves and the have-nots, and the potential for social instability from neo-luddite movements in the Future OE?   Additionally, as these robots become increasingly conspicuous throughout our everyday lives in retail, food service, and many other areas, nefarious actors could hijack them or subvert them for terroristic, criminal, or generally malevolent uses.

The introduction of floor-cleaning robots at Walmart has larger implications than one might think. Robots are being considered for all the dull, dirty, and dangerous tasks assigned to the Army and the larger Department of Defense. The autonomous technology behind robots in Walmart today could have implications for our Soldiers at their home stations or on the battlefield of the future, conducting refueling and resupply runs, battlefield recovery, medevac, and other logistical and sustainment tasks.

5. What our science fiction says about us, by Tom Cassauwers, BBC News, 3 December 2018.

Right now the most interesting science fiction is produced in all sorts of non-traditional places,” says Anindita Banerjee, Associate Professor at Cornell University, whose research focuses on global sci-fi.  Sci-Fi and story telling enable us to break through our contemporary, mainstream echo chamber of parochialism to depict future technological possibilities and imagined worlds, political situations, and conflict. Unsurprisingly, different visions of the future imagining alternative realities are being written around the world – in China, Russia, and Africa. This rise of global science fiction challenges how we think about the evolution of the genre.  Historically, our occidental bias led us to believe that sci-fi was spreading from Western centers out to the rest of the world, blinding us to the fact that other regions also have rich histories of sci-fi depicting future possibilities from their cultural perspectives. Chinese science fiction has boomed in recent years, with standout books like Cixin Liu’s The Three-Body ProblemAfrofuturism is also on the rise since the release of the blockbuster Black Panther.

The Mad Scientist Initiative uses Crowdsourcing and Story Telling as two innovative tools to help us envision future possibilities and inform the OE through 2050. Strategic lessons learned from looking at the Future OE show us that the world of tomorrow will be far more challenging and dynamic. In our FY17 Science Fiction Writing Contest, we asked our community of action to describe Warfare in 2030-2050.  The stories submitted showed virtually every new technology is connected to and intersecting with other new technologies and advances.  The future OE presents us with a combination of new technologies and societal changes that will intensify long-standing international rivalries, create new security dynamics, and foster instability as well as opportunities. Sci-fi transcends beyond a global reflection on resistance; non-Western science fiction also taps into a worldwide consciousness – helping it conquer audiences beyond their respective home markets.

6. NVIDIA Invents AI Interactive Graphics, Nvidia.com, 3 December 2018.

A significant barrier to the modeling and simulation of dense urban environments has been the complexity of these areas in terms of building, vehicle, pedestrian, and foliage density. Megacities and their surrounding environments have such a massive concentration of entities that it has been a daunting task to re-create them digitally.  Nvidia has recently developed a first-step solution to this ongoing problem. Using neural networks and generative models, the developers are able to train AI to create realistic urban environments based off of real-world video.

As Nvidia admits, “One of the main obstacles developers face when creating virtual worlds, whether for game development, telepresence, or other applications is that creating the content is expensive. This method allows artists and developers to create at a much lower cost, by using AI that learns from the real world.” This process could significantly compress the development timeline, and while it wouldn’t address the other dimensions of urban operations — those entities that are underground or inside buildings (multi-floor and multi-room) — it would allow the Army to divert and focus more resources in those areas. The Chief of Staff of the Army has made readiness his #1 priority and stated, “In the future, I can say with very high degrees of confidence, the American Army is probably going to be fighting in urban areas,” and the Army “need[s] to man, organize, train and equip the force for operations in urban areas, highly dense urban areas.” 1  Nvidia’s solution could enable and empower the force to meet that goal.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future OE, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!


1Commentary: The missing link to preparing for military operations in megacities and dense urban areas,” by Claudia ElDib and John Spencer, Army Times, 20 July 2018, https://www.armytimes.com/opinion/commentary/2018/07/20/commentary-the-missing-link-to-preparing-for-military-operations-in-megacities-and-dense-urban-areas/.

101. TRADOC 2028

[Editor’s Note:  The U.S. Army Training and Doctrine Command (TRADOC) mission is to recruit, train, and educate the Army, driving constant improvement and change to ensure the Total Army can deter, fight, and win on any battlefield now and into the future. Today’s post addresses how TRADOC will need to transform to ensure that it continues to accomplish this mission with the next generation of Soldiers.]

Per The Army Vision:

The Army of 2028 will be ready to deploy, fight, and win decisively against any adversary, anytime and anywhere, in a joint, multi-domain, high-intensity conflict, while simultaneously deterring others and maintaining its ability to conduct irregular warfare. The Army will do this through the employment of modern manned and unmanned ground combat vehicles, aircraft, sustainment systems, and weapons, coupled with robust combined arms formations and tactics based on a modern warfighting doctrine and centered on exceptional Leaders and Soldiers of unmatched lethality.” GEN Mark A. Milley, Chief of Staff of the Army, and Dr. Mark T. Esper, Secretary of the Army, June 7, 2018.

In order to achieve this vision, the Army of 2028 needs a TRADOC 2028 that will recruit, organize, and train future Soldiers and Leaders to deploy, fight, and win decisively on any future battlefield. This TRADOC 2028 must account for: 1) the generational differences in learning styles; 2) emerging learning support technologies; and 3) how the Army will need to train and learn to maintain cognitive overmatch on the future battlefield. The Future Operational Environment, characterized by the speeding up of warfare and learning, will challenge the artificial boundaries between institutional and organizational learning and training (e.g., Brigade mobile training teams [MTTs] as a Standard Operating Procedure [SOP]).

Soldiers will be “New Humans” – beyond digital natives, they will embrace embedded and integrated sensors, Artificial Intelligence (AI), mixed reality, and ubiquitous communications. “Old Humans” adapted their learning style to accommodate new technologies (e.g., Classroom XXI). New Humans’ learning style will be a result of these technologies, as they will have been born into a world where they code, hack, rely on intelligent tutors and expert avatars (think the nextgen of Alexa / Siri), and learn increasingly via immersive Augmented / Virtual Reality (AR/VR), gaming, simulations, and YouTube-like tutorials, rather than the desiccated lectures and interminable PowerPoint presentations of yore. TRADOC must ensure that our cadre of instructors know how to use (and more importantly, embrace and effectively incorporate) these new learning technologies into their programs of instruction, until their ranks are filled with “New Humans.”

Delivering training for new, as of yet undefined MOSs and skillsets. The Army will have to compete with Industry to recruit the requisite talent for Army 2028. These recruits may enter service with fundamental technical skills and knowledges (e.g., drone creator/maintainer, 3-D printing specialist, digital and cyber fortification construction engineer) that may result in a flattening of the initial learning curve and facilitate more time for training “Green” tradecraft. Cyber recruiting will remain critical, as TRADOC will face an increasingly difficult recruiting environment as the Army competes to recruit new skillsets, from training deep learning tools to robotic repair. Initiatives to appeal to gamers (e.g., the Army’s eSports team) will have to be reflected in new approaches to all TRADOC Lines of Effort. AI may assist in identifying potential recruits with the requisite aptitudes.

“TRADOC in your ruck.” Personal AI assistants bring Commanders and their staffs all of the collected expertise of today’s institutional force. Conducting machine speed collection, collation, and analysis of battlefield information will free up warfighters and commanders to do what they do best — fight and make decisions, respectively. AI’s ability to quickly sift through and analyze the plethora of input received from across the battlefield, fused with the lessons learned data from thousands of previous engagements, will lessen the commander’s dependence on having had direct personal combat experience with conditions similar to his current fight when making command decisions.

Learning in the future will be personalized and individualized with targeted learning at the point of need. Training must be customizable, temporally optimized in a style that matches the individual learners, versus a one size fits all approach. These learning environments will need to bring gaming and micro simulations to individual learners for them to experiment. Similar tools could improve tactical war-gaming and support Commander’s decision making.  This will disrupt the traditional career maps that have defined success in the current generation of Army Leaders.  In the future, courses will be much less defined by the rank/grade of the Soldiers attending them.

Geolocation of Training will lose importance. We must stop building and start connecting. Emerging technologies – many accounted for in the Synthetic Training Environment (STE) – will connect experts and Soldiers, creating a seamless training continuum from the training base to home station to the fox hole. Investment should focus on technologies connecting and delivering expertise to the Soldier rather than brick and mortar infrastructure.  This vision of TRADOC 2028 will require “Big Data” to effectively deliver this personalized, immersive training to our Soldiers and Leaders at the point of need, and comes with associated privacy issues that will have to be addressed.

In conclusion, TRADOC 2028 sets the conditions to win warfare at machine speed. This speeding up of warfare and learning will challenge the artificial boundaries between institutional and organizational learning and training.

If you enjoyed this post, please also see:

– Mr. Elliott Masie’s presentation on Dynamic Readiness from the Learning in 2050 Conference, co-hosted with Georgetown University’s Center for Security Studies in Washington, DC, on 8-9 August 2018.

Top Ten” Takeaways from the Learning in 2050 Conference.

97. The Cryptoruble as a Stepping Stone to Digital Sovereignty

“By 2038, there won’t just be one internet — there will be many, split along national lines” — An Xiao Mina, 2038 podcast, Episode 2, New York Magazine Intelligencer, 25 October 2018.

[Editor’s Note:  While the prediction above is drawn from a podcast that posits an emerging tech cold war between China and the U.S., the quest for digital sovereignty and national cryptocurrencies is an emerging global trend that portends the fracturing of the contemporary internet into national intranets.  This trend erodes the prevailing Post-Cold War direction towards globalization.  In today’s post, Mad Scientist Laboratory welcomes back guest blogger Dr. Mica Hall, who addresses Russia’s move to adopt a national cryptocurrency, the cryptoruble, as a means of asserting its digital sovereignty and ensuring national security.  The advent of the cryptoruble will have geopolitical ramifications far beyond Mother Russia’s borders, potentially ushering in an era of economic hegemony over those states that embrace this supranational cryptocurrency. (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

At the nexus of monetary policy, geopolitics, and information control is Russia’s quest to expand its digital sovereignty. At the October 2017 meeting of the Security Council, “the FSB [Federal Security Service] asked the government to develop an independent ‘Internet’ infrastructure for BRICS nations [Brazil, Russia, India, China, South Africa], which would continue to work in the event the global Internet malfunctions.” 1 Security Council members argued the Internet’s threat to national security is due to:

“… the increased capabilities of Western nations to conduct offensive operations in the informational space as well as the increased readiness to exercise these capabilities.”2

This echoes the sentiment of Dmitry Peskov, Putin’s Press Secretary, who stated in 2014,

We all know who the chief administrator of the global Internet is. And due to its volatility, we have to think about how to ensure our national security.”3

At that time, the Ministry of Communications (MinCom) had just tested a Russian back-up to the Internet to support a national “Intranet,” lest Russia be left vulnerable if the global Domain Name Servers (DNS) are attacked. MinCom conducted “a major exercise in which it simulated ‘switching off’ global Internet services,” and in 2017, the Security Council decided to create just such a backup system “which would not be subject to control by international organizations” for use by the BRICS countries.4

While an Internet alternative (or Alternet) may be sold to the Russian public as a way to combat the West’s purported advantage in the information war, curb excessive dependency on global DNS, and protect the country from the foreign puppet masters of the Internet that “pose a serious threat to Russia’s security,”5 numerous experts doubt Russia’s actual ability to realize the plan, given its track record.

Take the Eurasian Economic Union (EAEU), for example, an international organization comprised of Russia, Kazakhstan, Kyrgyzstan, Armenia, and Belarus. Russia should be able to influence the EAEU even more than the BRICS countries, given its leading role in establishing the group. The EAEU was stood up in January 2016, and by December, “MinCom and other government agencies were given the order to develop and confirm a program for the ‘Digital Economy,’ including plans to develop [it in] the EAEU.”6 As Slavin observes, commercial ventures have already naturally evolved to embrace the actual digital economy: “The digital revolution has already occurred, business long ago switched to electronic interactions,”7 while the state has yet to realize its Digital Economy platform.

Changing the way the government does business has proven more difficult than changing the actual economy. According to Slavin, “The fact that Russia still has not developed a system of digital signatures, that there’s no electronic interaction between government and business or between countries of the EAEU, and that agencies’ information systems are not integrated – all of that is a problem for the withered electronic government that just cannot seem to ripen.”8 The bridge between the state and the actual digital economy is still waiting for “legislation to support it and to recognize the full equality of electronic and paper forms.”9 Consequently, while the idea to create a supranational currency to be used in the EAEU has been floated many times, the countries within the organization have not been able to agree on what that currency would be.

The cryptoruble could be used to affect geopolitical relationships. In addition to wielding untraceable resources, Russia could also leverage this technology to join forces with some countries against others. According to the plan President Putin laid out upon announcing the launch of a cryptoruble, Russia would form a “single payment space” for the member states of the EAEU, based on “the use of new financial technologies, including the technology of distributed registries.”10 Notably, three months after the plan to establish a cryptoruble was announced, Russia’s Central Bank stated the value of working on establishing a supranational currency to be used either across the BRICS countries or across the EAEU, or both, instead of establishing a cryptoruble per se.11

This could significantly affect the balance of power not only in the region, but also in the world. Any country participating in such an economic agreement, however, would subject themselves to being overrun by a new hegemony, that of the supranational currency.

 

As long as the state continues to cloak its digital sovereignty efforts in the mantle of national security – via the cryptoruble or the Yarovaya laws, which increase Internet surveillance – it can continue to constrict the flow of information without compunction. As Peskov stated, “It’s not about disconnecting Russia from the World Wide Web,” but about “protecting it from external influence.”12 After Presidents Putin and Trump met at the G20 Summit in July 2017, MinCom Nikiforov said the two countries would establish a working group “for the control and security of cyberspace,” which the U.S. Secretary of State said would “develop a framework for cybersecurity and a non-interference agreement.”13 Prime Minister Medvedev, however, said digitizing the economy is both “a matter of Russia’s global competitiveness and national security,”14 thus indicating Russia is focused not solely inward, but on a strategic competitive stance. MinCom Nikiforov makes the shortcut even clearer, stating, “In developing the economy, we need digital sovereignty,”15 indicating a need to fully control how the country interacts with the rest of the world in the digital age.

The Kremlin’s main proponent for digital sovereignty, Igor Ashmanov, claims, “Digital sovereignty is the right of the government to independently determine what is happening in their digital sphere. And make its own decisions.” He adds, “Only the Americans have complete digital sovereignty. China is growing its sovereignty. We are too.”16 According to Lebedev, “Various incarnations of digital sovereignty are integral to the public discourse in most countries,” and in recent years, “The idea of reining in global information flows and at least partially subjugating them to the control of certain traditional or not-so-traditional jurisdictions (the European Union, the nation-state, municipal administrations) has become more attractive.”17   In the Russian narrative, which portrays every nation as striving to gain the upper hand on the information battlefield, Ashmanov’s fear that, “The introduction of every new technology is another phase in the digital colonization of our country,”18 does not sound too far-fetched.

The conspiracy theorists to the right of the administration suggest the “global world order” represented by the International Monetary Fund intends to leave Russia out of its new replacement reference currency, saying “Big Brother is coming to blockchain.”19 Meanwhile, wikireality.ru reports the Russian government could limit web access in the name of national security, because the Internet “is a CIA project and the U.S. is using information wars to destroy governments,” using its “cybertroops.”20 As the site notes, the fight against terrorism has been invoked as a basis for establishing a black list of websites available within Russia. Just as U.S. citizens have expressed concerns over the level of surveillance made legal by the Patriot Act, so Russian netizens have expressed concerns over the Yarovaya laws and moves the state has made to facilitate information sovereignty.

According to the Financial Times, “This interest in cryptocurrencies shows Russia’s desire to take over an idea originally created without any government influence. It was like that with the Internet, which the Kremlin has recently learned to tame.”21 Meanwhile, a healthy contingent of Russian language netizens continue to express their lack of faith in the national security argument, preferring to embrace a more classical skepticism, as reflected in comments in response to a 2017 post by msmash called, “From the Never-Say-Never-But-Never Department,” — “In Putin’s Russia, currency encrypts you!”22 To these netizens, the state looks set to continue to ratchet down on Internet traffic: “It’s really descriptive of just how totalitarian the country has become that they’re hard at work out-Chinaing China itself when it comes to control of the Internet,” but “China is actually enforcing those kind of laws against its people. In Russia, on the other hand, the severity of the laws is greatly mitigated by the fact that nobody gives a **** about the law.”23 In addition to suggesting personal security is a fair price to be paid for national security via surveillance and Internet laws, the state appears poised to argue all information about persons in the country, including about their finances, should also be “transparent” to fight terrorism and crime in general.

If you enjoyed reading this post, please also see:

Dr. Mica Hall is a Russian linguist and holds an MA and PhD in Slavic Linguistics and an MPA.

The views expressed in this article are those of the author and do not reflect the official policy or position of the Department of the Army, DoD, or the U.S. Government.


1 Russia to Launch ‘Independent Internet’ for BRICS Nations – Report, 2017, RT.com, https://www.rt.com/politics/411156-russia-to-launch-independent-internet/, 28 November 2017.

2 Russia to Launch.

3 Russia to Launch.

4 Russia to Launch.

5 Russia to Launch.

6 Boris Slavin, 2017, People or Digits: Which One Do We Need More? vedomosti.ru, https://www.vedomosti.ru/opinion/articles/2017/01/17/673248-lyudi-tsifri-nuzhnee, 17 January 2017.

7 Slavin, People or Digits.

8 Slavin, People or Digits.

9 Slavin, People or Digits.

10 Kyree Leary, 2017, Vladimir Putin Just Revealed Russia’s Plans for Cryptocurrencies, futurism.com, https://futurism.com/vladimir-putin-just-revealed-russias-plans-for-cryptocurrencies/, 26 October 26017.

11 CB is Discussing Creating a Supranational Cryptocurrency Together With EAEU and BRICS, 2017, vedomosti.ru, https://www.vedomosti.ru/finance/news/2017/12/28/746856-sozdanie-kriptovalyuti-v-ramkah-eaes-i-briks-bank-rossii-v-2018-g, 28 December 2017.

12 Russia to Launch.

13 Russia and the US to Create a Working Group for the Regulation of Cyberspace, 2017, RIA Novosti, https://ria.ru/world/20170708/1498126496.html?=inj=1, 8 July 2017.

14 MinComSvyazi: We Need Digital Sovereignty to Develop the Economy, 2017, RIA Novosti, https://ria.ru/soceity/20170905/1501809181.html, 5 September 2017.

15 MinComSvyazi: We Need Digital Sovereignty.

16 Irina Besedovala, 2016, The Yarovaya Laws Will Save Us from the CIA, fontanka.ru, http://www.fontanka.ru/2016/10/22/061/, 22 October 2016.

17 Dmitry Lebedev, 2017, Digital Sovereignty à la Russe, opendemocracy.net, https://www.opendemocracy.net/od-russia/dmitry-lebedev/digital-sovereignty-a-la-russe, 3 November 2017.

18 Igor Ashmanov, 2017, The Recipe for Digital Sovereignty, Rossijskoe Agentstvo Novostej, http://www.ru-an.info/, 22 August 2017.

19 Global Elites’ Secret Plan for Cryptocurrencies, 2017, pravosudija.net, http://www. pravdosudija.net/article/sekretynyy-plan-globalnyh-elit-otnositelno-kriptovalyut, 5 September 2017.

20 Information Sovereignty, 2017, wikireality.ru, http://www.wikireality.ru/wiki/Информационный_сувернитет, 28 March 2017.

21 FT: Russia Is Looking For A Way to “Cut Off” Cryptocurrencies, 2018, Russian RT, https://russian.rt.com/inotv/2018-01-02/FT-Rossiya-ishhet-sposob-ukrotit, 2 January 2018.

22 msmash, 2017, We’ll Never Legalize Bitcoin, Says Russian Minister, yro.slashdot.org, https://yro.slashdot.org/story/17/11/22/2111216/well-never-legalize-bitcoin-says-russian-minister, 22 November 2017.

23 We’ll Never Legalize Bitcoin.