78. The Classified Mind – The Cyber Pearl Harbor of 2034

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the following post by guest blogger Dr. Jan Kallberg, faculty member, United States Military Academy at West Point, and Research Scientist with the Army Cyber Institute at West Point. His post serves as a cautionary tale regarding our finite intellectual resources and the associated existential threat in failing to protect them!]

Preface: Based on my experience in cybersecurity, migrating to a broader cyber field, there have always been those exceptional individuals that have an unreplicable ability to see the challenge early on, create a technical solution, and know how to play it in the right order for maximum impact. They are out there – the Einsteins, Oppenheimers, and Fermis of cyber. The arrival of Artificial Intelligence increases our reliance on these highly capable individuals – because someone must set the rules, the boundaries, and point out the trajectory for Artificial Intelligence at initiation.

Source: https://thebulletin.org/2017/10/neuroscience-and-the-new-weapons-of-the-mind/

As an industrialist society, we tend to see technology and the information that feeds it as the weapons – and ignore the few humans that have a large-scale direct impact. Even if identified as a weapon, how do you make a human mind classified? Can we protect these high-ability individuals that in the digital world are weapons, not as tools but compilers of capability, or are we still focused on the tools? Why do we see only weapons that are steel and electronics and not the weaponized mind as a weapon?  I believe firmly that we underestimate the importance of Applicable Intelligence – the ability to play the cyber engagement in the optimal order.  Adversaries are often good observers because they are scouting for our weak spots. I set the stage for the following post in 2034, close enough to be realistic and far enough for things to happen when our adversaries are betting that we rely more on a few minds than we are willing to accept.

Post:  In a not too distant future, 20th of August 2034, a peer adversary’s first strategic moves are the targeted killings of less than twenty individuals as they go about their daily lives:  watching a 3-D printer making a protein sandwich at a breakfast restaurant; stepping out from the downtown Chicago monorail; or taking a taste of a poison-filled retro Jolt Cola. In the gray zone, when the geopolitical temperature increases, but we are still not at war yet, our adversary acts quickly and expedites a limited number of targeted killings within the United States of persons whom are unknown to mass media, the general public, and have only one thing in common – Applicable Intelligence (AI).

The ability to apply is a far greater asset than the technology itself. Cyber and card games have one thing in common, the order you play your cards matters. In cyber, the tools are publicly available, anyone can download them from the Internet and use them, but the weaponization of the tools occurs when used by someone who understands how to play the tools in an optimal order. These minds are different because they see an opportunity to exploit in a digital fog of war where others don’t or can’t see it. They address problems unburdened by traditional thinking, in new innovative ways, maximizing the dual-purpose of digital tools, and can create tangible cyber effects.

It is the Applicable Intelligence (AI) that creates the procedures, the application of tools, and turns simple digital software in sets or combinations as a convergence to digitally lethal weapons. This AI is the intelligence to mix, match, tweak, and arrange dual purpose software. In 2034, it is as if you had the supernatural ability to create a thermonuclear bomb from what you can find at Kroger or Albertson.

Sadly we missed it; we didn’t see it. We never left the 20th century. Our adversary saw it clearly and at the dawn of conflict killed off the weaponized minds, without discretion, and with no concern for international law or morality.

These intellects are weapons of growing strategic magnitude. In 2034, the United States missed the importance of these few intellects. This error left them unprotected.

All of our efforts were instead focusing on what they delivered, the application and the technology, which was hidden in secret vaults and only discussed in sensitive compartmented information facilities. Therefore, we classify to the highest level to ensure the confidentiality and integrity of our cyber capabilities. Meanwhile, the most critical component, the militarized intellect, we put no value to because it is a human. In a society marinated in an engineering mindset, humans are like desk space, electricity, and broadband; it is a commodity that is input in the production of the technical machinery. The marveled technical machinery is the only thing we care about today, 2018, and as it turned out in 2034 as well.

We are stuck in how we think, and we are unable to see it coming, but our adversaries see it. At a systematic level, we are unable to see humans as the weapon itself, maybe because we like to see weapons as something tangible, painted black, tan, or green, that can be stored and brought to action when needed. As the armory of the war of 1812, as the stockpile of 1943, and as the launch pad of 2034. Arms are made of steel, or fancier metals, with electronics – we failed in 2034 to see weapons made of corn, steak, and an added combative intellect.

General Nakasone stated in 2017, “Our best ones [coders] are 50 or 100 times better than their peers,” and continued “Is there a sniper or is there a pilot or is there a submarine driver or anyone else in the military 50 times their peer? I would tell you, some coders we have are 50 times their peers.” In reality, the success of cyber and cyber operations is highly dependent not on the tools or toolsets but instead upon the super-empowered individual that General Nakasone calls “the 50-x coder.”

Manhattan Project K-25 Gaseous Diffusion Process Building, Oak Ridge, TN / Source: atomicarchive.com

There were clear signals that we could have noticed before General Nakasone pointed it out clearly in 2017. The United States’ Manhattan Project during World War II had at its peak 125,000 workers on the payroll, but the intellects that drove the project to success and completion were few. The difference with the Manhattan Project and the future of cyber is that we were unable to see the human as a weapon, being locked in by our path dependency as an engineering society where we hail the technology and forget the importance of the humans behind it.

J. Robert Oppenheimer – the militarized intellect behind the  Manhattan Project / Source: Life Magazine

America’s endless love of technical innovations and advanced machinery reflects in a nation that has celebrated mechanical wonders and engineered solutions since its creation. For America, technical wonders are a sign of prosperity, ability, self-determination, and advancement, a story that started in the early days of the colonies, followed by the intercontinental railroad, the Panama Canal, the manufacturing era, the moon landing, and all the way to the autonomous systems, drones, and robots. In a default mindset, there is always a tool, an automated process, a software, or a set of technical steps that can solve a problem or act.

The same mindset sees humans merely as an input to technology, so humans are interchangeable and can be replaced. In 2034, the era of digital conflicts and the war between algorithms with engagements occurring at machine speed with no time for leadership or human interaction, it is the intellects that design and understand how to play it. We didn’t see it.

In 2034, with fewer than twenty bodies piled up after targeted killings, resides the Cyber Pearl Harbor. It was not imploding critical infrastructure, a tsunami of cyber attacks, nor hackers flooding our financial systems, but instead traditional lead and gunpowder. The super-empowered individuals are gone, and we are stuck in a digital war at speeds we don’t understand, unable to play it in the right order, and with limited intellectual torque to see through the fog of war provided by an exploding kaleidoscope of nodes and digital engagements.

Source: Shutterstock

If you enjoyed this post, read our Personalized Warfare post.

Dr. Jan Kallberg is currently an Assistant Professor of Political Science with the Department of Social Sciences, United States Military Academy at West Point, and a Research Scientist with the Army Cyber Institute at West Point. He was earlier a researcher with the Cyber Security Research and Education Institute, The University of Texas at Dallas, and is a part-time faculty member at George Washington University. Dr. Kallberg earned his Ph.D. and MA from the University of Texas at Dallas and earned a JD/LL.M. from Juridicum Law School, Stockholm University. Dr. Kallberg is a certified CISSP, ISACA CISM, and serves as the Managing Editor for the Cyber Defense Review. He has authored papers in the Strategic Studies Quarterly, Joint Forces Quarterly, IEEE IT Professional, IEEE Access, IEEE Security and Privacy, and IEEE Technology and Society.

69. Demons in the Tall Grass

[Editor’s Note:  Mad Scientist is pleased to present Mr. Mike Matson‘s guest blog post set in 2037 — pitting the defending Angolan 6th Mechanized Brigade with Russian advisors and mercenaries against a Namibian Special Forces incursion supported by South African National Defence Force (SANDF) Special Operators.  Both sides employ autonomous combat systems, albeit very differently — Enjoy!]

Preface:  This story was inspired by two events. First, Boston Dynamics over the last year had released a series of short videos of their humanoid and animal-inspired robots which had generated a strong visceral Internet reaction. Elon Musk had commented about one video that they would “in a few years… move so fast you’ll need a strobe light to see it.” That visual stuck with me and I was looking for an opportunity to expand on that image.

The second event was a recent trip to the Grand Tetons. I had a black bear rise up out of an otherwise empty meadow less than 50 meters away. A 200-kilo predator which can run at 60kph and yet remain invisible in high grass left a strong impression. And while I didn’t see any gray wolves, a guide discussed how some of the packs, composed of groups of 45-kilogram sized animals, had learned how to take down 700-kilogram bison. I visualized packs of speeding robotic wolves with bear-sized robots following behind.

I used these events as the genesis to explore a completely different approach to designing and employing unmanned ground combat vehicles (GCVs). Instead of the Russian crewless, traditional-styled armored vehicles, I approached GCVs from the standpoint of South Africa, which may not have the same resources as Russia, but has an innovative defense industry. If starting from scratch, how might their designs diverge? What could they do with less resources? And how would these designs match up to “traditional” GCVs?

To find out what would happen, I pitted an Angolan mechanize brigade outfitted with Russian GCVs against South African special forces armed with a top secret indigenous GCV program. The setting is southern Angola in 2037, and there are Demons in the Tall Grass. As Mr. Musk said in his Tweet, sweet dreams!  Mike Matson

 

Source: Google Maps

(2230Z 25 May 2037) Savate, Angola

Paulo crouched in his slit trench with his squad mates.  He knew this was something other than an exercise.  The entire Angolan 6th Mechanized Brigade had road marched south to Savate, about 60 kilometers from the Namibian border. There, they were ordered to dig fighting positions and issued live ammunition.

Everyone was nervous. Thirty minutes before, one of their patrols a kilometer south of them had made contact.  A company had gone out in support and a massive firefight had ensued. A panicked officer could be heard on the net calling in artillery on their own position because they were being attacked by demons in the tall grass. Nobody had yet returned.

A pair of Uran-9s, line abreast; Source: RussianDefence.com / Lex Kitaev

Behind Paulo, the battalion commander came forward. With him were three Russian mercenaries.  Paulo knew the Russians had brought along two companies of robot tanks. The robot tanks sported an impressively large number of guns, missiles and lasers. Two of them had deployed with the quick reaction force.  Explosions suggested that they had been destroyed.

Paulo watched the Angolan officer carefully. Suddenly there was a screamed warning from down the trenches.  He whipped around and saw forms in the tall grass moving towards the trenches at a high rate of speed, spread out across his entire front. A dozen or more speeding lines headed directly towards the trenches like fish swimming just under the water.

“Fire!” Paulo ordered and started shooting, properly squeezing off three round bursts. The lines kept coming. Paulo had strobe light-like glimpses of bounding animals. Just before they burst from cover, piercingly loud hyena cries filled the night.  Paulo slammed his hand on the nearby clacker to detonate the directional mines to his front. The world exploded in noise and dust.

(Earlier That Morning) 25 Kilometers south of Savate

Captain Verlin Ellis, Bravo Group, SANDF, crouched with his NCO, his soldiers, and his Namibian SF counterpart at dawn under a tree surrounded by thick green bush.

“Listen up everyone, the operation is a go. Intelligence shows the brigade in a holding position south of Savate. We are to conduct a recon north until we can fix their position. Alpha and Charlie groups will be working their way up the left side. Charlie will hit their right flank with their predator package at the same time we attack from the south and Alpha will be the stopper group with the third group north of town. Once we have them located, we are to hold until nightfall, then attack.”

The tarps came off Bravo Group’s trucks and the men got to work unloading.

Source: BigDog / DeviantArt

First off were Bravo Group’s attack force of forty hyenas. Standing just under two feet high on their articulated legs, and weighing roughly 40 kilos, the small robots were off-loaded and their integrated solar panels were unfolded to top off their battery charges.

The hyenas operated in pack formations via an encrypted mesh network. While they could be directed by human operators if needed and could send and receive data via satellite or drone relay, they were designed to operate in total autonomy at ranges up to 40 kilometers from their handlers.

Each hyena had a swiveling front section like a head with four sensors and a small speaker. The sensors were a camera and separate thermal camera, a range finder, and a laser designator/pointer. Built into the hump of the hyena’s back was a fixed rifle barrel in a bullpup configuration, chambered in 5.56mm, which fired in three round bursts.

On each side there was a pre-loaded 40mm double tube grenade launcher. The guided, low velocity grenades could be launched forward between 25-150 meters. The hyenas were loaded with a mix of HE, CS gas, HEAT, and thermite grenades. They could select targets themselves or have another hyena or human operator designate a target, in which case they were also capable of non-line-of-sight attacks. The attack dogs contained a five-kilo shaped charge limpet mine for attaching to vehicles. There were 24 attack hyenas.

Source: Fausto De Martini / Kill Command

Second off came the buffalos, the heavy weapons support element. There were six of the 350 kilo beasts. They were roughly the same size as a water buffalo, hence their name. They retained the same basic head sensor suite as the hyenas, and a larger, sturdier version of the hyena’s legs.

Three of them mounted an 81mm auto-loading mortar and on their backs were 10 concave docking stations each holding a three ounce helicopter drone called a sparrow. The drone had a ten-minute flight radius with its tiny motor. One ounce of the drone was plastic explosive. They had a simple optical sensor and were designed to land and detonate on anything matching their picture recognition algorithms, such as ammo crates, fuel cans, or engine hoods.

The fourth buffalo sported a small, sleek turret on a flat back, with a 12.7mm machine gun, and the buffalo held 500 rounds of armor-piercing tracer.

The fifth buffalo held an automatic grenade launcher with 200 smart rounds in a similar turret to the 12.7mm gun. The grenades were programmed as they fired and could detonate over trenches or beyond obstacles to hit men behind cover.

The sixth carried three anti-tank missiles in a telescoping turret. Like the mortars, their fire could be directed by hyenas, human operators, or self-directed.

Source: KhezuG / Deviantart.com

Once the hyenas and buffalos were charging, the last truck was carefully unloaded.  Off came the boars — suicide bombs on legs. Each of the 15 machines was short, with stubbier legs for stability. Their outer shells were composed of pre-scarred metal and were overlaid with a layer of small steel balls for enhanced shrapnel. Inside they packed 75 kilos of high explosive. For tonight’s mission each boar was downloaded with different sounds to blare from their speakers, with choices ranging from Zulu war cries, to lion roars, to AC/DC’s Thunderstruck. Chaos was their primary mission.

Between the three Recce groups, nine machines failed warmup. That left 180 fully autonomous and cooperative war machines to hunt the 1,200 strong Angolan 6th Mechanized Brigade.

(One Hour after Attack Began) Savate

Paulo and his team advanced, following spoor through the bush.  The anti-tank team begged to go back but Paulo refused.

Suddenly there was a slight gap in the tall grass just as something in front of them on the far side of a clearing fired. It looked like a giant metal rhino, and it had an automatic grenade launcher on top of it. It fired a burst, then sat down on its haunches to hide.

So that’s why I can’t see them after they fire. Very clever, thought Paulo. He tried calling in fire support but all channels were jammed.

Paulo signaled with his hands for both gunners to shoot. The range was almost too close. Both gunners fired at the same time, striking the beast. It exploded with a surprising fury, blowing them all off their feet and lighting up the sky. They laid there stunned as debris pitter-pattered in the dirt around them.

That was enough for Paulo and the men. They headed back to the safety of the trenches.

As they returned, eight armored vehicles appeared. On the left was an Angolan T-72 tank and three Russian robot tanks. On the right there was a BMP-4 and three more Russian robot tanks.

An animal-machine was trotting close to the vegetation outside the trenches and one of the Russian tank’s lasers swiveled and fired, emitting a loud hum, hitting it. The animal-machine was cut in two. The tanks stopped near the trench to shoot at unseen targets in the dark as Paulo entered the trenches.

The hyena yipping increased in volume as predators began to swarm around the armored force. Five or six were circling their perimeter yipping and shooting grenades. Two others crept under some bushes 70 meters to Paulo’s right and laid down like dogs. A long, thin antenna rose out of the back of one dog with some small device on top. The tanks furiously fired at the fleeting targets which circled them.

Mortar rounds burst around the armor, striking a Russian tank on the thin turret top, destroying it.

From a new direction, the ghost machine gun struck a Russian robot tank with a dozen exploding armor-piercing rounds. The turret was pounded and the externally mounted rockets were hit, bouncing the tank in place from the explosions. A robot tank popped smoke, instantly covering the entire armored force in a blinding white cloud which only added to the chaos. Suddenly the Russian turrets all stopped firing just as a third robot tank was hit by armor-piercing rounds in the treads and disabled.

Silent Ruin;  Source: Army Cyber Institute at West Point / Don Hudson & Kinsun Lo

If you enjoyed this blog post, read “Demons in the Grass” in its entirety here, published by our colleagues at Small Wars Journal.

Mike Matson is a writer in Louisville, Kentucky, with a deep interest in national security and cyber matters. His writing focuses on military and intelligence-oriented science fiction. He has two previous articles published by Mad Scientist: the non-fiction “Complex Cyber Terrain in Hyper-Connected Urban Areas,” and the fictional story, “Gods of Olympus.”  In addition to Louisville, Kentucky, and Washington, DC, he has lived, studied, and worked in Brussels, Belgium, and Tallinn, Estonia. He holds a B.A. in International Studies from The American University and an M.S. in Strategic Intelligence from the National Intelligence University, both in Washington, DC. He can be found on Twitter at @Mike40245.

67. “The Tenth Man”

Source: Yahoo

[Editor’s Note: In the movie World War Z (I know… the book was way better!), an Israeli security operative describes how Israel prepared for the coming zombie plague. Their strategy was if nine men agreed on an analysis or a course of action, the tenth man had to take an alternative view.

This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging. The Mad Scientist Laboratory will begin a series of posts entitled “The Tenth Man” to offer a platform for the contrarians in our network (I know you’re out there!) to share their alternative perspectives and analyses regarding the Future Operational Environment.]

Our foundational assumption about the Future Operational Environment is that the Character of Warfare is changing due to an exponential convergence of emerging technologies. Artificial Intelligence, Robotics, Autonomy, Quantum Sciences, Nano Materials, and Neuro advances will mean more lethal warfare at machine speed, integrated seamlessly across all five domains – air, land, sea, cyber, and space.

We have consistently seen four main themes used to counter this idea of a changing character of war, driven by technology:

Source: danovski11 / DeviantArt

1. Cost of Robotic Warfare: All armies must plan for the need to reconstitute forces. This is particularly ingrained in the U.S. Army’s culture where we have often lost the first battles in any given conflict (e.g., Kasserine Pass in World War II and Task Force Smith in Korea). We cannot afford to have a “one loss” Army where our national wealth and industrial base can not support the reconstitution of a significant part of our Army. A high-cost, roboticized Army might also limit our political leaders’ options for the use of military force due to the risk of loss and associated cost.

Gartner Hype Cycle

2. Technology Hype: Technologists are well aware of the idea of a hype cycle when forecasting emerging technologies. Machine learning was all the rage in the 1970s, but the technology needed to drive these tools did not exist. Improved computing has finally helped us realize this vision, forty years later. The U.S. Army’s experience with the Future Combat System hits a nerve when assumptions of the future require the integration of emerging technologies.

Source: Fallout 4

3. Robotic Warfare: A roboticized Army is over-optimized to fight against a peer competitor, which is the least likely mission the Army will face. We build an Army and develop Leaders first and foremost to protect our Nation’s sovereignty. This means having an Army capable of deterring, and failing that, defeating peer competitors. At the same time, this Army must be versatile enough to execute a myriad of additional missions across the full spectrum of conflict. A hyper-connected Army enabled by robots with fewer Soldiers will be challenged in executing missions requiring significant human interactions such as humanitarian relief, building partner capacity, and counter-insurgency operations.

4. Coalition Warfare: A technology-enabled force will exasperate interoperability challenges with both our traditional and new allies. Our Army will not fight unilaterally on future battlefields. We have had difficulties with the interoperability of communications and have had gaps between capabilities that increased mission risks. These risks were offset by the skills our allies brought to the battlefield. We cannot build an Army that does not account for a coalition battlefield and our allies may not be able to afford the tech-enabled force envisioned in the Future Operational Environment.

All four of these assumptions are valid and should be further studied as we build the Army of 2028 and the Army of 2050. There are many other contrarian views about the Future Operational Environment, and so we are calling upon our network to put on their red hats and be our “Tenth Man.”

If you have an idea or concept that challenges or runs contrary to our understanding of the Future Operational Environment as described here in the Mad Scientist Laboratory, The Operational Environment and the Changing Character of Future Warfare paper, and The Changing Character of Future Warfare video, please draft it up as a blog post and forward it to our attention at:  usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for our next edition of “The Tenth Man”!

64. Top Ten Takeaways from the Installations of the Future Conference

On 19-20 June 2018, the U.S. Army Training and Doctrine Command (TRADOC) Mad Scientist Initiative co-hosted the Installations of the Future Conference with the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)) and Georgia Tech Research Institute (GTRI).  Emerging technologies supporting the hyper-connectivity revolution will enable improved training capabilities, security, readiness support (e.g., holistic medical facilities and brain gyms), and quality of life programs at Army installations. Our concepts and emerging doctrine for multi-domain operations recognizes this as increasingly important by including Army installations in the Strategic Support Area. Installations of the Future will serve as mission command platforms to project virtual power and expertise as well as Army formations directly to the battlefield.

We have identified the following “Top 10” takeaways related to our future installations:

Source: Laserfishe

1. Threats and Tensions.Army Installations are no longer sanctuaries” — Mr. Richard G. Kidd IV, Deputy Assistant Secretary of the Army, Strategic Integration. There is a tension between openness and security that will need balancing to take advantage of smart technologies at our Army installations. The revolution in connected devices and the ability to virtually project power and expertise will increase the potential for adversaries to target our installations. Hyper-connectivity increases the attack surface for cyber-attacks and the access to publicly available information on our Soldiers and their families, making personalized warfare and the use of psychological attacks and deep fakes likely.

2. Exclusion vs. Inclusion. The role of and access to future Army installations depends on the balance between these two extremes. The connections between local communities and Army installations will increase potential threat vectors, but resilience might depend on expanding inclusion. Additionally, access to specialized expertise in robotics, autonomy, and information technologies will require increased connections with outside-the-gate academic institutions and industry.

Source: pcmag.com

3. Infrastructure Sensorization.  Increased sensorization of infrastructure runs the risk of driving efficiencies to the point of building in unforeseen risks. In the business world, these efficiencies are profit-driven, with clearer risks and rewards. Use of table top exercises can explore hidden risks and help Garrison Commanders to build resilient infrastructure and communities. Automation can cause cascading failures as people begin to fall “out of the loop.”

4. Army Modernization Challenge.  Installations of the Future is a microcosm of overarching Army Modernization challenges. We are simultaneously invested in legacy infrastructure that we need to upgrade, and making decisions to build new smart facilities. Striking an effective and efficient balance will start with public-private partnerships to capture the expertise that exists in our universities and in industry. The expertise needed to succeed in this modernization effort does not exist in the Army. There are significant opportunities for Army Installations to participate in ongoing consortiums like the “Middle Georgia” Smart City Community and the Global Cities Challenge to pilot innovations in spaces such as energy resilience.

5. Technology is outpacing regulations and policy. The sensorization and available edge analytics in our public space offers improved security but might be perceived as decreasing personal privacy. While we give up some personal privacy when we live and work on Army installations, this collection of data will require active engagement with our communities. We studied an ongoing Unmanned Aerial System (UAS) support concept to detect gunshot incidents in Louisville, KY, to determine the need to involve legislatures, local political leaders, communities, and multiple layers of law enforcement.

6. Synthetic Training Environment. The Installation of the Future offers the Army significant opportunities to divest itself of large brick and mortar training facilities and stove-piped, contractor support-intensive Training Aids, Devices, Simulations, and Simulators (TADSS).  MG Maria Gervais, Deputy Commanding General, Combined Arms Center – Training (DCG, CAC-T), presented the Army’s Synthetic Training Environment (STE), incorporating Virtual Reality (VR)“big box” open-architecture simulations using a One World Terrain database, and reduced infrastructure and contractor-support footprints to improve Learning and Training.  The STE, delivering high-fidelity simulations and the opportunity for our Soldiers and Leaders to exercise all Warfighting Functions across the full Operational Environment with greater repetitions at home station, will complement the Live Training Environment and enhance overall Army readiness.

Source: The Goldwater

7. Security Technologies. Many of the security-oriented technologies (autonomous drones, camera integration, facial recognition, edge analytics, and Artificial Intelligence) that triage and fuse information will also improve our deployed Intelligence, Surveillance, and Reconnaissance (ISR) capabilities. The Chinese lead the world in these technologies today.

Source: TechViz

8. Virtual Prototyping. The U.S. Army Engineer Research and Development Center (ERDC) is developing a computational testbed using virtual prototyping to determine the best investments for future Army installations. The four drivers in planning for Future Installations are:  1) Initial Maneuver Platform (Force Projection); 2) Resilient Installations working with their community partners; 3) Warfighter Readiness; and 4) Cost effectiveness in terms of efficiency and sustainability.

9. Standard Approach to Smart Installations. A common suite of tools is needed to integrate smart technologies onto installations. While Garrison Commanders need mission command to take advantage of the specific cultures of their installations and surrounding communities, the Army cannot afford to have installations going in different directions on modernization efforts. A method is needed to rapidly pilot prototypes and then determine whether and how to scale the technologies across Army installations.

10. “Low Hanging Fruit.” There are opportunities for Army Installations to lead their communities in tech integration. Partnerships in energy savings, waste management, and early 5G infrastructure provide the Army with early adopter opportunities for collaboration with local communities, states, and across the nation. We must educate contracting officers and Government consumers to look for and seize upon these opportunities.

Videos from each of the Installations of the Future Conference presentations are posted here. The associated slides will be posted here within the week on the Mad Scientist All Partners Access Network site.

If you enjoyed this post, check out the following:

• Watch Mr. Richard Kidd IV discuss Installations of the Future on Government Matters.

• Read Mad Scientist Ed Blayney’s takeaways from the Installations of the Future Conference in his article, entitled We need more Mad Scientists in our Smart Cities.

• See the TRADOC G-2 Operational Environment Enterprise’s:

–  The Changing Character of Future Warfare video.

–  Evolving Threats to Army Installations video.

• Review our Call for Ideas winning submissions Trusting Smart Cities: Risk Factors and Implications by Dr. Margaret Loper, and Day in the Life of a Garrison Commander by the team at AT&T Global Public Sector — both are graciously hosted by our colleagues at Small Wars Journal.

• Re-visit our following blog posts: Smart Cities and Installations of the Future: Challenges and Opportunities and Base in a Box.

60. Mission Engineering and Prototype Warfare: Operationalizing Technology Faster to Stay Ahead of the Threat

[Editor’s Note: Mad Scientist is pleased to present the following post by a team of guest bloggers from The Strategic Cohort at the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). Their post lays out a clear and cogent approach to Army modernization, in keeping with the Chief of Staff of the Army GEN Mark A. Milley’s and Secretary of the Army Mark T. Esper’s guidance “to focus the Army’s efforts on delivering the weapons, combat vehicles, sustainment systems, and equipment that Soldiers need when they need it” and making “our Soldiers more effective and our units less logistically dependent.” — The Army Vision,  06 June 2018 ]

 

 

“Success no longer goes to the country that develops a new fighting technology first, but rather to the one that better integrates it and adapts its way of fighting….” The National Defense Strategy (2018).

 

 

Executive Summary
While Futures Command and legislative changes streamline acquisition bureaucracy, the Army will still struggle to keep pace with the global commercial technology marketplace as well as innovate ahead of adversaries who are also innovating.

Chinese Lijian Sharp Sword Unmanned Combat Air Vehicle (UCAV) — Source: U.S. Naval Institute (USNI) News

Reverse engineering and technology theft make it possible for adversaries to inexpensively copy DoD-specific technology “widgets,” potentially resulting in a “negative return” on investment of DoD research dollars. Our adversaries’ pace of innovation further compounds our challenge. Thus the Army must not only equip the force to confront what is expected,

Northrop Grumman X-47B UCAV — Source: USNI News

but equip the force to confront an adaptable enemy in a wide variety of environments. This paper proposes a framework that will enable identification of strategically relevant problems and provide solutions to those problems at the speed of relevance and invert the cost asymmetry.

To increase the rate of innovation, the future Army must learn to continually assimilate, produce, and operationalize technologies much faster than our adversaries to gain time-domain overmatch. The overarching goal is to create an environment that our adversaries cannot duplicate: integration of advanced technologies with skilled Soldiers and well-trained teams. The confluence of two high level concepts — the Office of the Secretary of Defense’s Mission Engineering and Robert Leonard’s Prototype Warfare (see his Principles of Warfare for the Information Age book) — pave the way to increasing the rate of innovation by operationalizing technology faster to stay ahead of the threat, while simultaneously reducing the cost of technology overmatch.

Mission Engineering
OSD’s Mission Engineering concept, proposed by Dr. Robert Gold, calls for acquisitions to treat the end-to-end mission as the system to optimize, in which individual systems are components. Further, the concept utilizes an assessment framework to measure progress towards mission accomplishment through test and evaluation in the mission context. In fact, all actions throughout the capability development cycle must tie back to the mission context through the assessment framework. It goes beyond just sharing data to consider functions and the strategy for trades, tools, cross-cutting functions, and other aspects of developing a system or system of systems.

Consider the example mission objective of an airfield seizure. Traditional thinking and methods would identify an immediate needed capability for two identical air droppable vehicles, therefore starting with a highly constrained platform engineering solution. Mission Engineering would instead start by asking: what is the best way to seize an airfield? What mix of capabilities are required to do so? What mix of vehicles (e.g.,  Soldiers, exoskeletons, robots, etc.) might you need within space and weight constraints of the delivery aircraft? What should the individual performance requirements be for each piece of equipment?

Mission Engineering breaks down cultural and technical “domain stovepipes” by optimizing for the mission instead of a ground, aviation, or cyber specific solution. There is huge innovation space between the conventional domain seams.

Source: www.defenceimages.mod.uk

For example, ground vehicle concepts would be able to explore looking more like motherships deploying exoskeletons, drone swarms, or other ideas that have not been identified or presented because they have no clear home in a particular domain. It warrants stating twice that there are a series of mission optimized solutions that have not been identified or presented because they have no clear home in the current construct. Focusing the enterprise on the mission context of the problem set will enable solutions development that is relevant and timely while also connecting a network of innovators who each only have a piece of the whole picture.

Prototype Warfare

Prototype Warfare represents a paradigm shift from fielding large fleets of common-one-size-fits-all systems to rapidly fielding small quantities of tailored systems. Tailored systems focus on specific functions, specific geographic areas, or even specific fights and are inexpensively produced and possibly disposable.

MRZR with a tethered Hoverfly quadcopter unmanned aircraft system — Source: DefenseNews / Jen Judson

For example, vehicle needs are different for urban, desert, and mountain terrains. A single system is unlikely to excel across those three terrains without employing exotic and expensive materials and technology (becoming expensive and exquisite). They could comprise the entire force or just do specific missions, such as Hobart’s Funnies during the D-Day landings.

A further advantage of tailored systems is that they will force the enemy to deal with a variety of unknown U.S. assets, perhaps seen for the first time. A tank platoon might have a heterogeneous mix of assets with different weapons and armor. Since protection and lethality will be unknown to the enemy, it will be asymmetrically challenging for them to develop in a timely fashion tactics, techniques, and procedures or materiel to effectively counter such new capabilities.

Potential Enablers
Key technological advances present the opportunity to implement the Mission Engineering and Prototype Warfare concepts. Early Synthetic Prototyping (ESP), rapid manufacturing, and the burgeoning field of artificial intelligence (AI) provide ways to achieve these concepts. Each on its own would present significant opportunities. ESP, AI, and rapid manufacturing, when applied within the Mission Engineering/Prototype Warfare framework, create the potential for an innovation revolution.

Under development by the Army Capabilities Integration Center (ARCIC) and U.S. Army Research, Development, and Engineering Command (RDECOM), ESP is a physics-based persistent game network that allows Soldiers and engineers to collaborate on exploration of the materiel, force structure, and tactics trade space. ESP will generate 12 million hours of digital battlefield data per year.

Beyond the ESP engine itself, the Army still needs to invest in cutting edge research in machine learning and big data techniques needed to derive useful data on tactics and technical performance from the data. Understanding human intent and behaviors is difficult work for current computers, but the payoff is truly disruptive. Also, as robotic systems become more prominent on the battlefield, the country with the best AI to control them will have a great advantage. The best AI depends on having the most training, experimental, and digitally generated data. The Army is also acutely aware of the challenges involved in testing and system safety for AI enabled systems; understanding what these systems are intended to do in a mission context fosters debate on the subject within an agreed upon problem space and associated assessment framework.

Finally, to achieve the vision, the Army needs to invest in technology that allows rapid problem identification, engineering, and fielding of tailored systems. For over two decades, the Army has touted modularity to achieve system tailoring and flexibility. However, any time something is modularized, it adds some sort of interface burden or complexity. A specific-built system will always outperform a modular system. Research efforts are needed to understand the trade-offs of custom production versus modularity. The DoD also needs to strategically grow investment in new manufacturing technologies (to include 3D printing) and open architectures with industry.

Associated Implications
New challenges are created when there is a hugely varied fleet of tailored systems, especially for logistics, training, and maintenance. One key is to develop a well-tracked digital manufacturing database of replacement parts. For maintenance, new technologies such as augmented reality might be used to show mechanics who have never seen a system how to rapidly diagnose and make repairs.

Source: Military Embedded Systems

New Soldier interfaces for platforms should also be developed that are standardized/simplified so it is intuitive for a soldier to operate different systems in the same way it is intuitive to operate an iPhone/iPad/Mac to reduce and possibly eliminate the need for system specific training. For example, imagine a future soldier gets into a vehicle and inserts his or her common access card. A driving display populates with the Soldier’s custom widgets, similar to a smartphone display. The displays might also help soldiers understand vehicle performance envelopes. For example, a line might be displayed over the terrain showing how sharp a soldier might turn without a rollover.

Conclusion
The globalization of technology allows anyone with money to purchase “bleeding-edge,” militarizable commercial technology. This changes the way we think about the ability to generate combat power to compete internationally from the physical domain, to the time domain. Through the proposed mission engineering and prototype warfare framework, the Army can assimilate and operationalize technology quicker to create an ongoing time-domain overmatch and invert the current cost asymmetry which is adversely affecting the public’s will to fight. Placing human thought and other resources towards finding new ways to understand mission context and field new solutions will provide capability at the speed of relevance and help reduce operational surprise through a better understanding of what is possible.

Source: Defence Science and Technology Laboratory / Gov.UK

If you enjoyed this post, join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live today — watch the associated video here and join the discussion here!

This article was written by Dr. Rob Smith, Senior Research Scientist; Mr. Shaheen Shidfar, Strategic Cohort Lead; Mr. James Parker, Associate Director; Mr. Matthew A. Horning, Mission Engineer; and Mr. Thomas Vern, Associate Director. Collectively, these gentlemen are a subset of The Strategic Cohort, a multi-disciplinary independent group of volunteers located at TARDEC that study the Army’s Operating Concept Framework to understand how we must change to survive and thrive in the future operating environment. The Strategic Cohort analyzes these concepts and other reference materials, then engages in disciplined debate to provide recommendations to improve TARDEC’s alignment with future concepts, educate our workforce, and create dialogue with the concept developers providing a feedback loop for new ideas.

Further Reading:

Gold, Robert. “Mission Engineering.” 19th Annual NDIA Systems Engineering Conference, Oct. 26, 2016, Springfield, VA. Presentation.

Leonard, Robert R. The Principles of War for the Information Age, Presidio Press (2000).

Martin, A., & FitzGerald, B. “Process Over Platforms.” Center for a New American Security, Dec. 13, 2013.

FitzGerald, B., Sander, A. & Parziale, J. “Future Foundry A New Strategic Approach to Military-Technical Advantage.” Center for a New American Security, Dec. 14, 2016.

Kozloski, Robert. “The Path to Prototype Warfare.” War on the Rocks, 17 July 2017.

Hammes, T.X. “The Future of Warfare: Small, Many, Smart vs. Few & Exquisite?” War on the Rocks, 7 Aug. 2015.

Smith, Robert E. “Tactical Utility of Tailored Systems.” Military Review (2016).

Smith, Robert E. and Vogt, Brian. “Early Synthetic Prototyping Digital Warfighting For Systems Engineering.” Journal of Cyber Security and Information Systems 5.4 (2017).