50. Four Elements for Future Innovation

(Editor’s Note: Mad Scientist Laboratory is pleased to present a new post by returning guest blogger Dr. Richard Nabors addressing the four key practices of innovation. Dr. Nabors’ previous guest posts discussed how integrated sensor systems will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces, and how Augmented and Mixed Reality are the critical elements required for these integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.)


For the U.S. military to maintain its overmatch capabilities, innovation is an absolute necessity. As noted in The Operational Environment and the Changing Character of Future Warfare, our adversaries will continue to aggressively pursue rapid innovation in key technologies in order to challenge U.S. forces across multiple domains. Because of its vital necessity, U.S. innovation cannot be left solely to the development of serendipitous discoveries.

The Army has successfully generated innovative programs and transitioned them from the research community into military use. In the process, it has identified four key practices that can be used in the future development of innovative programs. These practices – identifying the need, the vision, the expertise, and the resources – are essential in preparing for warfare in the Future Operational Environment. The recently completed Third Generation Forward Looking Infrared (3rd Gen FLIR) program provides us with a contemporary use case regarding how each of these practices are key to the success of future innovations.


1. Identifying the NEED:
To increase speed, precision, and accuracy of a platform lethality, while at the same time increasing mission effectiveness and warfighter safety and survivability.

As the U.S. Army Training and Doctrine Command (TRADOC) noted in its Advanced Engagement Battlespace assessment, future Advanced Engagements will be…
compressed in time, as the speed of weapon delivery and their associated effects accelerate enormously;
extended in space, in many cases to a global extent, via precision long-range strike and interconnectedness, particularly in the information environment;
far more lethal, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions;
routinely interconnected – and contested — across the multiple domains of air, land, sea, space and cyber; and
interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Identifying the NEED within the context of these future Advanced Engagement characteristics is critical to the success of future innovations.

The first-generation FLIR systems gave a limited ability to detect objects on the battlefield at night. They were large, slow, and provided low-resolution, short-range images. The need was for greater speed, precision, and range in the targeting process to unlock the full potential of infrared imaging. Third generation FLIR uses multiband infrared imaging sensors combined with multiple fields of view which are integrated with computer software to automatically enhance images in real-time. Sensors can be used across multiple platforms and missions, allowing optimization of equipment for battlefield conditions, greatly enhancing mission effectiveness and survivability, and providing significant cost savings.


Source: John-Stone-Art
2. Identifying the VISION:
To look beyond the need and what is possible to what could be possible.

As we look forward into the Future Operational Environment, we must address those revolutionary technologies that, when developed and fielded, will provide a decisive edge over adversaries not similarly equipped. These potential Game Changers include:
Laser and Radio Frequency Weapons – Scalable lethal and non-Lethal directed energy weapons can counter Aircraft, UAS, Missiles, Projectiles, Sensors, and Swarms.
Swarms – Leverage autonomy, robotics, and artificial intelligence to generate “global behavior with local rules” for multiple entities – either homogeneous or heterogeneous teams.
• Rail Guns and Enhanced Directed Kinetic Energy Weapons (EDKEW) – Non explosive electromagnetic projectile launchers provide high velocity/high energy weapons.
• Energetics – Provides increased accuracy and muzzle energy.
• Synthetic Biology – Engineering and modification of biological entities has potential weaponization.
• Internet of Things – Linked internet “things” create opportunity and vulnerability. Great potential benefits already found in developing U.S. systems also create a vulnerability.
• Power – Future effectiveness depends on renewable sources and reduced consumption. Small nuclear reactors are potentially a cost-effective source of stable power.

Understanding these Future Operational Environment Game Changers is central to identifying the VISION and looking beyond the need to what could be possible.

The 3rd Gen FLIR program struggled early in its development to identify requirements necessary to sustain a successful program. Without the user community’s understanding of a vision of what could be possible, requirements were based around the perceived limitations of what technology could provide. To overcome this, the research community developed a comprehensive strategy for educational outreach to the Army’s requirement developers, military officers, and industry on the full potential of what 3rd Gen FLIR could achieve. This campaign highlighted not only the recognized need, but also a vision for what was possible, and served as the catalyst to bring the entire community together.


3. Identifying the EXPERTISE:
To gather expertise from all possible sources into a comprehensive solution.

Human creativity is the most transformative force in the world; people compound the rate of innovation and technology development. This expertise is fueling the convergence of technologies that is already leading to revolutionary achievements with respect to sensing, data acquisition and retrieval, and computer processing hardware.

Identifying the EXPERTISE leads to the exponential convergence and innovation that will afford strategic advantage to those who recognize and leverage them.

The expertise required to achieve 3rd Gen FLIR success was from the integration of more than 16 significant research and development projects from multiple organizations: Small Business Innovation Research programs; applied research funding, partnering in-house expertise with external communities; Manufacturing Technology (ManTech) initiatives, working with manufacturers to develop the technology and long-term manufacturing capabilities; and advanced technology development funding with traditional large defense contractors. The talented workforce of the Army research community strategically aligned these individual activities and worked with them to provide a comprehensive, interconnected final solution.


4. Identifying the RESOURCES:
To consistently invest in innovative technology by partnering with others to create multiple funding sources.

The 2017 National Security Strategy introduced the National Security Innovation Base as a critical component of its vision of American security. In order to meet the challenges of the Future Operational Environment, the Department of Defense and other agencies must establish strategic partnerships with U.S. companies to help align private sector Research and Development (R&D) resources to priority national security applications in order to nurture innovation.

The development of 3rd Gen FLIR took many years of appropriate, consistent investments into innovations and technology breakthroughs. Obtaining the support of industry and leveraging their internal R&D investments required the Army to build trust in the overall program. By creating partnerships with others, such as the U.S. Army Communications-Electronics Research, Development and Engineering Center (CERDEC) and ManTech, 3rd Gen FLIR was able to integrate multiple funding sources to ensure a secure resource foundation.




CONCLUSION
The successful 3rd Gen FLIR program is a prototype of the implementation of an innovative program, which transitions good ideas into actual capabilities. It exemplifies how identifying the need, the vision, the expertise and the resources can create an environment where innovation thrives, equipping warriors with the best technology in the world. As the Army looks to increase its exploration of innovative technology development for the future, these examples of past successes can serve as models to build on moving forward.

See our Prototype Warfare post to learn more about other contemporary innovation successes that are helping the U.S. maintain its competitive advantage and win in an increasingly contested Operational Environment.

Dr. Richard Nabors is Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), Night Vision and Electronic Sensors Directorate.

49. “The Queue”

(Editor’s Note: Beginning today, the Mad Science Laboratory will publish a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the previous month. In this anthology, we will address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!)

1. Army of None: Autonomous Weapons and the Future of War, by Paul Scharre, Senior Fellow and Director of the Technology and National Security Program, Center for a New American Security.

One of our favorite Mad Scientists, Paul Scharre, has authored a must read for all military Leaders. This book will help Leaders understand the definitions of robotic and autonomous weapons, how they are proliferating across states, non-states, and super-empowered individuals (his chapter on Garage Bots makes it clear this is not state proliferation analogous), and lastly the ethical considerations that come up at every Mad Scientist Conference. During these Conferences, we have discussed the idea of algorithm vs algorithm warfare and what role human judgement plays in this version of future combat. Paul’s chapters on flash war really challenge our ideas of how a human operates in the loop and his analogies using the financial markets are helpful for developing the questions needed to explore future possibilities and develop policies for dealing with warfare at machine speed.

Source: Rosoboronexport via YouTube
2. “Convergence on retaining human control of weapons systems,” in Campaign to Stop Killer Robots, 13 April 2018.

April 2018 marked the fifth anniversary of the Campaign to Stop Killer Robots. Earlier this month, 82 countries and numerous NGOs also convened at the Convention on Certain Conventional Weapons (CCW) in Geneva, Switzerland, where many stressed the need to retain human control over weapons systems and the use of force. While the majority in attendance proposed moving forward this November to start negotiations towards a legally binding protocol addressing fully autonomous weapons, five key states rejected moving forward in negotiating new international law – France, Israel, Russia, the United Kingdom, and the United States. Mad Scientist notes that the convergence of a number of emerging technologies (synthetic prototyping, additive manufacturing, advanced modeling and simulations, software-defined everything, advanced materials) are advancing both the feasibility and democratization of prototype warfare, enabling and improving the engineering of autonomous weapons by non-state actors and super-empowered individuals alike. The genie is out of the bottle – with the advent of the Hyperactive Battlefield, advanced engagements will collapse the decision-action cycle to mere milliseconds, granting a decisive edge to the side with more autonomous decision-action.

Source: The Stack
3. “China’s Strategic Ambiguity and Shifting Approach to Lethal Autonomous Weapons Systems,” by Elsa Kania, Adjunct Fellow with the Technology and National Security Program, Center for a New American Security, in Lawfare, 17 Apr 18.

Mad Scientist Elsa Kania addresses the People’s Republic of China’s apparent juxtaposition between their diplomatic commitment to limit the use of fully autonomous lethal weapons systems and the PLA’s active pursuit of AI dominance on the battlefield. The PRC’s decision on lethal autonomy and how it defines the role of human judgement in lethal operations will have tactical, operational, and strategic implications. In TRADOC’s Changing Character of Warfare assessment, we addressed the idea of an asymmetry in ethics where the differing ethical choices non-state and state adversaries make on the integration of emerging technologies could have real battlefield overmatch implications. This is a clear pink flamingo where we know the risks but struggle with addressing the threat. It is also an area where technological surprise is likely, as systems could have the ability to move from human in the loop mode to fully autonomous with a flip of a switch.

Source: HBO.com
4. “Maeve’s Dilemma in Westworld: What Does It Mean to be Free?,” by Marco Antonio Azevedo and Ana Azevedo, in Institute of Art and Ideas, 12 Apr 18. [Note: Best viewed on your personal device as access to this site may be limited by Government networks]

While this article focuses primarily on a higher-level philosophical interpretation of human vs. machine (or artificial intelligence, being, etc.), the core arguments and discussion remain relevant to an Army that is looking to increase its reliance on artificial intelligence and robotics. Technological advancements in these areas continue to trend toward modeling humans (both in form and the brain). However, the closer we get to making this a reality, the closer we get to confronting questions about consciousness and artificial humanity. Are we prepared to face these questions earnestly? Do we want an artificial entity that is, essentially, human? What do we do when that breakthrough occurs? Does biological vs. synthetic matter if the being “achieves” personhood? For additional insights on this topic, watch Linda MacDonald Glenn‘s Ethics and Law around the Co-Evolution of Humans and AI presentation from the Mad Scientist Visualizing Multi Domain Battle in 2030-2050 Conference at Georgetown University, 25-26 Jul 17.

5. Do You Trust This Computer?, directed by Chris Paine, Papercut Films, 2018.

The Army, and society as a whole, is continuing to offload certain tasks and receive pieces of information from artificial intelligence sources. Future Army Leaders will be heavily influenced by AI processing and distributing information used for decision making. But how much trust should we put in the information we get? Is it safe to be so reliant? What should the correct ratio be of human/machine contribution to decision-making? Army Leaders need to be prepared to make AI one tool of many, understand its value, and know how to interpret its information, when to question its output, and apply appropriate context. Elon Musk has shown his support for this documentary and tweeted about its importance.

6. Ready Player One, directed by Steven Spielberg, Amblin Entertainment, 2018.

Adapted from the novel of the same name, this film visualizes a future world where most of society is consumed by a massive online virtual reality “game” known as the OASIS. As society transitions from the physical to the virtual (texting, email, skype, MMORPG, Amazon, etc.), large groups of people will become less reliant on the physical world’s governmental and economic systems that have been established for centuries. As virtual money begins to have real value, physical money will begin to lose value. If people can get many of their goods and services through a virtual world, they will become less reliant on the physical world. Correspondingly, physical world social constructs will have less control of the people who still inhabit it, but spend increasing amounts of time interacting in the virtual world. This has huge implications for the future geo-political landscape as many varied and geographically diverse groups of people will begin congregating and forming virtual allegiances across all of the pre-established, but increasingly irrelevant physical world geographic borders. This will dilute the effectiveness, necessity, and control of the nation-state and transfer that power to the company(ies) facilitating the virtual environment.

Source: XO, “SoftEcologies,” suckerPUNCH
7. “US Army could enlist robots inspired by invertebrates,” by Bonnie Burton, in c/net, 22 Apr 18.

As if Boston Dynamic’s SpotMini isn’t creepy enough, the U.S. Army Research Laboratory (ARL) and the University of Minnesota are developing a flexible, soft robot inspired by squid and other invertebrates that Soldiers can create on-demand using 3-D printers on the battlefield. Too often, media visualizations have conditioned us to think of robots in anthropomorphic terms (with corresponding limitations). This and other breakthroughs in “soft,” polymorphic, printable robotics may grant Soldiers in the Future Operational Environment with hitherto unimagined on-demand, tailorable autonomous systems that will assist operations in the tight confines of complex, congested, and non-permissive environments (e.g., dense urban and subterranean). Soft robotics may also prove to be more resilient in arduous conditions. This development changes the paradigm for how robotics are imagined in both design and application.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

For additional insights into the Mad Scientist Initiative and how we continually explore the future through collaborative partnerships and continuous dialogue with academia, industry, and government, check out this Spy Museum’s SPYCAST podcast.

48. Warfare at the Speed of Thought

(Editor’s Note: Mad Scientist Laboratory is pleased to present the second guest blog post by Dr. Richard Nabors, Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), addressing how Augmented and Mixed Reality are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.

Dr. Nabors’ previous guest post addressed how the proliferation of sensors, integrated via the Internet of Battlefield Things [IoBT], will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces.)

Speed has always been and will be a critical component in assuring military dominance. Historically, the military has sought to increase the speed of its jets, ships, tanks, and missiles. However, one of the greatest leaps that has yet to come and is coming is the ability to significantly increase the speed of the decision-making process of the individual at the small unit level.

Source: University of Maryland Institute for Advanced Computer Studies
To maximize individual and small unit initiative to think and act flexibly, Soldiers must receive as much relevant information as possible, as quickly as possible. Integrated sensor technologies can provide situational awareness by collecting and sorting real-time data and sending a fusion of information to the point of need, but that information must be processed quickly in order to be operationally effective. Augmented Reality (AR) and Mixed Reality (MR) are two of the most promising solutions to this challenge facing the military and will eventually make it possible for Soldiers to instantaneously respond to an actively changing environment.

AR and MR function in real-time, bringing the elements of the digital world into a Soldier’s perceived real world, resulting in optimal, timely, and relevant decisions and actions. AR and MR allow for the overlay of information and sensor data into the physical space in a way that is intuitive, serves the point of need, and requires minimal training to interpret. AR and MR will enable the U.S. military to survive in complex environments by decentralizing decision-making from mission command and placing substantial capabilities in Soldiers’ hands in a manner that does not overwhelm them with information.

Source: Tom Rooney III
On a Soldier’s display, AR can render useful battlefield data in the form of camera imaging and virtual maps, aiding a Soldier’s navigation and battlefield perspective. Special indicators can mark people and various objects to warn of potential dangers.
Source: MicroVision
Soldier-borne, palm-size reconnaissance copters with sensors and video can be directed and tasked instantaneously on the battlefield. Information can be gathered by unattended ground sensors and transmitted to a command center, with AR and MR serving as a networked communication system between military leaders and the individual Soldier. Used in this way, AR and MR increase Soldier safety and lethality.

In the near-term, the Army Research and Development (R&D) community is investing in the following areas:


Reliable position tracking devices that self-calibrate for head orientation of head-worn sensors.


• Ultralight, ultrabright, ultra-transparent display eyewear with wide field of view.

Source: CIO Australia

• Three-dimensional viewers with battlefield terrain visualization, incorporating real-time data from unmanned aerial vehicles, etc.




In the mid-term, R&D activities are focusing on:

• Manned vehicles with sensors and processing capabilities for moving autonomously, tasked for Soldier protection.

Robotic assets, tele-operated, semi-autonomous, or autonomous and imbued with intelligence, with limbs that can keep pace with Soldiers and act as teammates.

Source: BAE
• Robotic systems that contain multiple sensors that respond to environmental factors affecting the mission, or have self-deploying camouflage capabilities that stay deployed while executing maneuvers.

• Enhanced reconnaissance through deep-penetration mapping of building layouts, cyber activity, and subterranean infrastructure.

Once AR and MR prototypes and systems have seen widespread use, the far term focus will be on automation that could track and react to a Soldier’s changing situation by tailoring the augmentation the Soldier receives and by coordinating across the unit.

In addition, AR and MR will revolutionize training, empowering Soldiers to train as they fight. Soldiers will be able to use real-time sensor data from unmanned aerial vehicles to visualize battlefield terrain with geographic awareness of roads, buildings, and other structures before conducting their missions. They will be able to rehearse courses of action and analyze them before execution to improve situational awareness. AR and MR are increasingly valuable aids to tactical training in preparation for combat in complex and congested environments.

AR and MR are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments. Solving the challenge of how and where to use AR and MR will enable the military to get full value from its investments in complex integrated sensor systems.

For more information on how the convergence of technologies will enhance Soldiers on future battlefields, see:

– The discussion on advanced decision-making in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

– Dr. James Canton’s presentation from the Mad Scientist Robotics, Artificial Intelligence, & Autonomy Conference at Georgia Tech Research Institute last March.

– Dr. Rob Smith’s Mad Scientist Speaker Series presentation on Operationalizing Big Data, where he addresses the applicability of AR to sports and games training as an analogy to combat training (noting “Serious sport is war minus the shooting” — George Orwell).

Dr. Richard Nabors is Associate Director for Strategic Planning, US Army CERDEC Night Vision and Electronic Sensors Directorate.

46. Integrated Sensors: The Critical Element in Future Complex Environment Warfare

(Editor’s Note: Mad Scientist Laboratory is pleased to present the following guest blog post by Dr. Richard Nabors, Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), addressing how the proliferation of sensors, integrated via the Internet of Battlefield Things [IoBT], will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces.)

As in preceding decades, that which can be found, if unprotected, can still be hit. By mid-Century, it will prove increasingly difficult to stay hidden. Most competitors can access space-based surveillance, networked multi-static radars, drones and swarms of drones in a wide variety, and a vast of array of passive and active sensors that are far cheaper to produce than to create technology to defeat them. Quantum computing and quantum sensing will open new levels of situational awareness. Passive sensing, especially when combined with artificial intelligence and big-data techniques may routinely outperform active sensors. These capabilities will be augmented by increasingly sophisticated civilian capabilities, where commercial imagery services, a robust and mature Internet of Things, and near unlimited processing power generate a battlespace that is more transparent than ever before.The Operational Environment and the Changing Character of Future Warfare

The complex operational environment of the next conflict cannot be predicted accurately. It has become a battlespace — jungle, forest, city, desert, arctic and cyber — where the enemy is already entrenched and knows the operational environment. Complex and congested environments level the field between the United States and its adversaries. The availability of integrated sensor networks and technologies will be a critical factor in piercing the complexity of these environments and determining what level of military superiority is enjoyed by any one side.

As Soldiers in complex operational situations are presented with significantly more information than in the past and in a broader variety; they have the need to quickly and decisively adapt to the changing situation, but often do not have the time to sort and judge the value of the information received.

Integrated sensor technologies will provide situational awareness by:

• Collecting and sorting real-time data and sending a fusion of information to the point of need by enhancing human vision,




Integrating with computers to detect and identify items of interest in real-time,

• Using augmented reality to overlay computer vision with human vision, and

Fusing data together from multiple sensor sources.

Networks of sensors integrated with autonomous systems will work autonomously to support local operations as well as converge and diverge as needed, accelerating human decision-making to the fastest rates possible and maximizing the U.S. military’s advantage.

Expected advances in Army sensing capabilities will directly address operational vulnerabilities in future environments, including intelligence, surveillance and reconnaissance (ISR) by a concealed enemy, and poor visibility and short lines of sight in urban environments. These sensors will provide local ISR by collecting, sorting, and fusing real-time data and sending it to the point of need, expanding the small units’ ability to sense the adversary, and providing an understanding of the operational environment that the adversary lacks.

There are several technical challenges that are being addressed in order to maintain and secure overmatch capabilities. These include:

Fusion of disparate sensors into a combined capability.

Tactical computing resources.

• Network connectivity and bandwidth.

• Sensor suitability for environmental observation.

• Reduced power requirements.

• Tailored, individual mechanisms through “sensored” Soldiers.

• Disguised unmanned systems to gather and communicate intelligence.

Future research will focus on automation that could track and react to a Soldier’s changing situation by tailoring the augmentation the Soldier receives and by coordinating across the unit. In long-term development, sensors on Soldiers and vehicles will provide real-time status and updates, optimizing individually tailored performance levels. Sensors will provide adaptive camouflage for the individual Soldier or platform in addition to reactive self-healing armor. The Army will be able to monitor the health of each Soldier in real-time and deploy portable autonomous medical treatment centers using sensor-equipped robots to treat injuries. Sensors will enhance detection through air-dispersible microsensors, as well as microdrones with image-processing capabilities.

Image credit: Alexander Kott

In complex environments, the gathering and fusion of information will lead to greater understanding. Integrated sensors, remote and near, manned and unmanned, can both save Soldiers’ lives and make them more lethal.

Read about how Russia is trying to increase its number of electro-optical satellites in the OE Watch November 2017 issue (page 17).

Listen to Modern War Institute‘s podcast where Retired Maj. Gen. David Fastabend and Mr. Ian Sullivan address Technology and the Future of Warfare.

Dr. Richard Nabors is Associate Director for Strategic Planning, US Army CERDEC Night Vision and Electronic Sensors Directorate.

43. The Changing Character of Warfare: Takeaways for the Future

The Future Operational Environment (OE), as described in The Operational Environment and the Changing Character of Future Warfare , brings with it an inexorable series of movements which lead us to consider the following critical question:

What do these issues mean for the nature and character of warfare?

The nature of war, which has remained relatively constant from Thucydides, through Clausewitz, through the Cold War, and on into the present, certainly remains constant through the Era of Accelerated Human Progress (i.e., now through 2035). War is still waged because of fear, honor, and interest, and remains an expression of politics by other means. However, as we move into the Era of Contested Equality (i.e., 2035-2050), the character of warfare has changed in several key areas:

The Moral and Cognitive Dimensions are Ascendant.

The proliferation of high technology, coupled with the speed of human interaction and pervasive connectivity, means that no one nation will have an absolute strategic advantage in capabilities. When breakthroughs occur, the advantages they confer will be fleeting, as rivals quickly adapt. Under such conditions, the physical dimension of warfare may become less important than the cognitive and the moral. As a result, there will be less self-imposed restrictions by some powers on the use of military force, and hybrid strategies involving information operations, direct cyber-attacks against individuals and segments of populations, or national infrastructure, terrorism, the use of proxies, and Weapons of Mass Destruction (WMD) will aim to prevail against an enemy’s will.

Integration across Diplomacy, Information, Military, and Economic (DIME).

Clausewitz’s timeless dictum that war is policy by other means takes on a new importance as the distance between war and policy recedes; but also must take into account other elements of national power to form true whole-of-government and, when possible, collective security approaches to national security issues. The interrelationship across the DIME will require a closer integration across all elements of government, and Joint decision-making bodies will need to quickly and effectively deliver DIME effects across the physical, the cognitive, and moral dimensions. Military operations are an essential element of this equation, but may not necessarily be the decisive means of achieving an end state.

Limitations of Military Force.

While mid-Century militaries will have more capability than at any time in history, their ability to wage high-intensity conflict will become more limited. Force-on-force conflict will be so destructive, will be waged at the new speed of human and AI-enhanced interaction, and will occur at such extended long-ranges that exquisitely trained and equipped forces facing a peer or near-peer rival will rapidly suffer significant losses in manpower and equipment that will be difficult to replace. Robotics, unmanned vehicles, and man-machine teaming activities offer partial solutions, but warfare will still revolve around increasingly vulnerable human beings. Military forces will need to consider how advances in AI, bio-engineering, man-machine interface, neuro-implanted knowledge, and other areas of enhanced human performance and learning can quickly help reduce the long lead time in training and developing personnel.

The Primacy of Information.

In the timeless struggle between offense and defense, information will become the most important and most useful tool at all levels of warfare. The ability of an actor to use information to target the enemy’s will, without necessarily having to address its means will increasingly be possible. In the past, nations have tried to target an enemy’s will through kinetic attacks on its means – the enemy military – or through the direct targeting of the will by attacking the national infrastructure or a national populace itself. Sophisticated, nuanced information operations, taking advantage of an ability to directly target an affected audience through cyber operations or other forms of influence operations, and reinforced by a credible capable armed force can bend an adversary’s will before battle is joined.

Expansion of the Battle Area.

Nations, non-state actors, and even individuals will be able to target military forces and civilian infrastructure at increasing – often over intercontinental – ranges using a host of conventional and unconventional means. A force deploying to a combat zone will be vulnerable from the individual soldier’s personal residence, to his or her installation, and during his or her entire deployment. Adversaries also will have the ability to target or hold at risk non-military infrastructure and even populations with increasingly sophisticated, nuanced and destructive capabilities, including WMD, hypersonic conventional weapons, and perhaps most critically, cyber weapons and information warfare. WMD will not be the only threat capable of directly targeting and even destroying a society, as cyber and information can directly target infrastructure, banking, food supplies, power, and general ways of life. Limited wars focusing on a limited area of operations waged between peers or near-peer adversaries will become more dangerous as adversaries will have an unprecedented capability to broaden their attacks to their enemy’s homeland. The U.S. Homeland likely will not avoid the effects of warfare and will be vulnerable in at least eight areas.

Ethics of Warfare Shift.
Traditional norms of warfare, definitions of combatants and non-combatants, and even what constitutes military action or national casus belli will be turned upside down and remain in flux at all levels of warfare.


– Does cyber activity, or information operations aimed at influencing national policy, rise to the level of warfare?

– Is using cyber capabilities to target a national infrastructure legal, if it has broad societal impacts?

– Can one target an electric grid that supports a civilian hospital, but also powers a military base a continent away from the battle zone from which unmanned systems are controlled?

– What is the threshold for WMD use?

– Is the use of autonomous robots against human soldiers legal?

These and other questions will arise, and likely will be answered differently by individual actors.

The changes in the character of war by mid-Century will be pronounced, and are directly related and traceable to our present. The natural progression of the changes in the character of war may be a change in the nature of war, perhaps towards the end of the Era of Contested Equality or in the second half of the Twenty First Century.

For additional information, watch the TRADOC G-2 Operational Environment Enterprise’s The Changing Character of Future Warfare video.