[Editor’s Note: Regular readers will note that one of our enduring themes is the Internet’s emergence as a central disruptive innovation. With the publication of proclaimed Mad Scientist P.W. Singer and co-author Emerson T. Brooking’s LikeWar – The Weaponization of Social Media, Mad Scientist Laboratory addresses what is arguably the most powerful manifestation of the internet — Social Media — and how it is inextricably linked to the future of warfare. Messrs. Singer and Brooking’s new book is essential reading if today’s Leaders (both in and out of uniform) are to understand, defend against, and ultimately wield the non-kinetic, yet violently manipulative effects of Social Media.]
“The modern internet is not just a network, but an ecosystem of 4 billion souls…. Those who can manipulate this swirling tide, steer its direction and flow, can…. accomplish astonishing evil. They can foment violence, stoke hate, sow falsehoods, incite wars, and even erode the pillars of democracy itself.”
As noted inThe Operational Environment and the Changing Character of Future Warfare, Social Media and the Internet of Things have spawned a revolution that has connected “all aspects of human engagement where cognition, ideas, and perceptions, are almost instantaneously available.” While this connectivity has been a powerfully beneficial global change agent, it has also amplified human foibles and biases. Authors Singer and Brookings note that humans by nature are social creatures that tend to gravitate into like-minded groups. We “Like” and share things online that resonate with our own beliefs. We also tend to believe what resonates with us and our community of friends.
“Whether the cause is dangerous (support for a terrorist group), mundane (support for a political party), or inane (belief that the earth is flat), social media guarantees that you can find others who share your views and even be steered to them by the platforms’ own algorithms… As groups of like-minded people clump together, they grow to resemble fanatical tribes, trapped in echo chambers of their own design.”
Weaponization of Information
The advent of Social Media less than 20 years ago has changed how we wage war.
“Attacking an adversary’s most important center of gravity — the spirit of its people — no longer requires massive bombing runs or reams of propaganda. All it takes is a smartphone and a few idle seconds. And anyone can do it.”
Nation states and non-state actors alike are leveraging social media to manipulate like-minded populations’ cognitive biases to influence the dynamics of conflict. This continuous on-line fight for your mind represents “not a single information war but thousands and potentially millions of them.”
LikeWar provides a host of examples describing how contemporary belligerents are weaponizing Social Media to augment their operations in the physical domain. Regarding the battle to defeat ISIS and re-take Mosul, authors Singer and Brookings note that:
“Social media had changed not just the message, but the dynamics of conflict. How information was being accessed, manipulated, and spread had taken on new power. Who was involved in the fight, where they were located, and even how they achieved victory had been twisted and transformed. Indeed, if what was online could swing the course of a battle — or eliminate the need for battle entirely — what, exactly, could be considered ‘war’ at all?“
Even American gang members are entering the fray assuper-empowered individuals, leveraging social media to instigate killings via “Facebook drilling” in Chicago or “wallbanging” in Los Angeles.
And it is only “a handful of Silicon Valley engineers,” with their brother and sister technocrats inBeijing, St. Petersburg, and a few other global hubs of Twenty-first Century innovation that are forging and then unleashing the code that is democratizing this virtual warfare.
Artificial Intelligence (AI)-Enabled Information Operations
Seeing is believing, right? Not anymore! Previously clumsy efforts to photo-shop images and fabricate grainy videos and poorly executed CGI have given way to sophisticatedDeepfakes, using AI algorithms to create nearly undetectable fake images, videos, and audio tracks that then go viral on-line to dupe, deceive, and manipulate. This year, FakeApp was launched as free software, enabling anyone with an artificial neural network and a graphics processor to create and share bogus videos via Social Media. Each Deepfake video that:
“… you watch, like, or share represents a tiny ripple on the information battlefield, privileging one side at the expense of others. Your online attention and actions are thus both targets and ammunition in an unending series of skirmishes.”
Just as AI is facilitating these distortions in reality, the race is on to harness AI to detect and delete these fakes and prevent “the end of truth.”
If you enjoyed this post:
– Listen to the accompanying playlist composed by P.W. Singer while reading LikeWar.
– Watch P.W. Singer’s presentation on Meta Trends – Technology, and a New Kind of Race from Day 2 of the Mad Scientist Strategic Security Environment in 2025 and Beyond Conference at Georgetown University, 9 August 2016.
– Read more about virtual warfare in the following Mad Scientist Laboratory blog posts:
[Editor’s Note: The United States Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Bio Convergence and Soldier 2050 Conference with SRI International at their Menlo Park, CA, campus on 8-9 March 2018, where participants discussed the advent of new biotechnologies and the associated benefits, vulnerabilities, and ethics associated with Soldier enhancement for the Army of the Future. The following post is an excerpt from this conference’s final report.]
Source: Max Pixel
Advances in synthetic biology likely will enhance future Soldier performance – speed, strength, endurance, and resilience – but will bring with it vulnerabilities, such as genomic targeting, that can be exploited by an adversary and/or potentially harm the individual undergoing the enhancement.
Emerging synthetic biology tools – e.g., CRISPR, Talon, and ZFN – present an opportunity to engineer Soldiers’ DNA and enhance their abilities. Bioengineering is becoming easier and cheaper as a bevy of developments are reducing biotechnology transaction costs in gene reading, writing, and editing. [1]Due to the ever-increasing speed and lethality of the future battlefield, combatants will need cognitive and physical enhancement to survive and thrive.
Cognitive enhancement could make Soldiers more lethal, more decisive, and perhaps more resilient. Using neurofeedback, a process that allows a user to see their brain activity in real-time, one can identify ideal brain states, and use them to enhance an individual’s mental performance. Through the mapping and presentation of identified expert brains, novices can rapidly improve their acuity after just a few training sessions.[2]Further, there are studies being conducted that explore the possibility of directly emulating those expert brain states with non-invasive EEG caps that could improve performance almost immediately.[3]Dr. Amy Kruse, the Chief Scientific Officer at the Platypus Institute, referred to this phenomenon as “sitting on a gold mine of brains.”
There is also the potential to change and improve Soldier’s physical attributes. Scientists can develop drugs, specific dietary plans, and potentially use genetic editing to improve speed, strength, agility, and endurance.
Source: Andrew Herr, CEO Helicase
In order to fully leverage the capability of human performance enhancement, Andrew Herr, CEO of Helicase and an Adjunct Fellow at CNAS, suggested that human performance R&D be moved out of the medical field and become its own research area due to its differing objectives and the convergence between varying technologies.
Soldiers, Airmen, Marines, and Sailors are already trying to enhance themselves with commercial products – often containing unknown or unsafe ingredients – so it is incumbent on the U.S. military to, at the very least, help those who want to improve.
However, a host of new vulnerabilities, at the genetic level, accompany this revolutionary leap in human evolution. If one can map the human genome and more thoroughly scan and understand the brain, they can target genomes and brains in the same ways. Soldiers could become incredibly vulnerable at the genomic level, forcing the Army to not only protect Soldiers using body armor and armored vehicles, but also protect their identities, genomes, and physiologies.
Adversaries will exploit all biological enhancements to gain competitive advantage over U.S. forces. Targeted genome editing technology such as CRISPR will enable adversarial threats to employ super-empowered Soldiers on the battlefield and target specific populations with bioweapons. U.S. adversaries may use technologies recklessly to achieve short term gains with no consideration of long range effects.[4][5]
There are numerousethicalquestions that come with the enhancement of Soldiers such as the moral acceptability of the Army making permanent enhancements to Soldiers, the responsibility for returning transitioning Soldiers to a “baseline human,” and the general definition of what a “baseline human” is legally defined as.
Transhumanism H+ symbol by Antonu / Source: https://commons.wikimedia.org/wiki/File:Transhumanism_h%2B.svg
By altering, enhancing, and augmenting the biology of the human Soldier, the United States Army will potentially enter into uncharted ethical territory. Instead of issuing items to Soldiers to complement their physical and cognitive assets, by 2050, the U.S. Army may have the will and the means to issue them increased biological abilities in those areas. The future implications and the limits or thresholds for enhancement have not yet been considered. The military is already willing to correct the vision of certain members – laser eye surgery, for example – a practice that could be accurately referred to as human enhancement, so discretely defining where the threshold lies will be important. It is already known that other countries, and possible adversaries, are willing to cross the line where we are not. Russia, most recently, was banned from competition in the 2018 Winter Olympics for widespread performance-enhancing drug violations that were believed to be supported by the Russian Government. [6]Those drugs violate the spirit of competition in the Olympics, but no such spirit exists in warfare.
Another consideration is whether or not the Soldier enhancements are permanent. By enhancing Soldiers’ faculties, the Army is, in fact, enhancing their lethality or their ability to defeat the enemy. What happens with these enhancements—whether the Army can or should remove them— when a Soldier leaves the Army is an open question. As stated previously, the Army is willing and able to improve eyesight, but does not revert that eyesight back to its original state after the individual has separated. Some possible moral questions surrounding Soldier enhancement include:
• If the Army were to increase a Soldier’s stamina, visual acuity, resistance to disease, and pain tolerance, making them a more lethal warfighter, is it incumbent upon the Army to remove those enhancements?
• If the Soldier later used those enhancements in civilian life for nefarious purposes, would the Army be responsible?
Answers to these legal questions are beyond the scope of this paper, but can be considered now before the advent of these new technologies becomes widespread.
Image by Leonardo da Vinci / Source: Flickr
If the Army decides to reverse certain Soldier enhancements, it likely will need to determine the definition of a “baseline human.” This would establish norms for features, traits, and abilities that can be permanently enhanced and which must be removed before leaving service. This would undoubtedly involve both legal and moral challenges.
The complete Mad Scientist Bio Convergence and Soldier 2050 Final Report can be readhere.
To learn more about the ramifications of Soldier enhancement, please go to:
– Dr. Amy Kruse’sHuman 2.0podcast, hosted by our colleagues at Modern War Institute.
– The Ethics and the Future of War panel discussion, facilitated by LTG Jim Dubik (USA-Ret.) from Day 2 (26 July 2017) of the Mad Scientist Visualizing Multi Domain Battle in 2030-2050 Conference at Georgetown University.
[1] Ahmad, Zarah and Stephanie Larson, “The DNA Utility in Military Environments,” slide 5, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018. [2] Kruse, Amy, “Human 2.0 Upgrading Human Performance,” Slide 12, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018 [3]https://www.frontiersin.org/articles/10.3389/fnhum.2016.00034/full [4]https://www.technologyreview.com/the-download/610034/china-is-already-gene-editing-a-lot-of-humans/ [5]https://www.c4isrnet.com/unmanned/2018/05/07/russia-confirms-its-armed-robot-tank-was-in-syria/ [6]https://www.washingtonpost.com/sports/russia-banned-from-2018-olympics-following-doping-allegations/2017/12/05/9ab49790-d9d4-11e7-b859-fb0995360725_story.html?noredirect=on&utm_term=.d12db68f42d1
[Editor’s Note: Today’s post poses four central questions to our Mad Scientist community of action regarding bias in machine learning and the associated ramifications for artificial intelligence, autonomy, lethality, and decision-making on future warfighting.]
“We thought that we had the answers, it was the questions we had wrong” – Bono, U2
Source: www.vpnsrus.com via flickr
As machine learning and deep learning algorithms become more commonplace, it is clear that the utopian ideal of a bias-neutral Artificial Intelligence (AI) is exactly just that. These algorithms have underlying biases embedded in their coding, imparted by their human programmers (either consciously or unconsciously). These algorithms can develop further biases during the machine learning and training process. Dr. Tolga Bolukbasi, Boston University, recently described algorithms as not being capable of distinguishing right from wrong, unlike humans that can judge their actions, even when they act against ethical norms. For algorithms, data is the ultimate determining factor.
Realizing that algorithms supporting future Intelligence, Surveillance, and Reconnaissance (ISR) networks and Commander’s decision support aids will have inherent biases — what is the impact on future warfighting? This question is exceptionally relevant as Soldiers and Leaders consider the influence of biases in man-machine relationships, and their potential ramifications on the battlefield, especially with regard to the rules of engagement (i.e., mission execution and combat efficiency versus the proportional use of force and minimizing civilian casualties and collateral damage).
“It is difficult to make predictions, particularly about the future.” This quote has been attributed to anyone ranging from Mark Twain to Niels Bohr to Yogi Berra. Point prediction is a sucker’s bet. However, asking the right questions about biases in AI is incredibly important.
The Mad Scientist Initiative has developed a series of questions to help frame the discussion regarding what biases we are willing to accept and in what cases they will be acceptable. Feel free to share your observations and questions in the comments section of this blog post (below) or email them to us at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil.
1) What types of bias are we willing to accept? Will a so-called cognitive bias that forgoes a logical, deliberative process be allowable? What about a programming bias that is discriminative towards any specific gender(s), ethnicity(ies), race(s), or even age(s)?
2) In what types of systems will we accept biases? Will machine learning applications in supposedly non-lethal warfighting functions like sustainment, protection, and intelligence be given more leeway with regards to bias?
3) Will the biases in machine learning programming and algorithms be more apparent and/or outweigh the inherent biases of humans-in-the-loop? How will perceived biases affect trust and reliance on machine learning applications?
4) At what point will the pace of innovation and introduction of this technology on the battlefield by our adversaries cause us to forego concerns of bias and rapidly field systems to gain a decisive Observe, Orient, Decide, and Act (OODA) loop and combat speed advantage on theHyperactive Battlefield?
For additional information impacting on this important discussion, please see the following:
[Editor’s Note: Since its inception last November, the Mad Scientist Laboratory has enabled us to expand our reach and engage global innovators from across industry, academia, and the Government regarding emergent disruptive technologies and their individual and convergent impacts on the future of warfare. For perspective, our blog has accrued almost 60K views by over 30K visitors from around the world!
Our Mad Scientist Community of Action continues to grow — in no small part due to the many guest bloggers who have shared their provocative, insightful, and occasionally disturbing visions of the future. Almost half (36 out of 81) of the blog posts published have been submitted by guest bloggers. We challenge you to contribute your ideas!
In particular, we would like to recognize Mad Scientist Mr. Sam Bendett by re-posting his submission entitled “Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward,” originally published on 25 June 2018. This post generated a record number of visits and views during the past six month period. Consequently, we hereby declare Sam to be the Mad Scientist Laboratory’s “Maddest” Guest Blogger! for the latter half of FY18. In recognition of his achievement, Sam will receive much coveted Mad Scientist swag.
While Sam’s post revealed the many challenges Russia has experienced in combat testing the Uran-9 Unmanned Ground Vehicle (UGV) in Syria, it is important to note that Russia has designed, prototyped, developed, and operationally tested this system in a combat environment, demonstrating a disciplined and proactive approach to innovation. Russia is learning how to integrate robotic lethal ground combat systems….
Enjoy re-visiting Sam’s informative post below, noting that many of the embedded links are best accessed using non-DoD networks.]
Russia’s Forpost UAV (licensed copy of IAI Searcher II) in Khmeimim, Syria; Source: https://t.co/PcNgJ811O8
Russia, like many other nations, is investing in the development of various unmanned military systems. The Russian defense establishment sees such systems as mission multipliers, highlighting two major advantages: saving soldiers’ lives and making military missions more effective. In this context, Russian developments are similar to those taking place around the world. Various militaries are fielding unmanned systems for surveillance, intelligence, logistics, or attack missions to make their forces or campaigns more effective. In fact, the Russian military has been successfully using Unmanned Aerial Vehicles (UAVs) in training and combat since 2013. It has used them with great effect in Syria, where these UAVs flew more mission hours than manned aircraft in various Intelligence, Surveillance, and Reconnaissance (ISR) roles.
Russia is also busy designing and testing many unmanned maritime and ground vehicles for various missions with diverse payloads. To underscore the significance of this emerging technology for the nation’s armed forces, Russian Defense Minister Sergei Shoigurecently stated that the serial production of ground combat robots for the military “may start already this year.”
Uran-9 combat UGV at Victory Day 2018 Parade in Red Square; Source: independent.co.uk
But before we see swarms of ground combat robots with red stars emblazoned on them, the Russian military will put these weapons through rigorous testing in order to determine if they can correspond to battlefield realities. Russian military manufacturers and contractors are not that different from their American counterparts in sometimes talking up the capabilities of their creations, seeking to create the demand for their newest achievement before there is proof that such technology can stand up to harsh battlefield conditions. It is for this reason that the Russian Ministry of Defense (MOD) finally established several centers such as Main Research and Testing Center of Robotics, tasked with working alongside thedefense-industrial sector to create unmanned military technology standards and better communicate warfighters’ needs. The MOD is also running conferences such as the annual “Robotization of the Armed Forces” that bring together military and industry decision-makers for a better dialogue on the development, growth, and evolution of the nation’s unmanned military systems.
Uran-9 Combat UGV, Source: nationalinterest.org
This brings us to one of the more interesting developments in Russian UGVs. Then Russian Deputy Defense Minister Borisov recentlyconfirmed that the Uran-9 combat UGV was tested in Syria, which would be the first time this much-discussed system was put into combat. This particular UGV is supposed to operate in teams of three or four and is armed with a 30mm cannon and 7.62 mm machine guns, along with avariety of other weapons.
Just as importantly, it was designed to operate at a distance of up to three kilometers (3000 meters or about two miles) from its operator — a range that could be extended up to six kilometers for a team of these UGVs. This range is absolutely crucial for these machines, which must be operated remotely. Russian designers are developing operational electronics capable of rendering the Uran-9more autonomous, thereby moving the operators to a safer distance from actual combat engagement. The size of a small tank, the Uran-9 impressed the international military community when first unveiled and it was definitely designed to survive battlefield realities….
Uran-9; Source: Defence-Blog.com
However, just as “no plan survives first contact with the enemy,” the Uran-9, though built to withstand punishment, came up short in its first trial run in Syria. In a candid admission, Andrei P. Anisimov, Senior Research Officer at the 3rd Central Research Institute of the Ministry of Defense, reported on the Uran-9’s critical combat deficiencies during the 10th All-Russian Scientific Conference entitled “Actual Problems of Defense and Security,” held in April 2018. In particular, the following issues came to light during testing:
• Instead of its intended range of several kilometers, the Uran-9 could only be operated at distance of “300-500 meters among low-rise buildings,” wiping out up to nine-tenths of its total operational range.
• There were “17 cases of short-term (up to one minute) and two cases of long-term (up to 1.5 hours) loss of Uran-9 control” recorded, which rendered this UGV practically useless on the battlefield.
• The UGV’s running gear had problems – there were issues with supporting and guiding rollers, as well as suspension springs.
• The electro-optic stations allowed for reconnaissance and identification of potential targets at a range of no more than two kilometers.
• The OCH-4 optical system did not allow for adequate detection of adversary’s optical and targeting devices and created multiple interferences in the test range’s ground and airspace.
Uran-9 undergoing testing; Source: YouTube
• Unstable operation of the UGV’s 30mm automatic cannon was recorded, with firing delays and failures. Moreover, the UGV could fire only when stationary, which basically wiped out its very purpose of combat “vehicle.”
• The Uran-9’s combat, ISR, and targeting weapons and mechanisms were also not stabilized.
On one hand, these many failures are a sign that this much–discussed and much-advertised machine is in need of significant upgrades, testing, and perhaps even a redesign before it gets put into another combat situation. The Russian militarydid say that it tested nearly 200 types of weapons in Syria, so putting the Uran-9 through its combat paces was a logical step in the long development of this particular UGV. If the Syrian trial was the first of its kind for this UGV, such significant technical glitches would not be surprising.
However, the MOD has been testing this Uran-9 for a while now, showing videosof this machine at a testing range, presumably in Russia. The truly unexpected issue arising during operations in Syria had to do with the failure of the Uran-9 to effectively engage targets with its cannon while in motion (along with a number of other issues). Still, perhaps many observers bought into the idea that this vehicle would perform as built – tracks, weapons, and all. A closer examination of the publicly-releasedtesting video probably foretold some of the Syrian glitches – in this particular one, Uran-9 is shown firing its machine guns while moving, but its cannon was fired only when the vehicle was stationary. Another interesting aspect that is significant in hindsight is that the testing range in the video was a relatively open space – a large field with a few obstacles around, not the kind of complex terrain, dense urban environment encountered in Syria. While today’s and future battlefields will range greatly from open spaces to megacities, a vehicle like the Uran-9 would probably be expected to perform in all conditions. Unless, of course, Syrian tests would effectively limit its use in future combat.
Russian Soratnik UGV
On another hand, so many failures at once point to much larger issues with the Russian development of combat UGVs, issues that Anisimov also discussed during his presentation. He highlighted the following technological aspects that are ubiquitous worldwide at this point in the global development of similar unmanned systems:
• Low level of current UGV autonomy;
• Low level of automation of command and control processes of UGV management, including repairs and maintenance;
• Low communication range, and;
• Problems associated with “friend or foe” target identification.
Judging from the Uran-9’s Syrian test, Anisimov made the following key conclusions which point to the potential trajectory of Russian combat UGV development – assuming thatother unmanned systems may have similar issues when placed in a simulated (or real) combat environment:
• These types of UGVs are equipped with a variety of cameras and sensors — and since the operator is presumably located a safe distance from combat, he may have problems understanding, processing, and effectively responding to what is taking place with this UGV in real-time.
• For the next 10-15 years, unmanned military systems will be unable to effectively take part in combat, with Russians proposing to use them in storming stationary and well-defended targets (effectively giving such combat UGVs a kamikaze role).
• One-time and preferably stationary use of these UGVs would be more effective, with maintenance and repair crews close by.
• These UGVs should be used with other military formations in order to target and destroy fortified and firing enemy positions — but never on their own, since their breakdown would negatively impact the military mission.
The presentation proposed that some of the above-mentioned problems could be overcome by domestic developments in the following UGV technology and equipment areas:
• Creating secure communication channels;
• Building miniaturized hi-tech navigation systems with a high degree of autonomy, capable of operating with a loss of satellite navigation systems;
• Developing miniaturized and effective ISR components;
• Integrating automated command and control systems, and;
• Better optics, electronics and data processing systems.
According to Anisimov’s report, the overall Russian UGV and unmanned military systems development arch is similar to the one proposed by the United States Army Capabilities Integration Center (ARCIC): the gradual development of systems capable of more autonomy on the battlefield, leading to “smart” robots capable of forming “mobile networks” and operating in swarm configurations. Such systems should be “multifunctional” and capable of being integrated into existing armed forces formations for various combat missions, as well as operate autonomously when needed. Finally, each military robot should be able to function within existing and future military technology and systems.
Source: rusmilitary.wordpress.com
Such a candid review and critique of the Uran-9 in Syria, if true, may point to the Russian Ministry of Defense’s attitude towards its domestic manufacturers. The potential combat effectiveness of this UGV was advertised for the past two years, but its actual performance fell far short of expectations. It is a sign for developers of other Russian unmanned ground vehicles – like Soratnik, Vihr, and Nerehta — since it displays the full range of deficiencies that take place outside of well-managed testing ranges where such vehicles are currently undergoing evaluation. It also brought to light significant problems with ISR equipment — this type of technology is absolutely crucial to any unmanned system’s successful deployment, and its failures during Uran-9 tests exposed a serious combat weakness.
It is also a useful lesson for many other designers of domestic combat UGVs who are seeking to introduce similar systems into existing order of battle. It appears that the Uran-9’s full effectiveness can only be determined at a much later time if it can perform its mission autonomously in the rapidly-changing and complex battlefield environment. Fully autonomous operation so far eludes its Russian developers, who are nonetheless still working towards achieving such operational goals for their combat UGVs. Moreover, Russian deliberations on using their existing combat UGV platforms in one-time attack mode against fortified adversary positions or firing points, tracking closely with ways that Western military analysts arethinking that such weapons could be used in combat.
Source: Nikolai Novichkov / Orbis Defense
The Uran-9 is still a test bed and much has to take place before it could be successfully integrated into current Russian concept of operations. We could expect more eye-opening “lessons learned” from its and other UGVs potential deployment in combat. Given the rapid proliferation of unmanned and autonomous technology, we are already in the midst of a new arms race. Many states are now designing, building, exporting, or importing various technologies for their military and security forces.
To make matters more interesting, the Russians have been public with both their statements about new technology being tested and evaluated, and with the possible use of such weapons in current and future conflicts. There should be no strategic or tactical surprise when military robotics are finally encountered in future combat.
Samuel Bendett is a Research Analyst at the CNA Corporation and a Russia Studies Fellow at the American Foreign Policy Council. He is an official Mad Scientist, having presented and been so proclaimed at a previous Mad Scientist Conference. The views expressed here are his own.
[Editor’s Note: Mad Scientist Laboratory is pleased to present the following post by guest blogger LTC Rob Taber, U.S. Army Training and Doctrine Command (TRADOC) G-2 Futures Directorate, clarifying the often confused character and nature of warfare, and addressing their respective mutability.]
No one is arguing that warfare is not changing. Where people disagree, however, is whether the nature of warfare, the character of warfare, or both are changing.
Source: Office of the Director of National Intelligence
Take, for example, the National Intelligence Council’s assertion in “Global Trends: Paradox of Progress.” They state, “The nature of conflict is changing. The risk of conflict will increase due to diverging interests among major powers, an expanding terror threat, continued instability in weak states, and the spread of lethal, disruptive technologies. Disrupting societies will become more common, with long-range precision weapons, cyber, androbotic systems to target infrastructure from afar, and more accessible technology to create weapons of mass destruction.”[I]
Additionally, Brad D. Williams, in an introductionto an interview he conducted with Amir Husain, asserts, “Generals and military theorists have sought to characterize the nature of war for millennia, and for long periods of time, warfare doesn’t dramatically change. But, occasionally, new methods for conducting war cause a fundamental reconsideration of its very nature and implications.”[II] Williams then cites “cavalry, the rifled musket and Blitzkrieg as three historical examples”[III] from Husain and General John R. Allen’s (ret.) article, “On Hyperwar.”
Unfortunately, the NIC and Mr. Williams miss the reality that the nature of war is not changing, and it is unlikely to ever change. While these authors may have simply interchanged “nature” when they meant “character,” it is important to be clear on the difference between the two and the implications for the military. To put it more succinctly, words have meaning.
The nature of something is the basic make up of that thing. It is, at core, what that “thing” is. The character of something is the combination of all the different parts and pieces that make up that thing. In the context of warfare, it is useful to ask every doctrine writer’s personal hero, Carl Von Clausewitz, what his views are on the matter.
He argues that war is “subjective,”[IV] “an act of policy,”[V] and “a pulsation of violence.”[VI] Put another way, the nature of war is chaotic, inherently political, and violent. Clausewitz then states that despite war’s “colorful resemblance to a game of chance, all the vicissitudes of its passion, courage, imagination, and enthusiasm it includes are merely its special characteristics.”[VII] In other words, all changes in warfare are those smaller pieces that evolve and interact to make up the character of war.
The argument thatartificial intelligence (AI) and other technologies will enable military commanders to have “a qualitatively unsurpassed level of situational awareness and understanding heretofore unavailable to strategic commander[s]”[VIII] is a grand claim, but one that has been made many times in the past, and remains unfulfilled. The chaos of war, its fog, friction, and chance will likely never be deciphered, regardless of what technology we throw at it. While it is certain that AI-enabled technologies will be able to gather, assess, and deliver heretofore unimaginable amounts of data, these technologies will remain vulnerable to age-old practices ofdenial, deception, and camouflage.
The enemy gets a vote, and in this case, the enemy also gets to play with their AI-enabled technologies that are doing their best to provide decision advantage over us. The information sphere in war will be more cluttered and more confusing than ever.
Regardless of the tools of warfare, be they robotic,autonomous, and/or AI-enabled, they remain tools. And while they will be the primary tools of the warfighter, the decision to enable the warfighter to employ those tools will, more often than not, come from political leaders bent on achieving a certain goal with military force.
Drone Wars are Coming / Source: USNI Proceedings, July 2017, Vol. 143 / 7 / 1,373
Finally, the violence of warfare will not change. Certainly robotics and autonomy will enable machines that can think and operate without humans in the loop. Imagine the future in which the unmanned bomber gets blown out of the sky by the AI-enabled directed energy integrated air defense network. That’s still violence. There are still explosions and kinetic energy with the potential for collateral damage to humans, both combatants and civilians.
Source: Lockheed Martin
Not to mention the bomber carried a payload meant to destroy something in the first place. A military force, at its core, will always carry the mission to kill things and break stuff. What will be different is what tools they use to execute that mission.
To learn more about the changing character of warfare:
Additionally, please note that the content from the Mad Scientist Learning in 2050 Conference at Georgetown University, 8-9 August 2018, is now posted and available for your review:
– Watch videos of each of the conference presentations on the TRADOC G-2 Operational Environment (OE) Enterprise YouTube Channelhere.
– Review the conference presentation slides (with links to the associated videos) on the Mad Scientist All Partners Access Network (APAN) sitehere.
LTC Rob Taber is currently the Deputy Director of the Futures Directorate within the TRADOC G-2. He is an Army Strategic Intelligence Officer and holds a Master of Science of Strategic Intelligence from the National Intelligence University. His operational assignments include 1st Infantry Division, United States European Command, and the Defense Intelligence Agency.
Note: The featured graphic at the top of this post captures U.S. cavalrymen on General John J. Pershing’s Punitive Expedition into Mexico in 1916. Less than two years later, the United States would find itself fully engaged in Europe in a mechanized First World War. (Source: Tom Laemlein / Armor Plate Press, courtesy of Neil Grant, The Lewis Gun, Osprey Publishing, 2014, page 19)
[I] National Intelligence Council, “Global Trends: Paradox of Progress,” January 2017, https://www.dni.gov/files/documents/nic/GT-Full-Report.pdf, p. 6. [II] Brad D. Williams, “Emerging ‘Hyperwar’ Signals ‘AI-Fueled, machine waged’ Future of Conflict,” Fifth Domain, August 7, 2017, https://www.fifthdomain.com/dod/2017/08/07/emerging-hyperwar-signals-ai-fueled-machine-waged-future-of-conflict/. [III] Ibid. [VI] Carl Von Clausewitz, On War, ed. Michael Howard and Peter Paret (Princeton: Princeton University Press, 1976), 85. [V] Ibid, 87. [VI] Ibid. [VII] Ibid, 86. [VIII] John Allen, Amir Hussain, “On Hyper-War,” Fortuna’s Corner, July 10, 2017, https://fortunascorner.com/2017/07/10/on-hyper-war-by-gen-ret-john-allenusmc-amir-hussain/.