[Editor’s Note: Mad Scientist Laboratory is pleased to present the following post by returning guest blogger and proclaimed Mad Scientist Mr. Howard R. Simkin, hypothesizing the activities of an Operational Detachment Alpha (ODA) deployed on a security assistance operation in the 2050 timeframe. Mr. Simkin addresses how advanced learning capabilities can improve what were once cognitive load limitations. This is a one of the themes we will explore at next week’s Mad Scientist Learning in 2050 Conference; more information on this conference can be found at the bottom of this post.]
This is the ODAs third deployment to the country, although it is Captain Clark Weston’s first deployment as a team leader. The rest of his ODA have long experience in the region and country. They all have the 2050 standard milspec augmentation of every Special Operations (SO) Operator: corneal and audial implants, subdural brain-computer interfaces, and medical nano-enhancement.
Unlike earlier generations of SO Operators aided by advanced technology, they can see into the near-infra red, understand sixty spoken languages, acquire new skill sets rapidly, interface directly with computers and see that information in a heads up display without a device, and survive any injury short of dismemberment. However, they continue to rely on their cultural and human skills to provide those critical puzzle pieces from the human domain which technology and data science alone cannot.
No matter what technologies are at play, thehuman elementwill still be paramount. As the noted futurist and theoretical physicist Michio Kaku observed in his discussions of the ‘Cave Man Principle’, “whenever there is a conflict between modern technology and the desires of our primitive ancestors, these primitive desires win each time.”[I]
The sound of an onrushing thunderstorm briefly distracted CPT[II] Weston from the report he was compiling. His eyes scanned the equipment hung on wooden pegs protruding from the white plastered walls or scattered on the small wooden desk adorned by a single switch operated lamp. He couldn’t help smiling. The wooden pegs, plastered walls, and primitive lamp were a good metaphor for the region. His apartment back home sported the latest in technology, adaptive video capable walls, a customized AI virtual assistant, and lighting and HVAC[III] that operated without human intervention. Here, it was back to basics.
His concentration broken, he stood up and stretched. Dark of hair and eyes, of medium height and slender build, he could easily pass for a native of the region. As for fluency in the local language, it had been baked into his neural circuitry through rigorous training, cognitive enhancements, and experience. A student of history, Weston had been surprised during his attendance at the SOF[IV] Captains Career Course when he read articles and papers that had heralded the death of language training.
Source: Language Landscapes Blog — http://blogs.fasos.maastrichtuniversity.nl
He wondered. Didn’t the people who wrote those articles pause to consider that no technology works all the time? Either as a result of adversary action or the arrival of mean time between failures, a glitch in a technology-dependent language capability could be at best embarrassing and at worst catastrophic. Didn’t they realize that learning a new language alters the learner’s neural networks, allowing a nuanced understanding of a culture that software had not been able to achieve? Besides, around 65 percent of human communication is non-verbal, he reasoned. Language occurs in a shifting cultural context, something even the best AIs still couldn’t always tackle.
He paced around the room, reflecting on the past few months. Things had definitely taken a turn for the better. With very few exceptions, the Joint security assistance efforts he was aware of were going well. He was very proud of what his ODA had accomplished, training the Ministry of the Interior’s capitol region paramilitary force (CRPF) to what Minerva[V] had deemed a sufficient level of competence in a wide range of tactical skills.
Source: CIO Australia
More importantly, as his Team Sergeant Abdel Jamaal had observed, “We got them to believe in themselves as protectors and to stop acting like bullies.” This had led to the development of an increasing number of information sources which in turn had led to the arrest of a number of senior narco-terrorists. He and Sergeant Jamaal had advised and assisted in those arrests in a virtual mode. To the local population, it looked like the CRPF was doing all of the work.
The team medical/civil affairs specialist, Sergeant First Class Belinda Tompkins and the team cyber/additive manufacturing authority, Sergeant DeWayne Jones had achieved quite a lot on their own. After consulting with the Nimble Griffin[VI] team, they had employed their expertise to upgrade the antiquated in-country hospital 3D Printers to produce the latestgene editingdrugs and fight the diseases still endemic to the region. They had done this in the background, having the CRPF collect the machines quietly and then return them to the hospitals with great fanfare. The resulting media coverage was a public relations bonanza. The only US presence was virtual and invisible to the media or public.
A loud peal of thunder shook Weston from his thoughts. The lights flickered in his room, then steadied up. He sat back down at the table to finish his report. All in all, things were going very well.
[Note that any resemblance to any current events or persons, living or dead, is purely coincidental.]
If you enjoyed this post, please read Mr. Simkin’s articleTechnological Fluency 2035-2050, submitted in response to our Learning in 2050 Call for Ideas and hosted by our colleagues at Small Wars Journal.
Other Learning in 2050 Call for Ideas submissions include the following:
Please also plan on joining us virtually at the Mad Scientist Learning in 2050 Conference. This event will be live streamed on both days (08-09 August 2018). You can watch and interact with all of the speakers at the conference watch page or tag @TRADOC on Twitter with #Learningin2050. Note that the live streaming event is best viewed via a commercial internet connection (i.e., non-NIPRNet).
Howard R. Simkin is a Senior Concept Developer in the DCS, G-9 Concepts, Experimentation and Analysis Directorate, U.S. Army Special Operations Command. He has over 40 years of combined military, law enforcement, defense contractor, and government experience. He is a retired Special Forces officer with a wide variety of special operations experience.
________________________________________________________ [I] Kaku, M. (2011). Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100. New York: Random House (Kindle Edition), 13. [II] Captain. [III] Heating, ventilation, and air conditioning. [IV]Special Operations Forces. [V]Department of Defense AI virtual assistant. [VI]A Joint Interagency Cyber Task Force.
[Editor’s Note: The U.S. Army Training and Doctrine Command (TRADOC) G-2 is co-hosting the Mad Scientist Learning in 2050 Conference with Georgetown University’s Center for Security Studies on 8-9 August 2018 in Washington, DC. In advance of this conference, Mad Scientist Laboratory is pleased to present today’s post addressing what is necessary to truly transform Learning in 2050 by returning guest blogger Mr. Nick Marsella. Read Mr. Marsella’s previous two posts addressing Futures Work atPart I and Part II]
Only a handful of years ago, a conference on the topic of learning in 2050 would spur discussions on needed changes in the way we formally educate and train people to live successful lives and be productive citizens.[I] Advocates in K-12 would probably argue for increasing investment in schools, better technology, and increased STEM education. Higher educators would raise many of the same concerns, pointing to the value of the “the academy” and its universities as integral to the nation’s economic, security, and social well-being by preparing the nation’s future leaders, innovators, and scientists.
Yet, times have changed. “Learning in 2050” could easily address how education and training must meet the required immediate learning needs of the individual and for supporting “lifelong learning” in a very changing and competitive world.[II] The conference could also address how new discoveries in learning and the cognitive sciences will inform the education and training fields, and potentially enhance individual abilities to learn and think.[III] “Learning in 2050” could also focus on how organizational learning will be even more important than today – spelling the difference between bankruptcy and irrelevancy – or for military forces – victory or defeat. We must also address how to teach people to learn and organize themselves for learning.[IV]
Lastly, a “Learning in 2050” conference could also focus onmachine learning and howartificial intelligence will transform not only the workplace, but have a major impact on national security.[V] Aside from understanding the potential and limitations of this transformative technology, increasingly we must train and educate people on how to use it to their advantage and understand its limitations for effective “human – machine teaming.” We must also provide opportunities to use fielded new technologies and for individuals to learn when and how totrust it.[VI]
All of these areas would provide rich discussions and perhaps new insights. But just as LTG (ret) H.R. McMaster warned us about thinking about the challenges in future warfare, we must first acknowledge the continuities for this broad topic of “Learning in 2050” and its implications for the U.S. Army.[VII] Until the Army is replaced by robots or knowledge and skills are uploaded directly into the brain as shown in the “Matrix” — learning involves humans and the learning process and the Army’s Soldiers and its civilian workforce [not discounting organizational or machine learning].
Source: U.S. Army https://www.army.mil/article/206197/army_researchers_looking_to_neurostimulation_to_enhance_accelerate_soldiers_abilities
While much may change in the way the individual will learn, we must recognize that the focus of “Learning in 2050” is on the learner and the systems, programs/schools, or technologies adopted in the future must support the learner. As Herbert Simon, one of the founders of cognitive science and a Nobel laureate noted: “Learning results from what the student does and thinks and only from what the student does and thinks. The teacher can advance learning only by influencing what the student does to learn.”[VIII] To the Army’s credit, the U.S. Army Learning Concept for Training and Education 2020-2040 vision supports this approach by immersing “Soldiers and Army civilians in a progressive, continuous, learner-centric, competency-based learning environment,” but the danger is we will be captured by technology, procedures, and discussions about the utility and need for “brick and mortar schools.”[IX]
Learning results from what the student does and thinks and only from what the student does and thinks.
Learning is a process that involves changing knowledge, belief, behavior, and attitudes and is entirely dependent on the learner as he/she interprets and responds to the learning experience – in and out of the classroom.[X] Our ideas, concepts, or recommendations to improve the future of learning in 2050 must either: improve student learning outcomes, improve student learning efficiency by accelerating learning, or improve the student’s motivation and engagement to learn.
“Learning in 2050” must identify external environmental factors which will affect what the student may need to learn to respond to the future, and also recognize that the generation of 2050 will be different from today’s student in values, beliefs, attitudes, and acceptance of technology.[XI] Changes in the learning system must be ethical, affordable, and feasible. To support effective student learning, learning outcomes must be clearly defined – whether a student is participating in a yearlong professional education program or a five-day field training exercise – and must be understood by the learner.[XII]
We must think big. For example, Professor of Cognition and Education at Harvard’s Graduate School of Education, Howard Gardner postulated that to be successful in the 21st Century requires the development of the “disciplined mind, the synthesizing mind, the creative mind, the respectful mind, and the ethical mind.”[XIII]
Approaches, processes, and organization, along with the use of technology and other cognitive science tools, must focus on the learning process. Illustrated below is the typical officer career timeline with formal educational opportunities sprinkled throughout the years.[XIV] While some form of formal education in “brick and mortar” schools will continue, one wonders if we will turn this model on its head – with more upfront education; shorter focused professional education; more blended programs combining resident/non-resident instruction; and continual access to experts, courses, and knowledge selected by the individual for “on demand” learning. Today, we often use education as a reward for performance (i.e., resident PME); in the future, education must be a “right of the Profession,” equally provided to all (to include Army civilians) – necessary for performance as a member of the profession of arms.
Source: DA Pam 600-3, Commissioned Officer Professional Development and Career Management, December 2014, p.27
The role of the teacher will change. Instructors will become “learning coaches” to help the learner identify gaps and needs in meaningful and dynamic individual learning plans. Like the Army’s Master Fitness Trainer whom advises and monitors a unit’s physical readiness, we must create in our units “Master Learning Coaches,” not simply a training specialist who manages the schedule and records. One can imagine technology evolving to do some of this as the Alexa’s and Siri’s of today become the AI tutors and mentors of the future. We must also remember that any system or process for learning in 2050 must fit the needs of multiple communities: Active Army, Army National Guard, and Army Reserve forces, as well as Army civilians.
Just as the delivery of instruction will change, the assessment of learning will change as well. Simulations and gaming should aim to provide an “Enders’ Game” experience, where reality and simulation are indistinguishable. Training systems should enable individuals to practice repeatedly and as Vince Lombardi noted – “Practice does not make perfect. Perfect practice makes perfect.” Experiential learning will reinforce classroom, on-line instruction, or short intensive courses/seminars through the linkage of “classroom seat time” and “field time” at the Combat Training Centers, Warfighter, or other exercises or experiences.
Tell me and I forget; teach me and I may remember; involve me and I learn. Benjamin Franklin[XV]
Of course, much will have to change in terms of policies and the way we think about education, training, and learning. If one moves back in time the same number of years that we are looking to the future – it is the year 1984. How much has changed since then?
While in some ways technology has transformed the learning process – e.g., typewriters to laptops; card catalogues to instant on-line access to the world’s literature from anywhere; and classes at brick and mortar schools to Massive Open Online Courses (MOOCs), and blended and on-line learning with Blackboard. Yet, as Mark Twain reportedly noted – “if history doesn’t repeat itself – it rhymes” and some things look the same as they did in 1984, with lectures and passive learning in large lecture halls – just as PowerPoint lectures are ongoing today for some passively undergoing PME.
If “Learning in 2050” is to be truly transformative – we must think differently. We must move beyond the industrial age approach of mass education with its caste systems and allocation of seats. To be successful in the future, we must recognize that our efforts must center on the learner to provide immediate access to knowledge to learn in time to be of value.
Nick Marsella is a retired Army Colonel and is currently a Department of the Army civilian serving as the Devil’s Advocate/Red Team for Training and Doctrine Command. ___________________________________________________________________
[I] While the terms “education” and “training” are often used interchangeably, I will use the oft quoted rule – training is about skills in order to do a job or perform a task, while education is broader in terms of instilling general competencies and to deal with the unexpected.
[II] The noted futurist Alvin Toffler is often quoted noting: “The illiterate of the 21st Century are not those who cannot read and write but those who cannot learn, unlearn, and relearn.”
[III] Sheftick, G. (2018, May 18). Army researchers look to neurostimulation to enhance, accelerate Soldier’s abilities. Retrieved from: https://www.army.mil/article/206197/army_researchers_looking_to_neurostimulation_to_enhance_accelerate_soldiers_abilities
[IV] This will become increasing important as the useful shelf life of knowledge is shortening. See Zao-Sanders, M. (2017). A 2×2 matrix to help you prioritize the skills to learn right now. Harvard Business Review. Retrieved from: https://hbr.org/2017/09/a-2×2-matrix-to-help-you-prioritize-the-skills-to-learn-right-now — so much to learn, so little time.
[V] Much has been written on AI and its implications. One of the most recent and interesting papers was recently released by the Center for New American Security in June 2018. See: Scharre, P. & Horowitz, M.C. (2018). Artificial Intelligence: What every policymaker needs to know. Retrieved from: https://www.cnas.org/publications/reports/artificial-intelligence-what-every-policymaker-needs-to-know
For those wanting further details and potential insights see: Executive Office of the President, National Science and Technology Council, Committee on Technology Report, Preparing for the Future of Artificial Intelligence, October 2016.
[VI] Based on my anecdotal experiences, complicated systems, such as those found in command and control, have been fielded to units without sufficient training. Even when fielded with training, unless in combat, proficiency using the systems quickly lapses. See: Mission Command Digital Master Gunner, May 17, 2016, retrieved from https://www.army.mil/standto/archive_2016-05-17. See Freedberg, S. Jr. Artificial Stupidity: Fumbling the Handoff from AI to Human Control. Breaking Defense. Retrieved from: https://breakingdefense.com/2017/06/artificial-stupidity-fumbling-the-handoff/
[VII] McMaster, H.R. (LTG) (2015). Continuity and Change: The Army Operating Concept and Clear Thinking about Future War. Military Review.
[VIII] Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C. & Norman, M. K. (2010). How learning works: 7 research-based principles for smart teaching. San Francisco, CA: Jossey-Bass, p. 1.
[IX] U.S. Army Training and Doctrine Command. TRADOC Pamphlet 525-8-2. The U.S. Army Learning Concept for Training and Education 2020-2040.
[XI] For example, should machine language be learned as a foreign language in lieu of a traditional foreign language (e.g., Spanish) – given the development of automated machine language translators (AKA = the Universal Translator)?
[XII] The point here is we must clearly understand what we want the learner to learn and adequately define it and insure the learner knows what the outcomes are. For example, we continually espouse that we want leaders to be critical thinkers, but I challenge the reader to find the definitive definition and expected attributes from being a critical thinker given ADRP 6-22, Army Leadership, FM 6-22 Army Leadership, and ADRP 5 and 6 describe it differently. At a recent higher education conference of leaders, administrators and selected faculty, one member succinctly put it this way to highlight the importance of student’s understanding expected learning outcomes: “Teaching students without providing them with learning outcomes is like giving a 500 piece puzzle without an image of what they’re assembling.”
[XIII] Gardner, H. (2008). Five Minds for the Future. Boston, MA: Harvard Business Press. For application of Gardner’s premise see Marsella, N.R. (2017). Reframing the Human Dimension: Gardner’s “Five Minds for the Future.” Journal of Military Learning. Retrieved from: https://www.armyupress.army.mil/Journals/Journal-of-Military-Learning/Journal-of-Military-Learning-Archives/April-2017-Edition/Reframing-the-Human-Dimension/
[XIV] Officer education may differ due to a variety of factors but the normal progression for Professional Military Education includes: Basic Officer Leader Course (BOLC B, to include ROTC/USMA/OCS which is BOLC A); Captains Career Course; Intermediate Level Education (ILE) and Senior Service College as well as specialty training (e.g., language school), graduate school, and Joint schools. Extracted from previous edition of DA Pam 600-3, Commissioned Office Professional Development and Career Management, December 2014, p.27 which is now obsolete. Graphic is as an example. For current policy, see DA PAM 600-3, dated 26 June 2017. .
[XV] See https://blogs.darden.virginia.edu/brunerblog/
[Editor’s Note: Mad Scientist Laboratory is pleased to present today’s guest post by Ms. Taylor Galanides, TRADOC G-2 Summer Intern, exploring how the increasing momentum of human interaction, events, and actions, driven by the convergence of innovative technologies, is enabling adversaries to exploit susceptibilities and vulnerabilities to manipulate populations and undermine national interests. Ms. Galanides examines contemporary Information Operations as a harbinger of virtual warfare in the future Operational Environment.]
More information is available than ever before. Recent and extensive developments in technology, media, communication, and culture – such as the advent of social media, 24-hour news coverage, and smart devices – allow people to closely monitor domestic and foreign affairs. In the coming decades, the increased speed of engagements, as well as the precise and pervasive targeting of both civilian and military populations, means that these populations and their respective nations will be even more vulnerable to influence and manipulation attempts, misinformation, and cyber-attacks from foreign adversaries.
The value of influencing and shaping the perceptions of foreign and domestic populations in order to pursue national and military interests has long been recognized. This can be achieved through the employment of information operations, which seek to affect the decision-making process of adversaries. The U.S. Army views information operations as an instrumental part of the broader effort to maintain an operational advantage over adversaries. Information operations is specifically defined by the U.S. Army as “The integrated employment, during military operations, of information-related capabilities in concert with other lines of operation to influence, disrupt, corrupt, or usurp the decision-making of adversaries and potential adversaries while protecting our own.”
The U.S. Army Training and Doctrine Command (TRADOC) G-2’s The Operational Environment and the Changing Character of Future Warfare further emphasizes this increased attention to the information and cognitive domains in the future – in the Era of Contested Equality (2035 through 2050). As a result, it has been predicted that no single nation will hold hegemony over its adversaries, and major powers and non-state actors alike “… will engage in a fight for information on a global scale.” Winning preemptively in the competitive dimension before escalation into armed conflict through the use of information and psychological warfare will become key.
Source: Becoming Human – Artificial Intelligence Magazine
Part of the driving force that is changing the character of warfare includes the rise ofinnovative technologiessuch as computer bots, artificial intelligence, and smart devices. Such emerging and advancing technologies have facilitated the convergence of new susceptibilities to individual and international security; as such, it will become increasingly more important to employ defensive and counter information operations to avoid forming misperceptions or being deceived.
Harbinger of the Future: Information Operations in Crimea
Russia’s invasion of eastern Ukraine and subsequent annexation of Crimea in 2014 effectively serve as cautionary examples of Russia’s evolving information operations and their perception-shaping capabilities. In Crimea, Russia sought to create a “hallucinating fog of war” in an attempt to alter the analytical judgments and perceptions of its adversaries. With the additional help of computer hackers, bots, trolls, and television broadcasts, the Russian government was able to create a manipulated version of reality that claimed Russian intervention in Crimea was not only necessary, but humanitarian, in order to protect Russian speakers. Additionally, Russian cyberespionage efforts included the jamming or shutting down of telecommunication infrastructures, important Ukrainian websites, and cell phones of key officials prior to the invasion. Through the use of large demonstrations called “snap exercises,” the Russians were able to mask military buildups along the border, as well as its political and military intentions. Russia further disguised their intentions and objectives by claiming adherence to international law, while also claiming victimization from the West’s attempts to destabilize, subvert, and undermine their nation.
By denying any involvement in Crimea until after the annexation was complete, distorting the facts surrounding the situation, and refraining from any declaration of war, Russia effectively infiltrated the international information domain and shaped the decision-making process of NATO countries to keep them out of the conflict. NATO nations ultimately chose minimal intervention despite specific evidence of Russia’s deliberate intervention in order to keep the conflict de-escalated. Despite the West’s refusal to acknowledge the annexation of Crimea, it could be argued that Russia achieved their objective of expanding its sphere of influence.
Vulnerabilities and Considerations
Russia is the U.S.’ current pacing threat, and China is projected to overtake Russia as the Nation’s primary threat as early as 2035. It is important to continue to evaluate the way that the U.S. and its Army respond to adversaries’ increasingly technological attempts to influence, in order to maintain the information and geopolitical superiority of the Nation. For example, the U.S. possesses different moral and ethical standards that restrict the use of information operations. However, because adversarial nations like Russia and China pervasively employ influence and deceptive measures in peacetime, the U.S. and its Army could benefit from developing alternative methods for maintaining an operational advantage against its adversaries.
Adversarial nations can also take advantage of “the[Western] media’swillingness to seek hard evidence and listen to both sides of an argument before coming to a conclusion” by “inserting fabricated or prejudicial information into Western analysis and blocking access to evidence.” The West’s free press will continue to be the primary counter to constructed narratives. Additionally,extensive training of U.S. military and Government personnel, in conjunction with educating its civilian population about Russia and China’s deceitful narratives may decrease the likelihood of perceptions being manipulated: “If the nation can teach the media to scrutinize the obvious, understand the military, and appreciate the nuances of deception, it may become less vulnerable to deception.” Other ways to exploit Russian and Chinese vulnerabilities could include taking advantage of poor operations security, as well as the use and analysis ofgeotags to refute and discredit Russian and Chinese propaganda narratives.
A final consideration involves the formation of an interagency committee, similar to theActive Measures Working Group from the 1980s, for the identification and countering of adversarial disinformation and propaganda. The coordination of the disinformation efforts by manipulative countries like Russia is pervasive and exhaustive. Thus, coordination of information operations and counter-propaganda efforts is likewise important between the U.S. Government, the Army, and the rest of the branches of the military. The passing of theCountering Foreign Propaganda and Disinformation Act, part of the 2017 National Defense Authorization Act, was an important first step in the continuing fight to counter foreign information and influence operations that seek to manipulate the U.S. and its decision-makers and undermine its national interests.
For more information on how adversaries will seek to shape perception in the Future Operational Environment, read the following related blog posts:
Taylor Galanides is a Junior at The College of William and Mary in Virginia, studying Psychology. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the G-2 Futures team.
[Editor’s Note: Mad Scientist Laboratory is pleased to present today’s guest post by returning blogger Ms. Marie Murphy, addressing the implication of space drones and swarms on space-based services critical to the U.S. Army. Ms. Murphy’s previous post addressed Virtual Nations: An Emerging Supranational Cyber Trend.]
Drone technology continues to proliferate in militaries and industries around the world. In the deep future, drones and drone swarms may extend physical conflict into the space domain. As space becomes ever more critical to military operations, states will seek technologies to counter their adversaries’ capabilities. Drones and swarms can blend in with space debris in order to provide a tactical advantage against vulnerable and expensive assets at a lower cost.
Source: AutoEvolution
Space was recently identified as a battlespace domain in recognition of threats increasing at an unexpected rate and, in 2013, the Army Space Training Strategy was released. The functions of the Army almost entirely depend on space systems for daily and specialized operations, particularly C4ISR and GPS capabilities. “Well over 2,500 pieces of equipment… rely on aspace-based capability” in any given combat brigade, so an Army contingency plan for the loss of satellite communication is critical.[I] It is essential for the Army, in conjunction with other branches of the military and government agencies, to best shield military assets in space and continue to develop technologies, such as outer space drones and swarms, to remain competitive and secure throughout this domain in the future.
Source: CCTV China
Drone swarms in particular are an attractive military option due to their relative inexpensiveness, autonomy, and durability as a whole. The U.S., China, and Russia are the trifecta of advanced drone and drone swarm technology and also pose the greatest threats in space. In May 2018, Chinese Company CETC launched 200autonomous drones,[II] beating China’s own record of 119 from 2017.[III] The U.S. has also branched out into swarm technology with the testing ofPerdix drones, although the U.S. is most known for its use of the high-tech Predator drone.[IV]
Source: thedrive.com
Non-state actorsalso possess rudimentary drone capabilities. In January 2018, Syrian rebels attacked a Russian installation with 13 drones in an attempt to overwhelm Russian defenses. The Russian militarywas able to neutralize the attack by shooting down seven and bringing the remaining six down with electronic countermeasures.[V] While this attack was quelled, it proves that drones are being used by less powerful or economically resourceful actors, making them capable of rendering many traditional defense systems ineffective. It is not a far leap to incorporate autonomous communication between vehicles, capitalizing on the advantages of a fully interactive and cooperative drone swarm.
NASA Homemade Drone; Source: NASA Swamp Works
The same logic applies when considering drones and drone swarms inspace. However, these vehicles will need to be technologically adapted for space conditions. Potentially most similar to future space drones, the company Swarm Technology launched four nanosats called “SpaceBees” with the intention of using them to create a constellation supporting Internet of Things (IoT) networks; however, they did so from India without FCC authorization.[VI] Using nanosats as examples of small, survivable space vehicles, the issues of power and propulsion are the most dominant technological roadblocks. Batteriesmust be small and are subject to failure in extreme environmental conditions and temperatures.[VII] Standard drone propulsionmechanisms are not viable in space, where drones will have to rely on cold-gas jets to maneuver.[VIII] Drones and drone swarms can idle in orbit (potentially for weeks or months) until activated, but they may still need hours of power to reach their target. The power systems must also have the ability to direct flight in a specific direction, requiring more energy than simply maintaining orbit.
Source: University of Southampton
There is a distinct advantage for drones operating in space: the ability to hide in plain sight among the scattered debris in orbit. Drones can be sent into space on a private or government launch hidden within a larger, benign payload.[IX] Once in space, these drones could be released into orbit, where they would blend in with the hundreds of thousands of other small pieces of material. When activated, they would lock onto a target or targets, and swarms would converge autonomously and communicate to avoid obstacles. Threat detection and avoidance systems may not recognize an approaching threat or swarm pattern until it is too late to move an asset out of their path (it takes a few hours for a shuttle and up to 30 hours for the ISS to conduct object avoidance maneuvers). In the deep future, it is likely that there will be a higher number of larger space assets as well as a greater number of nanosats and CubeSats, creating more objects for theSpace Surveillance Network to track, and more places for drones and swarms to hide.[X]
For outer space drones and drone swarms, the issue of space junk is a double-edged sword. While it camouflages the vehicles, drone and swarm attacks also produce more space junk due to their kinetic nature. One directed “kamikaze” or armed drone can severely damage or destroy a satellite, while swarm technology can be harnessed for use against larger, defended assets or in a coordinated attack. However, projecting shrapnel can hit other military or commercial assets, creating aKessler Syndrome effect of cascading damage.[XI] Once a specific space junk removal program is established by the international community, the resultant debris effects from drone and swarm attacks can be mitigated to preclude collateral damage. However, this reduction of space junk will also result in less concealment, limiting drones’ and swarms’ ability to loiter in orbit covertly.
Utilizing drone swarms in space may also present legal challenges. The original governing document regarding space activities is the Outer Space Treaty of 1967. This treaty specifically prohibits WMDs in space and the militarization of the moon and other celestial bodies, but is not explicit regarding other forms of militarization, except to emphasize that space activities are to be carried out for the benefit of all countries. So far, military space activities have been limited to deploying military satellites and combatting cyber-attacks. Launching a kinetic attack in space would carry serious global implications and repercussions.
Such drastic and potentially destructive action would most likely stem from intense conflict on Earth. Norms about the usage of space would have to change. The Army must consider how widely experimented with and implemented drone and swarm technologies can be applied to targeting critical and expensive assets in orbit. Our adversaries do not have the same moral and ethical compunctions regarding space applications that the U.S. has as the world’s leading democracy. Therefore, the U.S. Army must prepare for such an eventuality. Additionally, the Army must research and develop a more robust alternative to our current space-based GPS capability. For now, the only war in space is the one conducted electronically, but kinetic operations in outer space are a realistic possibility in the deep future.
Marie Murphy is a rising junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative.
[Editor’s Note: Mad Scientist is pleased to present Mr. Mike Matson‘s guest blog post set in 2037 — pitting the defending Angolan 6th Mechanized Brigade with Russian advisors and mercenaries against a Namibian Special Forces incursion supported by South African National Defence Force (SANDF) Special Operators. Both sides employ autonomous combat systems, albeit very differently — Enjoy!]
Preface: This story was inspired by two events. First, Boston Dynamics over the last year had released a series of short videos of theirhumanoid and animal-inspired robots which had generated a strong visceral Internet reaction. Elon Musk had commented about one video that they would “in a few years… move so fast you’ll need a strobe light to see it.” That visual stuck with me and I was looking for an opportunity to expand on that image.
The second event was a recent trip to the Grand Tetons. I had a black bear rise up out of an otherwise empty meadow less than 50 meters away. A 200-kilo predator which can run at 60kph and yet remain invisible in high grass left a strong impression. And while I didn’t see any gray wolves, a guide discussed how some of the packs, composed of groups of 45-kilogram sized animals, had learned how to take down 700-kilogram bison. I visualized packs of speeding robotic wolves with bear-sized robots following behind.
I used these events as the genesis to explore a completely different approach to designing and employing unmanned ground combat vehicles (GCVs). Instead of the Russian crewless, traditional-styled armored vehicles, I approached GCVs from the standpoint of South Africa, which may not have the same resources as Russia, but has an innovative defense industry. If starting from scratch, how might their designs diverge? What could they do with less resources? And how would these designs match up to “traditional” GCVs?
To find out what would happen, I pitted an Angolan mechanize brigade outfitted with Russian GCVs against South African special forces armed with a top secret indigenous GCV program. The setting is southern Angola in 2037, and there are Demons in the Tall Grass. As Mr. Musk said in his Tweet, sweet dreams! Mike Matson
Source: Google Maps
(2230Z 25 May 2037) Savate, Angola
Paulo crouched in his slit trench with his squad mates. He knew this was something other than an exercise. The entire Angolan 6th Mechanized Brigade had road marched south to Savate, about 60 kilometers from the Namibian border. There, they were ordered to dig fighting positions and issued live ammunition.
Everyone was nervous. Thirty minutes before, one of their patrols a kilometer south of them had made contact. A company had gone out in support and a massive firefight had ensued. A panicked officer could be heard on the net calling in artillery on their own position because they were being attacked by demons in the tall grass. Nobody had yet returned.
A pair of Uran-9s, line abreast; Source: RussianDefence.com / Lex Kitaev
Behind Paulo, the battalion commander came forward. With him were three Russian mercenaries. Paulo knew the Russians had brought along two companies of robot tanks. The robot tanks sported an impressively large number of guns, missiles and lasers. Two of them had deployed with the quick reaction force. Explosions suggested that they had been destroyed.
Paulo watched the Angolan officer carefully. Suddenly there was a screamed warning from down the trenches. He whipped around and saw forms in the tall grass moving towards the trenches at a high rate of speed, spread out across his entire front. A dozen or more speeding lines headed directly towards the trenches like fish swimming just under the water.
“Fire!” Paulo ordered and started shooting, properly squeezing off three round bursts. The lines kept coming. Paulo had strobe light-like glimpses of bounding animals. Just before they burst from cover, piercingly loud hyena cries filled the night. Paulo slammed his hand on the nearby clacker to detonate the directional mines to his front. The world exploded in noise and dust.
(Earlier That Morning) 25 Kilometers south of Savate
Captain Verlin Ellis, Bravo Group, SANDF, crouched with his NCO, his soldiers, and his Namibian SF counterpart at dawn under a tree surrounded by thick green bush.
“Listen up everyone, the operation is a go. Intelligence shows the brigade in a holding position south of Savate. We are to conduct a recon north until we can fix their position. Alpha and Charlie groups will be working their way up the left side. Charlie will hit their right flank with their predator package at the same time we attack from the south and Alpha will be the stopper group with the third group north of town. Once we have them located, we are to hold until nightfall, then attack.”
The tarps came off Bravo Group’s trucks and the men got to work unloading.
Source: BigDog / DeviantArt
First off were Bravo Group’s attack force of forty hyenas. Standing just under two feet high on their articulated legs, and weighing roughly 40 kilos, the small robots were off-loaded and their integrated solar panels were unfolded to top off their battery charges.
The hyenas operated in pack formations via an encrypted mesh network. While they could be directed by human operators if needed and could send and receive data via satellite or drone relay, they were designed to operate in total autonomy at ranges up to 40 kilometers from their handlers.
Each hyena had a swiveling front section like a head with four sensors and a small speaker. The sensors were a camera and separate thermal camera, a range finder, and a laser designator/pointer. Built into the hump of the hyena’s back was a fixed rifle barrel in a bullpup configuration, chambered in 5.56mm, which fired in three round bursts.
On each side there was a pre-loaded 40mm double tube grenade launcher. The guided, low velocity grenades could be launched forward between 25-150 meters. The hyenas were loaded with a mix of HE, CS gas, HEAT, and thermite grenades. They could select targets themselves or have another hyena or human operator designate a target, in which case they were also capable of non-line-of-sight attacks. The attack dogs contained a five-kilo shaped charge limpet mine for attaching to vehicles. There were 24 attack hyenas.
Source: Fausto De Martini / Kill Command
Second off came the buffalos, the heavy weapons support element. There were six of the 350 kilo beasts. They were roughly the same size as a water buffalo, hence their name. They retained the same basic head sensor suite as the hyenas, and a larger, sturdier version of the hyena’s legs.
Three of them mounted an 81mm auto-loading mortar and on their backs were 10 concave docking stations each holding a three ounce helicopter drone called a sparrow. The drone had a ten-minute flight radius with its tiny motor. One ounce of the drone was plastic explosive. They had a simple optical sensor and were designed to land and detonate on anything matching their picture recognition algorithms, such as ammo crates, fuel cans, or engine hoods.
The fourth buffalo sported a small, sleek turret on a flat back, with a 12.7mm machine gun, and the buffalo held 500 rounds of armor-piercing tracer.
The fifth buffalo held an automatic grenade launcher with 200 smart rounds in a similar turret to the 12.7mm gun. The grenades were programmed as they fired and could detonate over trenches or beyond obstacles to hit men behind cover.
The sixth carried three anti-tank missiles in a telescoping turret. Like the mortars, their fire could be directed by hyenas, human operators, or self-directed.
Source: KhezuG / Deviantart.com
Once the hyenas and buffalos were charging, the last truck was carefully unloaded. Off came the boars — suicide bombs on legs. Each of the 15 machines was short, with stubbier legs for stability. Their outer shells were composed of pre-scarred metal and were overlaid with a layer of small steel balls for enhanced shrapnel. Inside they packed 75 kilos of high explosive. For tonight’s mission each boar was downloaded with different sounds to blare from their speakers, with choices ranging from Zulu war cries, to lion roars, to AC/DC’s Thunderstruck. Chaos was their primary mission.
Between the three Recce groups, nine machines failed warmup. That left 180 fully autonomous and cooperative war machines to hunt the 1,200 strong Angolan 6th Mechanized Brigade.
(One Hour after Attack Began) Savate
Paulo and his team advanced, following spoor through the bush. The anti-tank team begged to go back but Paulo refused.
Suddenly there was a slight gap in the tall grass just as something in front of them on the far side of a clearing fired. It looked like a giant metal rhino, and it had an automatic grenade launcher on top of it. It fired a burst, then sat down on its haunches to hide.
So that’s why I can’t see them after they fire. Very clever, thought Paulo. He tried calling in fire support but all channels were jammed.
Paulo signaled with his hands for both gunners to shoot. The range was almost too close. Both gunners fired at the same time, striking the beast. It exploded with a surprising fury, blowing them all off their feet and lighting up the sky. They laid there stunned as debris pitter-pattered in the dirt around them.
That was enough for Paulo and the men. They headed back to the safety of the trenches.
As they returned, eight armored vehicles appeared. On the left was an Angolan T-72 tank and three Russian robot tanks. On the right there was a BMP-4 and three more Russian robot tanks.
An animal-machine was trotting close to the vegetation outside the trenches and one of the Russian tank’s lasers swiveled and fired, emitting a loud hum, hitting it. The animal-machine was cut in two. The tanks stopped near the trench to shoot at unseen targets in the dark as Paulo entered the trenches.
The hyena yipping increased in volume as predators began to swarm around the armored force. Five or six were circling their perimeter yipping and shooting grenades. Two others crept under some bushes 70 meters to Paulo’s right and laid down like dogs. A long, thin antenna rose out of the back of one dog with some small device on top. The tanks furiously fired at the fleeting targets which circled them.
Mortar rounds burst around the armor, striking a Russian tank on the thin turret top, destroying it.
From a new direction, the ghost machine gun struck a Russian robot tank with a dozen exploding armor-piercing rounds. The turret was pounded and the externally mounted rockets were hit, bouncing the tank in place from the explosions. A robot tank popped smoke, instantly covering the entire armored force in a blinding white cloud which only added to the chaos. Suddenly the Russian turrets all stopped firing just as a third robot tank was hit by armor-piercing rounds in the treads and disabled.
Silent Ruin; Source: Army Cyber Institute at West Point / Don Hudson & Kinsun Lo
If you enjoyed this blog post, read “Demons in the Grass” in its entiretyhere, published by our colleagues at Small Wars Journal.
Mike Matson is a writer in Louisville, Kentucky, with a deep interest in national security and cyber matters. His writing focuses on military and intelligence-oriented science fiction. He has two previous articles published by Mad Scientist: the non-fiction “Complex Cyber Terrain in Hyper-Connected Urban Areas,” and the fictional story, “Gods of Olympus.” In addition to Louisville, Kentucky, and Washington, DC, he has lived, studied, and worked in Brussels, Belgium, and Tallinn, Estonia. He holds a B.A. in International Studies from The American University and an M.S. in Strategic Intelligence from the National Intelligence University, both in Washington, DC. He can be found on Twitter at @Mike40245.