126. Nowhere to Hide: Information Exploitation and Sanitization

[Editor’s Note:  In today’s post, Mad Scientist Laboratory explores how humankind’s recent exponential growth in interconnectivity will continue to affect warfare in the Future Operational Environment.  Using several contemporary use cases, we identify a number of vulnerabilities that have already been exploited by our adversaries.  The U.S. Army must learn how to sanitize its information signatures while simultaneously exploit those presented by our adversaries.  As previously stated on this site by COL Stefan J. Banach (USA-Ret.),  “Virtual Space is the decisive terrain and securing it is the decisive operation.]

Internet of Battle Things (IOBT) / Source: Alexander Kott, ARL

The timeless competition of finders vs. hiders is a key characteristic of the Future Operational Environment (FOE). Through the proliferation of sensors creating the Internet of Battlefield Things (IoBT), ubiquitous global communication, and pervasive personal electronic devices, the finders will be ascendant on the battlefield. They have more advantages and access than ever before – with the ability to make impactful non-kinetic action – and the hiders are creating bigger, enduring, and more conspicuous signatures. In the FOE, our ability to wade through the petabytes of raw sensor and communications data input to generate a Common Operating Picture and arrive at actionable courses of action will be significantly challenged. Will we be able to sanitize Blue Forces’ signatures to prevent our adversaries from detecting and exploiting similar information, while simultaneously seeing through Red Forces’ deception measures to strike decisively?

A recent example highlighting the inherent and unpredictable vulnerabilities presented by these emerging technologies is the incident involving personal fitness devices that track users via GPS. Many military personnel have used these devices to track personal performance while conducting physical fitness training.  The associated tracking information was transmitted back to fitness-tracking company Strava, where it was aggregated and then published as maps that were then made available to the public. Unfortunately, these maps contained articulate outlines of PT routes in and around military bases, the locations of which were not intended to be made public. This now publically available information inadvertently provided our adversaries with sensitive information that, in years past, would have required considerable time and other resources to acquire.

In response, the DoD issued a memorandum through Deputy Defense Secretary Patrick Shanahan effectively banning the use of geolocation capabilities in operational areas. While there was swift policy resolution in this case, albeit after-the-fact, there are a number of continuing and emergent threats presented by the information age that still need to be addressed.

In the previous example, the culprit was a smart watch or fitness tracking device that is a companion piece to the smart phone. Removing or prohibiting these devices is less detrimental to the overall morale, spirit, and will power of our Soldiers than removing their cell phones — their primary means of voice, data, and social media connectivity — oftentimes their sole link with their family back home. Adversaries have already employed tactics designed to exploit vulnerabilities arising from Soldier cellphone use. In the Ukraine, a popular Russian tactic is to send spoofed text messages to Ukrainian soldiers informing them that their support battalion has retreated, their bank account has been exhausted, or that they are simply surrounded and have been abandoned. Taking it one step further, they have even sent false messages to the families of soldiers informing them that their loved one was killed in action.

Russian 9a52-4 MLRS conducting a fire mission / Source: The National Interest

This sets off a chain of events where the family member will immediately call or text the soldier, followed by another spoofed message to the original phone. With a high number of messages to enough targets, an artillery strike is called in on the area where an excess of cellphone usage has been detected.

Similarly, a NATO red team was able to easily infiltrate their own forces through information gathered on social media sites – amassing locations, dates, and other data – to influence their Soldiers’ behavior.  Facebook and Instagram allowed them to track Soldiers, determine exact locations of exercises, and identify all members of a certain unit.

Hamas employed a similar tactic against Israeli Defense Force soldiers, using fake accounts to pose as attractive women in honey trap operations to access sensitive operational information.

Each of these examples illustrate recent, low-cost, and effective means of deception. Device exploitation, the over-sharing of sensitive data, and the challenge in determining information credibility will only increase as connected devices continue to both proliferate and transition from being portable and wearable to embeddable and implantable. The following questions must be addressed by the U.S. Army:

– How can we sanitize ourselves to mitigate these and other vulnerabilities from adversely affecting us operationally on future battlefields?

– How do we ensure that the information we are receiving and processing is legitimate and that we are not being spoofed?

– How are we preparing to exploit similar vulnerabilities in our adversaries?

Fictitious 1st Army Group patch. Commanded by then LTG George S. Patton, to deceive the Germans prior to the invasion of France

– Is this even possible in a hyper-connected and complex battlefield or are we destined to be on the wrong side of some future Operation Fortitude, where effective military deception helped ensure the success GEN Eisenhower’s Great Crusade to liberate Europe from the Nazis in World War II?

One final thought — geolocation information and high resolution remote sensing capabilities, which only a short decade and a half ago were limited to a handful of national intelligence services, have entered into a new, democratized era.  As recently demonstrated in three warzone use casesanyone (including non-spacefaring nations, non-state actors, and super-empowered individuals) can now access current and past imagery to generate high resolution, three dimensional views for geolocation, analysis, and (unfortunately) exploitation.  The convergence of this capability with the proliferation of personalized information signatures truly means that there is “Nowhere to Run, Nowhere to Hide.”  (Crank it up with Martha and the Vandellas!)

If you enjoyed this post, please also read the following blog posts addressing the weaponization of social media, the future of battlefield deception, and virtual warfare:

46. Integrated Sensors: The Critical Element in Future Complex Environment Warfare

(Editor’s Note: Mad Scientist Laboratory is pleased to present the following guest blog post by Dr. Richard Nabors, Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), addressing how the proliferation of sensors, integrated via the Internet of Battlefield Things [IoBT], will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces.)

As in preceding decades, that which can be found, if unprotected, can still be hit. By mid-Century, it will prove increasingly difficult to stay hidden. Most competitors can access space-based surveillance, networked multi-static radars, drones and swarms of drones in a wide variety, and a vast of array of passive and active sensors that are far cheaper to produce than to create technology to defeat them. Quantum computing and quantum sensing will open new levels of situational awareness. Passive sensing, especially when combined with artificial intelligence and big-data techniques may routinely outperform active sensors. These capabilities will be augmented by increasingly sophisticated civilian capabilities, where commercial imagery services, a robust and mature Internet of Things, and near unlimited processing power generate a battlespace that is more transparent than ever before.The Operational Environment and the Changing Character of Future Warfare

The complex operational environment of the next conflict cannot be predicted accurately. It has become a battlespace — jungle, forest, city, desert, arctic and cyber — where the enemy is already entrenched and knows the operational environment. Complex and congested environments level the field between the United States and its adversaries. The availability of integrated sensor networks and technologies will be a critical factor in piercing the complexity of these environments and determining what level of military superiority is enjoyed by any one side.

As Soldiers in complex operational situations are presented with significantly more information than in the past and in a broader variety; they have the need to quickly and decisively adapt to the changing situation, but often do not have the time to sort and judge the value of the information received.

Integrated sensor technologies will provide situational awareness by:

• Collecting and sorting real-time data and sending a fusion of information to the point of need by enhancing human vision,




Integrating with computers to detect and identify items of interest in real-time,

• Using augmented reality to overlay computer vision with human vision, and

Fusing data together from multiple sensor sources.

Networks of sensors integrated with autonomous systems will work autonomously to support local operations as well as converge and diverge as needed, accelerating human decision-making to the fastest rates possible and maximizing the U.S. military’s advantage.

Expected advances in Army sensing capabilities will directly address operational vulnerabilities in future environments, including intelligence, surveillance and reconnaissance (ISR) by a concealed enemy, and poor visibility and short lines of sight in urban environments. These sensors will provide local ISR by collecting, sorting, and fusing real-time data and sending it to the point of need, expanding the small units’ ability to sense the adversary, and providing an understanding of the operational environment that the adversary lacks.

There are several technical challenges that are being addressed in order to maintain and secure overmatch capabilities. These include:

Fusion of disparate sensors into a combined capability.

Tactical computing resources.

• Network connectivity and bandwidth.

• Sensor suitability for environmental observation.

• Reduced power requirements.

• Tailored, individual mechanisms through “sensored” Soldiers.

• Disguised unmanned systems to gather and communicate intelligence.

Future research will focus on automation that could track and react to a Soldier’s changing situation by tailoring the augmentation the Soldier receives and by coordinating across the unit. In long-term development, sensors on Soldiers and vehicles will provide real-time status and updates, optimizing individually tailored performance levels. Sensors will provide adaptive camouflage for the individual Soldier or platform in addition to reactive self-healing armor. The Army will be able to monitor the health of each Soldier in real-time and deploy portable autonomous medical treatment centers using sensor-equipped robots to treat injuries. Sensors will enhance detection through air-dispersible microsensors, as well as microdrones with image-processing capabilities.

Image credit: Alexander Kott

In complex environments, the gathering and fusion of information will lead to greater understanding. Integrated sensors, remote and near, manned and unmanned, can both save Soldiers’ lives and make them more lethal.

Read about how Russia is trying to increase its number of electro-optical satellites in the OE Watch November 2017 issue (page 17).

Listen to Modern War Institute‘s podcast where Retired Maj. Gen. David Fastabend and Mr. Ian Sullivan address Technology and the Future of Warfare.

Dr. Richard Nabors is Associate Director for Strategic Planning, US Army CERDEC Night Vision and Electronic Sensors Directorate.