64. Top Ten Takeaways from the Installations of the Future Conference

On 19-20 June 2018, the U.S. Army Training and Doctrine Command (TRADOC) Mad Scientist Initiative co-hosted the Installations of the Future Conference with the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)) and Georgia Tech Research Institute (GTRI).  Emerging technologies supporting the hyper-connectivity revolution will enable improved training capabilities, security, readiness support (e.g., holistic medical facilities and brain gyms), and quality of life programs at Army installations. Our concepts and emerging doctrine for multi-domain operations recognizes this as increasingly important by including Army installations in the Strategic Support Area. Installations of the Future will serve as mission command platforms to project virtual power and expertise as well as Army formations directly to the battlefield.

We have identified the following “Top 10” takeaways related to our future installations:

Source: Laserfishe

1. Threats and Tensions.Army Installations are no longer sanctuaries” — Mr. Richard G. Kidd IV, Deputy Assistant Secretary of the Army, Strategic Integration. There is a tension between openness and security that will need balancing to take advantage of smart technologies at our Army installations. The revolution in connected devices and the ability to virtually project power and expertise will increase the potential for adversaries to target our installations. Hyper-connectivity increases the attack surface for cyber-attacks and the access to publicly available information on our Soldiers and their families, making personalized warfare and the use of psychological attacks and deep fakes likely.

2. Exclusion vs. Inclusion. The role of and access to future Army installations depends on the balance between these two extremes. The connections between local communities and Army installations will increase potential threat vectors, but resilience might depend on expanding inclusion. Additionally, access to specialized expertise in robotics, autonomy, and information technologies will require increased connections with outside-the-gate academic institutions and industry.

Source: pcmag.com

3. Infrastructure Sensorization.  Increased sensorization of infrastructure runs the risk of driving efficiencies to the point of building in unforeseen risks. In the business world, these efficiencies are profit-driven, with clearer risks and rewards. Use of table top exercises can explore hidden risks and help Garrison Commanders to build resilient infrastructure and communities. Automation can cause cascading failures as people begin to fall “out of the loop.”

4. Army Modernization Challenge.  Installations of the Future is a microcosm of overarching Army Modernization challenges. We are simultaneously invested in legacy infrastructure that we need to upgrade, and making decisions to build new smart facilities. Striking an effective and efficient balance will start with public-private partnerships to capture the expertise that exists in our universities and in industry. The expertise needed to succeed in this modernization effort does not exist in the Army. There are significant opportunities for Army Installations to participate in ongoing consortiums like the “Middle Georgia” Smart City Community and the Global Cities Challenge to pilot innovations in spaces such as energy resilience.

5. Technology is outpacing regulations and policy. The sensorization and available edge analytics in our public space offers improved security but might be perceived as decreasing personal privacy. While we give up some personal privacy when we live and work on Army installations, this collection of data will require active engagement with our communities. We studied an ongoing Unmanned Aerial System (UAS) support concept to detect gunshot incidents in Louisville, KY, to determine the need to involve legislatures, local political leaders, communities, and multiple layers of law enforcement.

6. Synthetic Training Environment. The Installation of the Future offers the Army significant opportunities to divest itself of large brick and mortar training facilities and stove-piped, contractor support-intensive Training Aids, Devices, Simulations, and Simulators (TADSS).  MG Maria Gervais, Deputy Commanding General, Combined Arms Center – Training (DCG, CAC-T), presented the Army’s Synthetic Training Environment (STE), incorporating Virtual Reality (VR)“big box” open-architecture simulations using a One World Terrain database, and reduced infrastructure and contractor-support footprints to improve Learning and Training.  The STE, delivering high-fidelity simulations and the opportunity for our Soldiers and Leaders to exercise all Warfighting Functions across the full Operational Environment with greater repetitions at home station, will complement the Live Training Environment and enhance overall Army readiness.

Source: The Goldwater

7. Security Technologies. Many of the security-oriented technologies (autonomous drones, camera integration, facial recognition, edge analytics, and Artificial Intelligence) that triage and fuse information will also improve our deployed Intelligence, Surveillance, and Reconnaissance (ISR) capabilities. The Chinese lead the world in these technologies today.

Source: TechViz

8. Virtual Prototyping. The U.S. Army Engineer Research and Development Center (ERDC) is developing a computational testbed using virtual prototyping to determine the best investments for future Army installations. The four drivers in planning for Future Installations are:  1) Initial Maneuver Platform (Force Projection); 2) Resilient Installations working with their community partners; 3) Warfighter Readiness; and 4) Cost effectiveness in terms of efficiency and sustainability.

9. Standard Approach to Smart Installations. A common suite of tools is needed to integrate smart technologies onto installations. While Garrison Commanders need mission command to take advantage of the specific cultures of their installations and surrounding communities, the Army cannot afford to have installations going in different directions on modernization efforts. A method is needed to rapidly pilot prototypes and then determine whether and how to scale the technologies across Army installations.

10. “Low Hanging Fruit.” There are opportunities for Army Installations to lead their communities in tech integration. Partnerships in energy savings, waste management, and early 5G infrastructure provide the Army with early adopter opportunities for collaboration with local communities, states, and across the nation. We must educate contracting officers and Government consumers to look for and seize upon these opportunities.

Videos from each of the Installations of the Future Conference presentations are posted here. The associated slides will be posted here within the week on the Mad Scientist All Partners Access Network site.

If you enjoyed this post, check out the following:

• Watch Mr. Richard Kidd IV discuss Installations of the Future on Government Matters.

• Read Mad Scientist Ed Blayney’s takeaways from the Installations of the Future Conference in his article, entitled We need more Mad Scientists in our Smart Cities.

• See the TRADOC G-2 Operational Environment Enterprise’s:

–  The Changing Character of Future Warfare video.

–  Evolving Threats to Army Installations video.

• Review our Call for Ideas winning submissions Trusting Smart Cities: Risk Factors and Implications by Dr. Margaret Loper, and Day in the Life of a Garrison Commander by the team at AT&T Global Public Sector — both are graciously hosted by our colleagues at Small Wars Journal.

• Re-visit our following blog posts: Smart Cities and Installations of the Future: Challenges and Opportunities and Base in a Box.

63. Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward

[Editor’s Note:  We are pleased to present Mad Scientist Sam Bendett‘s informative guest blog post on the ramifications of current Russian Unmanned Ground Vehicle (UGV) trials in Syria for future autonomous combat systems on the battlefield.  Please note that many of Mr. Bendett’s embedded links in the post below are best accessed using non-DoD networks.]

Russia’s Forpost UAV (licensed copy of IAI Searcher II) in Khmeimim, Syria; Source: https://t.co/PcNgJ811O8

Russia, like many other nations, is investing in the development of various unmanned military systems. The Russian defense establishment sees such systems as mission multipliers, highlighting two major advantages: saving soldiers’ lives and making military missions more effective. In this context, Russian developments are similar to those taking place around the world. Various militaries are fielding unmanned systems for surveillance, intelligence, logistics, or attack missions to make their forces or campaigns more effective. In fact, the Russian military has been successfully using Unmanned Aerial Vehicles (UAVs) in training and combat since 2013. It has used them with great effect in Syria, where these UAVs flew more mission hours than manned aircraft in various Intelligence, Surveillance, and Reconnaissance (ISR) roles.

Russia is also busy designing and testing many unmanned maritime and ground vehicles for various missions with diverse payloads. To underscore the significance of this emerging technology for the nation’s armed forces, Russian Defense Minister Sergei Shoigu recently stated that the serial production of ground combat robots for the military “may start already this year.”

Uran-9 combat UGV at Victory Day 2018 Parade in Red Square; Source: independent.co.uk

But before we see swarms of ground combat robots with red stars emblazoned on them, the Russian military will put these weapons through rigorous testing in order to determine if they can correspond to battlefield realities. Russian military manufacturers and contractors are not that different from their American counterparts in sometimes talking up the capabilities of their creations, seeking to create the demand for their newest achievement before there is proof that such technology can stand up to harsh battlefield conditions. It is for this reason that the Russian Ministry of Defense (MOD) finally established several centers such as Main Research and Testing Center of Robotics, tasked with working alongside the defense-industrial sector to create unmanned military technology standards and better communicate warfighters’ needs.  The MOD is also running conferences such as the annual “Robotization of the Armed Forces” that bring together military and industry decision-makers for a better dialogue on the development, growth, and evolution of the nation’s unmanned military systems.

Uran-9 combat UGV; Source:  nationalinterest.org

This brings us to one of the more interesting developments in Russian UGVs. Then Russian Deputy Defense Minister Borisov recently confirmed that the Uran-9 combat UGV was tested in Syria, which would be the first time this much-discussed system was put into combat. This particular UGV is supposed to operate in teams of three or four and is armed with a 30mm cannon and 7.62 mm machine guns, along with a variety of other weapons.

Just as importantly, it was designed to operate at a distance of up to three kilometers (3000 meters or about two miles) from its operator — a range that could be extended up to six kilometers for a team of these UGVs. This range is absolutely crucial for these machines, which must be operated remotely. Russian designers are developing operational electronics capable of rendering the Uran-9 more autonomous, thereby moving the operators to a safer distance from actual combat engagement. The size of a small tank, the Uran-9 impressed the international military community when first unveiled and it was definitely designed to survive battlefield realities….

Uran-9; Source: Defence-Blog.com

However, just as “no plan survives first contact with the enemy,” the Uran-9, though built to withstand punishment, came up short in its first trial run in Syria. In a candid admission, Andrei P. Anisimov, Senior Research Officer at the 3rd Central Research Institute of the Ministry of Defense, reported on the Uran-9’s critical combat deficiencies during the 10th All-Russian Scientific Conference entitled “Actual Problems of Defense and Security,” held in April 2018. In particular, the following issues came to light during testing:

• Instead of its intended range of several kilometers, the Uran-9 could only be operated at distance of “300-500 meters among low-rise buildings,” wiping out up to nine-tenths of its total operational range.

• There were “17 cases of short-term (up to one minute) and two cases of long-term (up to 1.5 hours) loss of Uran-9 control” recorded, which rendered this UGV practically useless on the battlefield.

• The UGV’s running gear had problems – there were issues with supporting and guiding rollers, as well as suspension springs.

• The electro-optic stations allowed for reconnaissance and identification of potential targets at a range of no more than two kilometers.

• The OCH-4 optical system did not allow for adequate detection of adversary’s optical and targeting devices and created multiple interferences in the test range’s ground and airspace.

Uran-9 undergoing testing; Source: YouTube

• Unstable operation of the UGV’s 30mm automatic cannon was recorded, with firing delays and failures. Moreover, the UGV could fire only when stationary, which basically wiped out its very purpose of combat “vehicle.”

• The Uran-9’s combat, ISR, and targeting weapons and mechanisms were also not stabilized.

On one hand, these many failures are a sign that this much–discussed and much-advertised machine is in need of significant upgrades, testing, and perhaps even a redesign before it gets put into another combat situation. The Russian military did say that it tested nearly 200 types of weapons in Syria, so putting the Uran-9 through its combat paces was a logical step in the long development of this particular UGV. If the Syrian trial was the first of its kind for this UGV, such significant technical glitches would not be surprising.

However, the MOD has been testing this Uran-9 for a while now, showing videos of this machine at a testing range, presumably in Russia. The truly unexpected issue arising during operations in Syria had to do with the failure of the Uran-9 to effectively engage targets with its cannon while in motion (along with a number of other issues). Still, perhaps many observers bought into the idea that this vehicle would perform as built – tracks, weapons, and all. A closer examination of the publicly-released testing video probably foretold some of the Syrian glitches – in this particular one, Uran-9 is shown firing its machine guns while moving, but its cannon was fired only when the vehicle was stationary. Another interesting aspect that is significant in hindsight is that the testing range in the video was a relatively open space – a large field with a few obstacles around, not the kind of complex terrain, dense urban environment encountered in Syria. While today’s and future battlefields will range greatly from open spaces to megacities, a vehicle like the Uran-9 would probably be expected to perform in all conditions. Unless, of course, Syrian tests would effectively limit its use in future combat.

Russian Soratnik UGV

On another hand, so many failures at once point to much larger issues with the Russian development of combat UGVs, issues that Anisimov also discussed during his presentation. He highlighted the following technological aspects that are ubiquitous worldwide at this point in the global development of similar unmanned systems:

• Low level of current UGV autonomy;

• Low level of automation of command and control processes of UGV management, including repairs and maintenance;

• Low communication range, and;

• Problems associated with “friend or foe” target identification.

Judging from the Uran-9’s Syrian test, Anisimov made the following key conclusions which point to the potential trajectory of Russian combat UGV development – assuming that other unmanned systems may have similar issues when placed in a simulated (or real) combat environment:

• These types of UGVs are equipped with a variety of cameras and sensors — and since the operator is presumably located a safe distance from combat, he may have problems understanding, processing, and effectively responding to what is taking place with this UGV in real-time.

• For the next 10-15 years, unmanned military systems will be unable to effectively take part in combat, with Russians proposing to use them in storming stationary and well-defended targets (effectively giving such combat UGVs a kamikaze role).

• One-time and preferably stationary use of these UGVs would be more effective, with maintenance and repair crews close by.

• These UGVs should be used with other military formations in order to target and destroy fortified and firing enemy positions — but never on their own, since their breakdown would negatively impact the military mission.

The presentation proposed that some of the above-mentioned problems could be overcome by domestic developments in the following UGV technology and equipment areas:

• Creating secure communication channels;

• Building miniaturized hi-tech navigation systems with a high degree of autonomy, capable of operating with a loss of satellite navigation systems;

• Developing miniaturized and effective ISR components;

• Integrating automated command and control systems, and;

• Better optics, electronics and data processing systems.

According to Anisimov’s report, the overall Russian UGV and unmanned military systems development arch is similar to the one proposed by the United States Army Capabilities Integration Center (ARCIC):  the gradual development of systems capable of more autonomy on the battlefield, leading to “smart” robots capable of forming “mobile networks” and operating in swarm configurations. Such systems should be “multifunctional” and capable of being integrated into existing armed forces formations for various combat missions, as well as operate autonomously when needed. Finally, each military robot should be able to function within existing and future military technology and systems.

Source: rusmilitary.wordpress.com

Such a candid review and critique of the Uran-9 in Syria, if true, may point to the Russian Ministry of Defense’s attitude towards its domestic manufacturers. The potential combat effectiveness of this UGV was advertised for the past two years, but its actual performance fell far short of expectations. It is a sign for developers of other Russian unmanned ground vehicles – like Soratnik, Vihr, and Nerehta — since it displays full range of deficiencies that take place outside of well-managed testing ranges where such vehicles are currently undergoing evaluation. It also brought to light significant problems with ISR equipment — this type of technology is absolutely crucial to any unmanned system’s successful deployment, and its failures during Uran-9 tests exposed a serious combat weakness.

It is also a useful lesson for many other designers of domestic combat UGVs who are seeking to introduce similar systems into existing order of battle. It appears that the Uran-9’s full effectiveness can only be determined at a much later time if it can perform its mission autonomously in the rapidly-changing and complex battlefield environment. Fully autonomous operation so far eludes its Russian developers, who are nonetheless still working towards achieving such operational goals for their combat UGVs. Moreover, Russian deliberations on using their existing combat UGV platforms in one-time attack mode against fortified adversary positions or firing points, tracking closely with ways that Western military analysts are thinking that such weapons could be used in combat.

Source: Nikolai Novichkov / Orbis Defense

The Uran-9 is still a test bed and much has to take place before it could be successfully integrated into current Russian concept of operations. We could expect more eye-opening “lessons learned” from its’ and other UGVs potential deployment in combat. Given the rapid proliferation of unmanned and autonomous technology, we are already in the midst of a new arms race. Many states are now designing, building, exporting, or importing various technologies for their military and security forces.

To make matters more interesting, the Russians have been public with both their statements about new technology being tested and evaluated, and with possible use of such weapons in current and future conflicts. There should be no strategic or tactical surprise when military robotics are finally encountered in future combat.

Source: Block13
by djahal; Deviantart.com

Samuel Bendett is a Research Analyst at the CNA Corporation and a Russia Studies Fellow at the American Foreign Policy Council. He is an official Mad Scientist, having presented and been so proclaimed at a previous Mad Scientist Conference.  The views expressed here are his own.

62. Installations of the Future

Mad Scientist Laboratory is pleased to announce that Headquarters, U.S. Army Training and Doctrine Command (TRADOC) is co-sponsoring the Mad Scientist Installations of the Future Conference this week (Tuesday and Wednesday, 19-20 June 2018) with the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)) and Georgia Tech Research Institute (GTRI) at GTRI in Atlanta, Georgia.

Plan now to join us virtually as leading scientists, innovators, and scholars from academia, industry, and government gather to discuss:

1) Current and emerging threat vectors facing installations,

2) “Smart city” opportunities born of technology,

3) Logistics and power projection, and

4) Quality of life.

Presentations will be driven by the following research questions:

1) What are the emerging threat vectors capable of targeting installations and what are the implications to the multi-domain fight?

2) How will mission command and the concept of virtual power be enhanced by smart installations?

3) How will other trends such as localized manufacturing, augmented/virtual reality, and artificial intelligence change how Soldiers will train, sustain, and project power from smart installations?

4) What are the big impact quality of life improvements available through smart technologies?

Get ready…

– Review the conference agenda’s list of presentations and the associated world-class speakers’ biographies here.

– Read our Call for Ideas finalists’ submissions here, graciously hosted by our colleagues at Small Wars Journal.

– Read our following blog posts:  Smart Cities and Installations of the Future: Challenges and Opportunities  and Base in a Box.

and Go!

Join us at the conference on-line here via live-streaming audio and video (with interactive chat function), beginning at 0830 EDT on 19 June 2018.

See you all there!

61. Base in a Box

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the following guest blog post by Mr. Lewis Jones. Originally a “Letter Home” submission to the Call for Ideas associated with the Mad Scientist Installations of the Future Conference (see more information about this event at the end of this post), we hope that you will enjoy Mr. Jones’ vision of a mid-Twenty First Century forward deployed base.]

Hey Dad, guess who got new PCS orders!  From March 2042 I’ll be assigned to Joint Base Harris in Japan.  You spent your early career in Japan, right?  I’ll never forget your stories about Camp Zama, a sprawling installation housing hundreds of soldiers and civilians. I  used to love hearing about the 2020s, when enemy sensors, drones, and artificial intelligence first wreaked havoc on operations there.

Source: John Lamb/The Image Bank/Getty Images

Remember the Garrison commander whose face was 3D-scanned by a rigged vending machine near the gate? The enemy released that humiliating video right before a major bilateral operation. By the time we proved it was fake, our partners had already withdrawn.




What about the incident at the intel battalion’s favorite TDY hotel with a pool-side storage safe? Soldiers went swimming and tossed their wallets into the safe, unaware that an embedded scanner would clone their SIPR tokens. To make matters worse, the soldiers secured the safe with a four digit code… using the same numbers as their token PIN.

Source: CNN
Oh, and remember the Prankenstein A.I. attack? It scanned social media to identify Army personnel living off-base, then called local law enforcement with fake complaints. The computer-generated voice was very convincing, even giving physical descriptions based on soldier’s actual photos. You said that one soured host-nation relations for years!

Or the drones that hovered over Camp Zama, broadcasting fake Wi-Fi hotspots. The enemy scooped up so much intelligence and — ah, you get the picture. Overseas bases were so vulnerable back then.


Well, the S1 sent me a virtual tour and the new base is completely different. When U.S. Forces Japan rebuilt its installations, those wide open bases were replaced by miniature, self-contained fortresses. Joint Base Harris, for example, was built inside a refurbished shopping mall: an entire installation, compressed into a single building!

Source: The Cinephile Gardener

Here’s what I saw on my virtual tour:

  • Source: Gizmodo UK

      The roof has solar panels and battery banks for independent power. There’s also an enormous greenhouse, launch pads for drones and helos, and a running trail.

 

  The ground level contains a water plant that extracts and purifies groundwater, along with indoor hydroponic farms. Special filtration units scrub the air; they’re even rated against CBRN threats.

  • Source: tandemnsi.com

      What was once a multi-floor parking garage is now a motor pool, firing range, and fitness complex. The gym walls are smart-screens, so you can work out in a different environment every day.

 

  Communications are encrypted and routed through a satellite uplink. The base even has its own cellphone tower. Special mesh in the walls prevent anybody outside from eavesdropping on emissions— the entire base is a SCIF.

Source: fortune.com

  The mall’s shops and food court were replaced by all the features and functions of a normal base: nearly 2,000 Army, Air and Cyber Force troops living, working, and training inside. They even have a kitchen-bot in the chow hall that can produce seven custom meals per minute!

 

  Supposedly, the base extends several floors underground, but the tour didn’t show that. I guess that’s where the really secret stuff happens.

Source: Gizmodo Australia

By the way, don’t worry about me feeling cooped up:  Soldiers are assigned top-notch VR specs during in-processing.  During the duty day, they’re only for training simulations. Once you’re off, personal use is authorized. I’ll be able to play virtual games, take virtual tours… MWR even lets you link with telepresence robots to “visit” family back home.

The sealed, self-contained footprint of this new base is far easier to defend in today’s high-tech threat environment. Some guys complain about being stuck inside, but you know what I think? If Navy sailors can spend months at sea in self-contained bases, then there’s no reason the Army can’t do the same on land!

Love,
Your Daughter

 

If you were intrigued by this vision of a future Army installation, please plan on joining us virtually at the Mad Scientist Installations of the Future Conference, co-sponsored by the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)); Georgia Tech Research Institute (GTRI); and Headquarters, U.S. Army Training and Doctrine Command (TRADOC),  at GTRI in Atlanta, Georgia, on 19-20 June 2018.  Click here to learn more about the conference and then participate in the live-streamed proceedings, starting at 0830 EDT on 19 June 2018.

Lewis Jones is an Army civilian with nearly 15 years of experience in the Indo-Pacific region. In addition to his Japanese and Chinese language studies, he has earned a Masters in Diplomacy and International Conflict Management from Norwich University. He has worked as a headhunter for multinational investment banks in Tokyo, as a business intelligence analyst for a DOD contractor, and has supported the Army with cybersecurity program management and contract administration. Lewis writes about geopolitics, international relations, U.S. national security, and the effects of rapid advances in technology.

60. Mission Engineering and Prototype Warfare: Operationalizing Technology Faster to Stay Ahead of the Threat

[Editor’s Note: Mad Scientist is pleased to present the following post by a team of guest bloggers from The Strategic Cohort at the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). Their post lays out a clear and cogent approach to Army modernization, in keeping with the Chief of Staff of the Army GEN Mark A. Milley’s and Secretary of the Army Mark T. Esper’s guidance “to focus the Army’s efforts on delivering the weapons, combat vehicles, sustainment systems, and equipment that Soldiers need when they need it” and making “our Soldiers more effective and our units less logistically dependent.” — The Army Vision,  06 June 2018 ]

 

 

“Success no longer goes to the country that develops a new fighting technology first, but rather to the one that better integrates it and adapts its way of fighting….” The National Defense Strategy (2018).

 

 

Executive Summary
While Futures Command and legislative changes streamline acquisition bureaucracy, the Army will still struggle to keep pace with the global commercial technology marketplace as well as innovate ahead of adversaries who are also innovating.

Chinese Lijian Sharp Sword Unmanned Combat Air Vehicle (UCAV) — Source: U.S. Naval Institute (USNI) News

Reverse engineering and technology theft make it possible for adversaries to inexpensively copy DoD-specific technology “widgets,” potentially resulting in a “negative return” on investment of DoD research dollars. Our adversaries’ pace of innovation further compounds our challenge. Thus the Army must not only equip the force to confront what is expected,

Northrop Grumman X-47B UCAV — Source: USNI News

but equip the force to confront an adaptable enemy in a wide variety of environments. This paper proposes a framework that will enable identification of strategically relevant problems and provide solutions to those problems at the speed of relevance and invert the cost asymmetry.

To increase the rate of innovation, the future Army must learn to continually assimilate, produce, and operationalize technologies much faster than our adversaries to gain time-domain overmatch. The overarching goal is to create an environment that our adversaries cannot duplicate: integration of advanced technologies with skilled Soldiers and well-trained teams. The confluence of two high level concepts — the Office of the Secretary of Defense’s Mission Engineering and Robert Leonard’s Prototype Warfare (see his Principles of Warfare for the Information Age book) — pave the way to increasing the rate of innovation by operationalizing technology faster to stay ahead of the threat, while simultaneously reducing the cost of technology overmatch.

Mission Engineering
OSD’s Mission Engineering concept, proposed by Dr. Robert Gold, calls for acquisitions to treat the end-to-end mission as the system to optimize, in which individual systems are components. Further, the concept utilizes an assessment framework to measure progress towards mission accomplishment through test and evaluation in the mission context. In fact, all actions throughout the capability development cycle must tie back to the mission context through the assessment framework. It goes beyond just sharing data to consider functions and the strategy for trades, tools, cross-cutting functions, and other aspects of developing a system or system of systems.

Consider the example mission objective of an airfield seizure. Traditional thinking and methods would identify an immediate needed capability for two identical air droppable vehicles, therefore starting with a highly constrained platform engineering solution. Mission Engineering would instead start by asking: what is the best way to seize an airfield? What mix of capabilities are required to do so? What mix of vehicles (e.g.,  Soldiers, exoskeletons, robots, etc.) might you need within space and weight constraints of the delivery aircraft? What should the individual performance requirements be for each piece of equipment?

Mission Engineering breaks down cultural and technical “domain stovepipes” by optimizing for the mission instead of a ground, aviation, or cyber specific solution. There is huge innovation space between the conventional domain seams.

Source: www.defenceimages.mod.uk

For example, ground vehicle concepts would be able to explore looking more like motherships deploying exoskeletons, drone swarms, or other ideas that have not been identified or presented because they have no clear home in a particular domain. It warrants stating twice that there are a series of mission optimized solutions that have not been identified or presented because they have no clear home in the current construct. Focusing the enterprise on the mission context of the problem set will enable solutions development that is relevant and timely while also connecting a network of innovators who each only have a piece of the whole picture.

Prototype Warfare

Prototype Warfare represents a paradigm shift from fielding large fleets of common-one-size-fits-all systems to rapidly fielding small quantities of tailored systems. Tailored systems focus on specific functions, specific geographic areas, or even specific fights and are inexpensively produced and possibly disposable.

MRZR with a tethered Hoverfly quadcopter unmanned aircraft system — Source: DefenseNews / Jen Judson

For example, vehicle needs are different for urban, desert, and mountain terrains. A single system is unlikely to excel across those three terrains without employing exotic and expensive materials and technology (becoming expensive and exquisite). They could comprise the entire force or just do specific missions, such as Hobart’s Funnies during the D-Day landings.

A further advantage of tailored systems is that they will force the enemy to deal with a variety of unknown U.S. assets, perhaps seen for the first time. A tank platoon might have a heterogeneous mix of assets with different weapons and armor. Since protection and lethality will be unknown to the enemy, it will be asymmetrically challenging for them to develop in a timely fashion tactics, techniques, and procedures or materiel to effectively counter such new capabilities.

Potential Enablers
Key technological advances present the opportunity to implement the Mission Engineering and Prototype Warfare concepts. Early Synthetic Prototyping (ESP), rapid manufacturing, and the burgeoning field of artificial intelligence (AI) provide ways to achieve these concepts. Each on its own would present significant opportunities. ESP, AI, and rapid manufacturing, when applied within the Mission Engineering/Prototype Warfare framework, create the potential for an innovation revolution.

Under development by the Army Capabilities Integration Center (ARCIC) and U.S. Army Research, Development, and Engineering Command (RDECOM), ESP is a physics-based persistent game network that allows Soldiers and engineers to collaborate on exploration of the materiel, force structure, and tactics trade space. ESP will generate 12 million hours of digital battlefield data per year.

Beyond the ESP engine itself, the Army still needs to invest in cutting edge research in machine learning and big data techniques needed to derive useful data on tactics and technical performance from the data. Understanding human intent and behaviors is difficult work for current computers, but the payoff is truly disruptive. Also, as robotic systems become more prominent on the battlefield, the country with the best AI to control them will have a great advantage. The best AI depends on having the most training, experimental, and digitally generated data. The Army is also acutely aware of the challenges involved in testing and system safety for AI enabled systems; understanding what these systems are intended to do in a mission context fosters debate on the subject within an agreed upon problem space and associated assessment framework.

Finally, to achieve the vision, the Army needs to invest in technology that allows rapid problem identification, engineering, and fielding of tailored systems. For over two decades, the Army has touted modularity to achieve system tailoring and flexibility. However, any time something is modularized, it adds some sort of interface burden or complexity. A specific-built system will always outperform a modular system. Research efforts are needed to understand the trade-offs of custom production versus modularity. The DoD also needs to strategically grow investment in new manufacturing technologies (to include 3D printing) and open architectures with industry.

Associated Implications
New challenges are created when there is a hugely varied fleet of tailored systems, especially for logistics, training, and maintenance. One key is to develop a well-tracked digital manufacturing database of replacement parts. For maintenance, new technologies such as augmented reality might be used to show mechanics who have never seen a system how to rapidly diagnose and make repairs.

Source: Military Embedded Systems

New Soldier interfaces for platforms should also be developed that are standardized/simplified so it is intuitive for a soldier to operate different systems in the same way it is intuitive to operate an iPhone/iPad/Mac to reduce and possibly eliminate the need for system specific training. For example, imagine a future soldier gets into a vehicle and inserts his or her common access card. A driving display populates with the Soldier’s custom widgets, similar to a smartphone display. The displays might also help soldiers understand vehicle performance envelopes. For example, a line might be displayed over the terrain showing how sharp a soldier might turn without a rollover.

Conclusion
The globalization of technology allows anyone with money to purchase “bleeding-edge,” militarizable commercial technology. This changes the way we think about the ability to generate combat power to compete internationally from the physical domain, to the time domain. Through the proposed mission engineering and prototype warfare framework, the Army can assimilate and operationalize technology quicker to create an ongoing time-domain overmatch and invert the current cost asymmetry which is adversely affecting the public’s will to fight. Placing human thought and other resources towards finding new ways to understand mission context and field new solutions will provide capability at the speed of relevance and help reduce operational surprise through a better understanding of what is possible.

Source: Defence Science and Technology Laboratory / Gov.UK

If you enjoyed this post, join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live today — watch the associated video here and join the discussion here!

This article was written by Dr. Rob Smith, Senior Research Scientist; Mr. Shaheen Shidfar, Strategic Cohort Lead; Mr. James Parker, Associate Director; Mr. Matthew A. Horning, Mission Engineer; and Mr. Thomas Vern, Associate Director. Collectively, these gentlemen are a subset of The Strategic Cohort, a multi-disciplinary independent group of volunteers located at TARDEC that study the Army’s Operating Concept Framework to understand how we must change to survive and thrive in the future operating environment. The Strategic Cohort analyzes these concepts and other reference materials, then engages in disciplined debate to provide recommendations to improve TARDEC’s alignment with future concepts, educate our workforce, and create dialogue with the concept developers providing a feedback loop for new ideas.

Further Reading:

Gold, Robert. “Mission Engineering.” 19th Annual NDIA Systems Engineering Conference, Oct. 26, 2016, Springfield, VA. Presentation.

Leonard, Robert R. The Principles of War for the Information Age, Presidio Press (2000).

Martin, A., & FitzGerald, B. “Process Over Platforms.” Center for a New American Security, Dec. 13, 2013.

FitzGerald, B., Sander, A. & Parziale, J. “Future Foundry A New Strategic Approach to Military-Technical Advantage.” Center for a New American Security, Dec. 14, 2016.

Kozloski, Robert. “The Path to Prototype Warfare.” War on the Rocks, 17 July 2017.

Hammes, T.X. “The Future of Warfare: Small, Many, Smart vs. Few & Exquisite?” War on the Rocks, 7 Aug. 2015.

Smith, Robert E. “Tactical Utility of Tailored Systems.” Military Review (2016).

Smith, Robert E. and Vogt, Brian. “Early Synthetic Prototyping Digital Warfighting For Systems Engineering.” Journal of Cyber Security and Information Systems 5.4 (2017).