175. “I Know the Sound it Makes When It Lies” AI-Powered Tech to Improve Engagement in the Human Domain

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish today’s post by guest bloggers LTC Arnel P. David, LTC (Ret) Patrick James Christian, PhD, and Dr. Aleksandra Nesic, who use storytelling to illustrate how the convergence of Artificial Intelligence (AI), cloud computing, big data, augmented and enhanced reality, and deception detection algorithms could complement decision-making in future specialized engagements.  Enjoy this first in a series of three posts exploring how game changing tech will enhance operations in the Human Domain!]

RAF A400 Atlas / Source:  Flickr, UK MoD, by Andrew Linnett

It is 2028. Lt Col Archie Burton steps off the British A400-M Atlas plane onto the hard pan desert runway of Banku Airfield, Nigeria. This is his third visit to Nigeria, but this time he is the commander of the Engagement Operations Group – Bravo (EOG-B). This group of bespoke, specialized capabilities is the British Army’s agile and highly-trained force for specialized engagement. It operates amongst the people and builds indigenous mass with host nation security forces. Members of this outfit operate in civilian clothes and speak multiple languages with academic degrees ranging from anthropology to computational science.

Source:  Flickr, Com Salud

Archie donned his Viz glasses on the drive to a meeting with local leadership of the town of Banku. Speaking to his AI assistant, “Jarvis,” Archie cycles through past engagement data to prep for the meeting and learn the latest about the local town and its leaders. Jarvis is connected to a cloud-computing environment, referred to as “HDM” for “Human Doman Matrix,” where scientifically collected and curated population data is stored, maintained, and integrated with a host of applications to support operations in the human domain in both training and deployed settings.

Several private organizations that utilize integrated interdisciplinary social science have helped NATO, the U.K. MoD, and the U.S. DoD develop CGI-enabled virtual reality experiences to accelerate learning for operators who work in challenging conflict settings laden with complex psycho-social and emotional dynamics that drive the behaviour and interactions of the populations on the ground. Together with NGOs and civil society groups, they collected ethnographic data and combined it with phenomenological qualitative inquiry using psychology and sociology to curate anthropological stories that reflect specific cultural audiences.

EOG-Bravo’s mission letter from Field Army Headquarters states that they must leverage the extensive and complex human network dynamic to aid in the recovery of 11 females kidnapped by the Islamic Revolutionary Brotherhood (IRB) terrorist group. Two of the females are British citizens, who were supporting a humanitarian mission with the ‘Save the Kids’ NGO prior to being abducted.

At the meeting in Banku, the mayor, police chief, and representative from Save the Kids were present. Archie was welcomed by handshakes and hugs by the police chief who was a former student at Sandhurst and knows Archie from past deployments. The discussion leaped immediately into the kidnapping situation.

The girls were last seen transiting a jungle area North of Oyero. Our organization is in contact by email with one of the IRB facilitators. He is asking for £2 million and we are ready to make that payment,” said Simon Moore of Save the Kids.

Archie’s Viz glasses scanned the facial expressions of those present and Jarvis cautioned him regarding the behaviour of the police chief whose micro facial expressions and eyes revealed a biological response of excitement at the mention of the £2M.

Archie asks “Chief Adesola, what do you think? Should we facilitate payment?

Hmmm, I’m not sure. We don’t know what the IRB will do. We should definitely consider it though,” said Police Chief Adesola.

The Viz glasses continued to feed the facial expressions into HDM, where the recurrent AI neural network recognition algorithm, HOMINID-AI, detected a lie. The AI system and human analysts at the Land Information Manoeuvre Centre (LIMOC) back in the U.K. estimate with a high-level of confidence that Chief Adesola was lying.

At the LIMOC, a 24-hour operation under 77th Brigade, Sgt Richards, determines that the Police Chief is worthy of surveillance by EOG-Alpha, Archie’s sister battlegroup. EOG-Alpha informs local teams in Lagos to deploy unmanned ground sensors and collection assets to monitor the police chief.

Small teams of 3-4 soldiers depart from Lagos in the middle of the night to link up with host nation counterparts. Together, the team of operators and Nigerian national-level security forces deploy sensors to monitor the police chief’s movements and conversations around his office and home.

The next morning, Chief Adesola is picked up by a sensor meeting with an unknown associate. The sensor scanned this associate and the LIMOC processed an immediate hit — he was a leader of the IRB; number three in their chain of command. EOG-A’s operational element is alerted and ordered to work with local security forces to detain this terrorist leader.  Intelligence collected from him and the Chief will hopefully lead them to the missing females…

If you enjoyed this post, stay tuned for Part 2 on the Human Domain Matrix, Part 3 on Emotional Warfare in Yemen, and check out the following links to other works by today’s blog post authors:

Operationalizing the Science of the Human Domain by Aleks Nesic and Arnel P. David

A Psycho-Emotional Human Security Analytical Framework by Patrick J. Christian, Aleksandra Nesic, David Sniffen, Tasneem Aljehani, Khaled Al Sumairi, Narayan B. Khadka, Basimah Hallawy, and Binamin Konlan

Military Strategy in the 21st Century:  People, Connectivity, and Competition by Charles T. Cleveland, Benjamin Jensen, Susan Bryant, and Arnel P. David

… and see the following MadSci Lab blog posts on how AI can augment our Leaders’ decision-making on the battlefield:

Takeaways Learned about the Future of the AI Battlefield

The Guy Behind the Guy: AI as the Indispensable Marshal, by Mr. Brady Moore and Mr. Chris Sauceda

LTC Arnel P. David is an Army Strategist serving in the United Kingdom as the U.S. Special Assistant for the Chief of the General Staff. He recently completed an Artificial Intelligence Program from the Saïd Business School at the University of Oxford.

LTC (Ret) Patrick James Christian, PhD is co-founder of Valka-Mir and a Psychoanalytical Anthropologist focused on the psychopathology of violent ethnic and cultural conflict. He a retired Special Forces officer serving as a social scientist for the Psychological Operations Task Forces in the Arabian Peninsula and Afghanistan, where he constructs psychological profiles of designated target audiences.

Aleksandra Nesic, PhD is co-founder of Valka-Mir and Visiting Faculty for the Countering Violent Extremism and Countering Terrorism Fellowship Program at the Joint Special Operations University (JSOU), USSOCOM. She is also Visiting Faculty, U.S. Army JFK Special Warfare Center and School, and a Co-Founder and Senior Researcher of Complex Communal Conflicts at Valka-Mir Human Security, LLC.

Acknowledgements:  Special Thanks to the British Army Future Force Development Team for their help in creating the British characters depicted in this first story.

Disclaimer:  The views expressed in this blog post do not necessarily reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).

 

 

174. A New Age of Terror: The Future of CBRN Terrorism

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish today’s post by guest blogger Zachary Kallenborn.  In the first of a series of posts, Mr. Kallenborn addresses how the convergence of emerging technologies is eroding barriers to terrorist organizations acquiring the requisite equipment, materiel, and expertise to develop and deliver chemical, biological, radiological, and nuclear (CBRN) agents in an attack.  Learn about the challenges that (thankfully) remain and the ramifications for the operational environment.  (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

Unidentified drones spotted over the Thayer Monument at West Point.

On the evening of July 15, 2034, 264 West Point cadets reported to the hospital with a severe, but unknown illness. West Point Military Police (MP) investigated the incident and discovered video footage of two men launching several autonomous drones from a pickup truck near the base, then driving off. A suspicious fire the same night at a local apartment complex revealed remnants of 3D printers and synthetic biology kits. The investigation remains ongoing…

 

Such a scenario is fantasy, but increasingly plausible.

Various emerging technologies reduce the barriers to chemical, biological, radiological, and nuclear (CBRN) terrorism — bioterrorism in particular. The convergence of these technologies used may allow terrorists to acquire CBRN weapons with minimal identifiable signatures. Although these technologies exist today, their sophistication, availability, and terrorist interest in their use is likely to grow over the coming decades. For example, the first powered model airplane was flown in 1937; however, terrorists did not attempt to use drones until 1994.1  Thankfully, major challenges will still inhibit truly catastrophic CBRN terror.

Acquisition

Kasumigaseki Station, one of the many stations affected during the Tokyo subway sarin attack by Aum Shinrikyo / Source:  Wikimedia Commons

CBRN weapon acquisition is a difficult task for terrorist organizations. Terrorists must acquire significant specialized equipment, materiel, expertise, and the organizational capabilities to support the acquisition of such weapons and a physical location to assemble them. Even supposed successes like Aum Shinrikyo’s attack on the Tokyo subway were not nearly as impactful as they could have been. Aum’s biological weapons program was also a notable failure. In one instance, a member of the cult fell into a vat of clostridium botulinum (the bacteria that produces the botulinum toxin) and emerged unharmed.2  As a result, only 1-2% of terrorist organizations pursue or use CBRN weapons.3  But these barriers are eroding.

3D printing may ease the acquisition of some equipment and materiel. 3D printers can be used to create equipment components at reduced cost and have been used to create bioreactors, microscopes, and others key elements.4  Bioprinters can also create tissue samples to test weapons agents.5  The digital build-files for 3D printed items can also be sent and received online, perhaps from black market sellers or individuals sympathetic to the terrorist’s ideology.6

Synthetic biology offers improved access to biological weapons agents, especially to otherwise highly controlled agents. Synthetic biology can be used to create new or modify existing organisms.7 According to the World Health Organization, synthetic biology techniques could plausibly allow recreation of the variola virus (smallpox).8  That is especially significant because the virus only exists in two highly secure laboratories.9

Delivery

Delivery of a CBRN agent can also be a challenge. CBRN agents useful for mass casualty attacks rely on the air to carry the agent to an adversary (nuclear weapons are an obvious exception, but the likelihood of a terrorist organization acquiring a nuclear weapon is extremely low). Poor wind conditions, physical barriers, rain, and other environmental conditions can inhibit delivery. Biological weapons also require spray systems that can create droplets of an appropriate size, so that the agent is light enough to float in the air, but heavy enough to enter the lungs (approximately 1-10 microns).

Drones also make CBRN agent delivery easier. Drones offer terrorists access to the air. Terrorists can use them to fly over physical barriers, such as fencing or walls to carry out an attack. Drones also give terrorists more control over where they launch an attack: they can choose a well-defended position or one proximate to an escape route. Although small drone payload sizes limit the amount of agent that can be delivered, terrorists can acquire multiple drones.

Advances in drone autonomy allow terrorists to control more drones at once.10  Autonomy also allows terrorists to launch more complex attacks, perhaps directing autonomous drones to multiple targets or follow a path through multiple, well-populated areas. Greater autonomy also reduces the risks to the terrorists, because they can flee more readily from the area.

3D printing can also help with CBRN agent delivery. Spray-tanks and nozzles subject to export controls can be 3D printed.11  3D printers can also be used to make drones.12  3D printers also provide customizability to adapt these systems for CBRN agent delivery.

Remaining Challenges

CBRN weapons acquisition also requires significant technical expertise. Terrorist organizations must correctly perform complex scientific procedures, know which procedures to use, know which equipment and materials are needed, and operate the equipment. They must do all of that without harming themselves or others (harming innocents may not seem like a concern for an organization intent on mass harm; however, it would risk exposure of the larger plot.) Much of this knowledge is tacit, meaning that it is based on experience and cannot be easily transferred to other individuals.

Emerging technologies do not drastically reduce this barrier, though experts disagree. For example, genome-synthesis requires significant tacit knowledge that terrorists cannot easily acquire without relevant experience.13  Likewise, 3D printers are unlikely to spit out a completely assembled piece of equipment. Rather, 3D printers may provide parts that need to be assembled into a final result. However, some experts argue that as technologies become more ubiquitous, they will be commercialized and made easier to use.14  While this technology is likely to become more accessible, physical limitations will place an upper bound on how accessible it can become.

The Future Operational Environment

If CBRN terrorism is becoming easier, U.S. forces can be expected to be at greater risk of CBRN attack and face more frequent attacks. An attack with infectious biological weapons from afar would not likely be discovered until well after the attack took place. Although still quite unlikely, a major biological attack could cause massive harm. Timed correctly, a CBRN terror attack could delay deployment of troops to a combat zone, inhibit launch of close-air support assets, or harm morale by delaying delivery of delicious pizza MREs.15  Off the battlefield, troops may have less access to protective gear and be at greater risk of harm. Even a poorly made agent can harm military operations: quarantines must still be established and operations limited until the risk is neutralized or at least determined to be non-harmful.

However, counter-intuitively, terrorist demand for CBRN weapons may actually decrease, because emerging technologies also offer easier pathways to mass casualties. These risks will be explored in the next article in this series.

If you enjoyed this post, please read:

The Democratization of Dual Use Technology

Dead Deer, and Mad Cows, and Humans (?) … Oh My! by proclaimed Mad Scientists LtCol Jennifer Snow and Dr. James Giordano, and returning guest blogger Joseph DeFranco

– Mad Scientist Bio Convergence and Soldier 2050 Conference blog post and Final Report

Emergent Threat Posed by Super-Empowered Individuals

Zachary Kallenborn is a freelance researcher and analyst, specializing in Chemical, Biological, Radiological, and Nuclear (CBRN) weapons, CBRN terrorism, drone swarms, and emerging technologies writ large. His research has appeared in the Nonproliferation Review, Studies in Conflict and Terrorism, Defense One, the Modern War Institute at West Point, and other outlets. His most recent study, Swarming Destruction: Drone Swarms and CBRN Weapons, examines the threats and opportunities of drone swarms for the full scope of CBRN weapons.

Disclaimer:  The views expressed in this blog post do not necessarily reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).


1 Walter A. Good, “The AMA History Project Presents Autobiography of Dr. Walter (Walt) A. Good,” Academy of Model Aeronautics, August 2009, https://www.modelaircraft.org/sites/default/files/files/GoodDrWalterAWalt.pdf; Robert J. Bunker, “Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications,” United States Army War College Press, August 2015.

2 Richard Danzig et al., Aum Shinrikyo: Insights Into How Terrorists Develop Biological and Chemical Weapons, 2nd ed. (December 2012), https://s3.amazonaws.com/files.cnas.org/documents/CNAS_AumShinrikyo_SecondEdition_English.pdf (accessed 6 June 2017).

3 Gary Ackerman, Jonathan Wilkenfeld, R. Karl Rethemeyer, and Victor Asal, “Terrorist Groups and Weapons of Mass Destruction,” National Consortium for the Study of Terrorism and Responses to Terrorism, (START), https://www.start.umd.edu/research-projects/terrorist-groups-and-weapons-mass-destruction

4 Clare Scott, “Experiment Tests the Suitability of 3D Printing Materials for Creating Lab Equipment,” 3DPrint.com, August 3, 2018, https://3dprint.com/221403/3d-printing-materials-lab/

5 Kolja Brockmann, “Advances in 3D Printing Technology: Increasing Biological Weapons Proliferation Risks?” Stockholm International Peace Research Institute (SIPRI), July 29, 2019, https://www.sipri.org/commentary/blog/2019/advances-3d-printing-technology-increasing-biological-weapon-proliferation-risks

Franklin Houser, “3D Printed Drone Parts – All You Need to Know in 2019,” All3DP, February 12, 2019, https://all3dp.com/3d-print-drone-parts/

6 Natasha Bajema, “3D Printing: Enabler of Mass Destruction,” Medium, October 20, 2018, https://medium.com/@natashabajema/3d-printing-enabler-of-mass-destruction-74d2a684a13

7 Committee on Strategies for Identifying and Addressing Potential Biodefense Vulnerabilities Posed by Synthetic Biology, “Biodefense in the Age of Synthetic Biology,” (Washington DC: The National Academies Press, 2018), 9.

8 “The Independent Advisory Group on Public Health Implications of Synthetic Biology Technology Related to Smallpox,” World Health Organization, June 29-30, 2015, available at https://www.who.int/csr/resources/publications/smallpox/synthetic-biology-technology-smallpox/en/

9 Smallpox,” National Institutes of Allergy and Infectious Diseases, available at www.niaid.nih.gov/diseases-conditions/smallpox

10 Amy Hocraffer and Chang S. Nam, “A Meta-analysis of Human–System Interfaces in Unmanned Aerial Vehicle (UAV) Swarm Management,” Applied Ergonomics, Vol. 58 (2017), pp. 66–80, http://www.researchgate.net/profile/Chang_Nam5/publication/303782432_A_meta-analysis_of_human-system_interfaces_in_unmanned_aerial_vehicle_UAV_swarm_management/links/5767f71f08ae1658e2f8b435.pdf

11 Kolja Brockmann, “Advances in 3D Printing Technology: Increasing Biological Weapons Proliferation Risks?” Stockholm International Peace Research Institute (SIPRI), July 29, 2019, https://www.sipri.org/commentary/blog/2019/advances-3d-printing-technology-increasing-biological-weapon-proliferation-risks

12 Franklin Houser, “3D Printed Drone Parts – All You Need to Know in 2019,” All3DP, February 12, 2019, https://all3dp.com/3d-print-drone-parts/

13 Kathleen M. Vogel, “Framing Biosecurity: An Alternative to the Biotech Revolution Model?,” Science and Public Policy, Vol. 35 No. 1, 2008.

14 Jonathan B. Tucker, “Could Terrorists Exploit Synthetic Biology?” The New Atlantis, Spring 2011, https://www.thenewatlantis.com/publications/could-terrorists-exploit-synthetic-biology#_ftn8

15 Steve1989MREInfo, “2018 MRE Pepperoni Pizza MRE Review Meal Ready to Eat Ration Taste Testing,” YouTube, July 28, 2018, https://www.youtube.com/watch?v=u_sY-nJ179U

173. “Tenth Man” – Challenging our Assumptions about the Operational Environment and Warfare (Part 1)

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish our latest “Tenth Man” post.  This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging.  The Mad Scientist Laboratory offers it as a platform for the contrarians in our network to share their alternative perspectives and analyses regarding the Operational Environment.  Starting today, we begin our new series of “Tenth Man” posts examining the foundational assumptions of The Operational Environment and the Changing Character of Future Warfare, challenging them, reviewing the associated implications, and identifying potential signals and/or indicators of change. Enjoy!]

Assumption:

Our Vision of Future War Centers on the 2+3 Threat.  This threat consists of two near-peer competitors — Russia as our current pacing threat and China emerging as our pacing threat sometime prior to 2035 — plus three additional potential adversaries — North Korea and Iran as regional threats and Radical Ideologues and Transnational Criminal Organizations.

Implications:

TRADOC Pamphlet 525-3-1 The U.S. Army in Multi-Domain Operations 2028 lays out the U.S. Army’s operational concept for prevailing in Competition and winning decisively in Conflict against these near-peer competitors. The Army Futures Command (AFC) was established by GEN Mark A. Milley, former Chief of Staff of the Army and now Chairman of the Joint Chiefs of Staff, to modernize the Army; specifically, to field an MDO-Capable Force by 2028 and set the conditions for fielding an MDO-Ready Force in 2035.  AFC’s Cross Functional Teams (CFTs) are addressing the CSA’s six priority modernization efforts:  Long-Range Precision Fires (LRPF); the Next Generation Combat Vehicle (NGCV); the Army Network, including Assured Positioning, Navigation, and Timing (A-PNT); Future Vertical Lift (FVL); Air and Missile Defense (AMD); and Soldier Lethality, including the Synthetic Training Environment (STE).

 

These modernization priorities will likely yield a number of new weapon systems / enhanced capabilities, designed primarily to deter Russia and China in Competition and, when necessary, penetrate and dis-integrate their Anti-Access / Area Denial (A2/AD) systems to exploit the resultant freedom of maneuver and win decisively in armed Conflict, forcing a return to Competition on terms favorable to the U.S.

Source: ARL

This way ahead presupposes a constant, linear projection of current threat capabilities and that the future fight will necessarily involve Large Scale Combat Operations (LSCO) that are ever more hyperkinetic and lethal….

But what if the integrated military power of the U.S. and its network of alliances deters both Russia’s and China’s appetite for direct Conflict?  What if Competition with our near peers remains the new norm, continuing to percolate with episodic crises that never quite trigger the transition into armed Conflict?  We will have built an exquisite combat capability that deters Conflict with Russia and China, but may be unsuited to decisively winning conflicts with lesser powers and non-state actors threatening U.S. interests — who have been watching and learning from our past 18 years of experience in the asymmetric fight.

Not all future Competition and Conflict “nails” will require a high intensity “hammer” response.  A U.S. whole of Government approach will require investment in other capabilities (e.g., Department of Treasury and State and regional experts across Federal service), as well as Special Forces (to include Civil Affairs and PsyOps) and Cyber Operations force modernization.

Signals / Indicators of Change:

The Chinese People’s Liberation Army (PLA) deployed armored medical vehicles and personnel to Germany for the Combined Aid 2019 Joint Exercise with the Bundeswehr this Summer.

– China is driving a wedge between the U.S. and its traditional allies via Competition.  Joint German / Chinese military medical service live training exercises, facilitated this year in Germany and in China in October 2016, are focusing on non-kinetic humanitarian and medical response cooperation. Per the South China Morning Post, COL Yue Gang (PLA-Ret) stated, “The PLA in the future will need to go abroad to protect China’s overseas interests in countries along the Belt and Road Initiative, and if there could be some basic mutual trust and understanding with NATO forces, the risk of potential conflict could be greatly mitigated.” Wang Yiwei, of Renmin University in China, said, “As the leader of the EU, Germany has said that Europe should take charge of its own security…. It is also a brand new world security situation now, as both China and Europe would want to hedge their risks in dealing with the U.S.

Example of China’s next generation of UAVs / Source: Flickr

– Continued Russian, Chinese, and Iranian support of regimes, proxy forces, and brushfire wars around the globe (reminiscent of the Soviet Union, Warsaw Pact, and Cuba during the Cold War era), providing funding, advisors and training, materiel support, and military sales.  Examples include Russia’s on-going support of Syria’s Assad regime and Iran in challenging U.S. interests; China’s global sales of armed UAVs; and Iran’s support of Houthi rebels in Yemen and Hezbollah, Hamas, and Islamic Jihad.

– Provocations, up to and including kinetic strikes on U.S. high value but unmanned assets, by strategic competitors and regional hegemons may be met with non-kinetic responses (e.g., cyber and information operations), thus remaining in the Competition phase rather than escalating to armed Conflict.

These signals / indicators of change lead us to query:

– Can the MDO Force, optimized for LSCO, achieve U.S. interests across Competition and the full spectrum of armed Conflict?

– Will the MDO Force provide sufficient flexibility to our Combatant Commanders to operate in the Competition phase short of armed Conflict?

– What is the deterrent value of the MDO Force if our competitors can achieve their respective national interests in the Competition phase?

Mad Scientist Laboratory would like to hear your thoughts regarding this post on our web site (for our subscribers who are reading this blog post via email, please go to https://madsciblog.tradoc.army.mil and select the title of today’s post to access the post online), scroll down to the bottom of the blog post, past the “Leave a Reply” heading, enter your observations in the “Comment” text box, then select the “Post Comment” black button. Your post will be added to the discussion as soon as it has been approved — thank you for contributing your insights!

If you enjoyed this post, please see our previous “Tenth Man” blog posts:

Disclaimer:  The views expressed in this blog post do not necessarily reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).