209. Takeaways from the Mad Scientist Global Perspectives in the Operational Environment Virtual Conference

[Editor’s Note: Mad Scientist would like to thank everyone who participated in the Mad Scientist Global Perspectives in the Operational Environment Virtual Conference on 29 January 2020 — from our co-hosts at the Army Futures Command (AFC) and the U.S. Army Training and Doctrine Command (TRADOC) International Army Programs Directorate (IAPD); to TRADOC’s Foreign Liaison Officer community and the U.S. Army liaison officers overseas who helped us identify and coordinate with international subject matter experts; to each of the briefers who presented their respective nations’ insightful perspectives on a diverse array of topics affecting the Operational Environment (OE); to our audience who attended virtually via the TRADOC Watch page’s interactive chat room and asked penetrating questions that significantly helped broaden our aperture on the OE and the changing character of warfare. Today’s post documents the key takeaways Mad Scientist captured from the conference — Enjoy!]

Our first Mad Scientist Virtual Conference focused on global perspectives of the operational environment. While our presenters represented only a small part of the globe, these countries do account for a significant percentage of global defense expenditures and have international defense related engagements and responsibilities.

As expected, we heard many similarities between the Operational Environment described by the United States Army and the presenters from France, the Netherlands, Germany, the UK, Canada, and our NATO Panel. We also identified some interesting nuances in how potential challenges and threats are described and which ones are emphasized.

Here are a few takeaways from the conference — if they pique your interest, check out this conference’s Mad Scientist APAN (All Partners Access Network) page for the associated slides and video presentations (to be posted)!

1) Interoperability is key but increasingly difficult with uneven modernization and different policies for emerging technologies. Each country emphasized the future of coalition operations, but they also described interoperability in different ways. This ranged from the classic definition of interoperability of radios, firing data, and common operating pictures to tactical integration with a country’s units inside another country’s formations. Emerging technologies like Artificial Intelligence (AI) add another level of difficulty to interoperability. Each country will develop their own AI policies outlining legal levels of autonomy and coding standards for identifying biases and ensuring transparency. How these different AI capabilities will interact in fast pace machine-to-machine collaboration is not clear.

2) Asymmetry of Ethics is a Pink Flamingo (known challenge without program to address it) Each country mentioned the developing and differing standards for AI. It was commonly understood that competition and conflict is speeding up but there is no clear consensus on what the tactical and operational advantages could be for an adversary that chooses to integrate AI in a more permissive manner than accepted by western armed forces. Also, lagging policy, regulations, and laws in the West create a possibility for overmatch by these potential adversaries. This is an area where experimentation with differing AI policies and approaches might identify the risks of strategic and technological surprise.

3) Weaponization of information to attack societies and their armed forces is the #1 described threat and it wasn’t even close. This is understandable as our European allies are closer geographically to the persistent Russian competition activities. The emphasis of this threat differs from the United States Army where we have focused and experimented around the idea of a return to high intensity conflict with a near–peer competitor. While each presenter discussed ongoing organizational, doctrinal, and capability changes to address the information environment, it was widely understood that this is a military problem without a military solution.

4) Climate change and mass migration are the conflict drivers of most concern. Human migration as a consequence of climate change will create new security concerns for impacted countries as well as neighboring regions and, due to European geography, seemed to be of greater concern than our focus on great power conflict.

5) Virtual training is increasingly important for Armies with decreasing defense budgets and the demand to improve training proficiencies. As realistic synthetic training becomes a reality, we can more readily transition troops trained for a host of contingencies in the virtual world to the rigors of diverse operations in the physical world. This Synthetic Training Environment may also facilitate Joint and inter-coalition training of geographically-disparate assets and formations, with the concomitant issue of interoperability to conduct combined training events in the future.

6) As society evolves and changes, so does warfare. Our presenters described several pressures on their societies that are not part of or are only tangentially mentioned in the U.S. Army’s operational narrative:

    • Declining demographics in western nations pose potential recruitment and reconstitution challenges.
    • Nationalism is rising and could result in an erosion of rules-based international order. If these systems break down, smaller nations will be challenged.
    • Authoritarian systems are rising and exporting technology to support other authoritarian governments. At the same time democratic systems are weakening.
    • Aging populations and slow growth economies are seeing a global shift of economic strength from the West to the East.

In the future, we will host another global perspectives conference that will include presenters from Asia and South America to further broaden our perspectives and identify potential blind spots from these regions. For now, we encourage the international community to continue to share their ideas by taking our Global Perspectives Survey. Preliminary findings were presented at this conference. Stay tuned to the Mad Scientist Laboratory as we will publish the results of this survey in a series of assessments, starting in March…

… don’t forget to enter The Operational Environment in 2035 Mad Scientist Writing Contest and share your unique insights on the future of warfighting — click here to learn more (deadline for submission is 1 March 2020!)…

… and a quick reminder that the U.S. Army Mission Command Battle Lab Futures Branch is also conducting its Command Post of the Future – 2040-2050 Writing Contest. Click here to learn more about suggested contest writing prompts, rules, and how to submit your entry — deadline for their writing contest is also 1 March 2020!

190. Weaponized Information: One Possible Vignette

[Editor’s Note:  The Information Environment (IE) is the point of departure for all events across the Multi-Domain Operations (MDO) spectrum. It’s a unique space that demands our understanding, as the Internet of Things (IoT) and hyper-connectivity have democratized accessibility, extended global reach, and amplified the effects of weaponized information. Our strategic competitors and adversaries have been quick to grasp and employ it to challenge our traditional advantages and exploit our weaknesses.

    • Our near-peers confront us globally, converging IE capabilities with hybrid strategies to expand the battlefield across all domains and create hemispheric threats challenging us from home station installations (i.e., the Strategic Support Area) to the Close Area fight.
    • Democratization of weaponized information empowers regional hegemons and non-state actors, enabling them to target the U.S. and our allies and achieve effects at a fraction of the cost of conventional weapons, without risking armed conflict.
    • The IE enables our adversaries to frame the conditions of future competition and/or escalation to armed conflict on their own terms.

Today’s post imagines one such vignette, with Russia exploiting the IE to successfully out-compete us and accomplish their political objectives, without expending a single bullet!]

Ethnic Russian minorities’ agitation against their respective governments in Estonia, Lithuania, and Latvia spike. Simultaneously, the Russian Government ratchets up tensions, with inflammatory statements of support for these ethnic Russian minorities in the Baltic States; coordinated movements and exercises by Russian ground, naval, and air forces adjacent to the region; and clandestine support to ethnic Russians in these States. The Russian Government started a covert campaign to shape people’s views about the threats against the Russian diaspora. More than 200,000 twitter accounts send 3.6 million tweets trending #protectRussianseverywhere. This sprawling Russian disinformation campaign is focused on building internal support for the Russian President and a possible military action. The U.S. and NATO respond…

The 2nd Cav Regt is placed on alert; as it prepares to roll out of garrison for Poland, several videos surface across social media, purportedly showing the sexual assault of several underage German nationals by U.S. personnel. These disturbingly graphic deepfakes appear to implicate key Leaders within the Regiment. German political and legal authorities call for an investigation and host nation protests erupt outside the gates of Rose Barracks, Vilseck, disrupting the unit’s deployment.

Simultaneously, in units comprising the initial Force Package earmarked to deploy to Europe, key personnel (and their dependents) are targeted, distracting troops from their deployment preparations and disrupting unit cohesion:

    • Social media accounts are hacked/hijacked, with false threats by dependents to execute mass/school shootings, accusations of sexual abuse, hate speech posts by Leaders about their minority troops, and revelations of adulterous affairs between unit spouses.
    • Bank accounts are hacked: some are credited with excessive amounts of cash followed by faux “See Something, Say Something” hotline accusations being made about criminal and espionage activities; while others are zeroed out, disrupting families’ abilities to pay bills.

Russia’s GRU (Military Intelligence) employs AI Generative Adversarial Networks (GANs) to create fake persona injects that mimic select U.S. Active Army, ARNG, and USAR commanders making disparaging statements about their confidence in our allies’ forces, the legitimacy of the mission, and their faith in our political leadership. Sowing these injects across unit social media accounts, Russian Information Warfare specialists seed doubt and erode trust in the chain of command amongst a percentage of susceptible Soldiers, creating further friction in deployment preparations.

As these units load at railheads or begin their road march towards their respective ports of embarkation, Supervisory Control and Data Acquisition (SCADA) attacks are launched on critical rail, road, port, and airfield infrastructures, snarling rail lines, switching yards, and crossings; creating bottlenecks at key traffic intersections; and spoofing navigation systems to cause sealift asset collisions and groundings at key maritime chokepoints. The fly-by-wire avionics are hacked on a departing C-17, causing a crash with the loss of all 134 Soldiers onboard. All C-17s are grounded, pending an investigation.

Salvos of personalized, “direct inject” psychological warfare attacks are launched against Soldiers via immersive media (Augmented, Virtual, and Mixed Reality; 360o Video/Gaming), targeting them while they await deployment and are in-transit to Theater. Similarly, attacks are vectored at spouses, parents, and dependents, with horrifying imagery of their loved ones’ torn and maimed bodies on Artificial Intelligence-generated battlefields (based on scraped facial imagery from social media accounts).

Multi-Domain Operations has improved Jointness, but exacerbated problems with “the communications requirements that constitute the nation’s warfighting Achilles heel.” As units arrive in Theater, seams within and between these U.S. and NATO Intelligence, Surveillance, and Reconnaissance; Fires; Sustainment; and Command and Control inter-connected and federated tactical networks that facilitate partner-to-partner data exchanges are exploited with specifically targeted false injects, sowing doubt and distrust across the alliance for the Multi-Domain Common Operating Picture. Spoofing of these systems leads to accidental air defense engagements, resulting in Blue-on-Blue fratricide or the downing of a commercial airliner, with additional civilian deaths on the ground from spent ordnance, providing more opportunities for Russian Information Operations to spread acrimony within the alliance and create dissent in public opinion back home.

With the flow of U.S. forces into the Baltic Nations, real instances of ethnic Russians’ livelihoods being disrupted (e.g., accidental destruction of livestock and crops, the choking off of main routes to market, and damage to essential services [water, electricity, sewerage]) by maneuver units on exercise are captured on video and enhanced digitally to exacerbate their cumulative effects. Proliferated across the net via bots, these instances further stoke anti-Baltic / anti-U.S. opinion amongst Russian-sympathetic and non-aligned populations alike.

Following years of scraping global social media accounts and building profiles across the full political spectrum, artificial influencers are unleashed on-line that effectively target each of these profiles within the U.S. and allied civilian populations. Ostensibly engaging populations via key “knee-jerk” on-line affinities (e.g., pro-gun, pro-choice, etc.), these artificial influencers, ever so subtly, begin to shift public opinion to embrace a sympathetic position on the rights of the Russian diaspora to greater autonomy in the Baltic States.

The release of deepfake videos showing Baltic security forces massacring ethnic Russians creates further division and causes some NATO partners to hesitate, question, and withhold their support, as required under Article 5. The alliance is rent asunder — Checkmate!

Many of the aforementioned capabilities described in this vignette are available now. Threats in the IE space will only increase in verisimilitude with augmented reality and multisensory content interaction. Envisioning what this Bot 2.0 Competition will look like is essential in building whole-of-government countermeasures and instilling resiliency in our population and military formations.

The Mad Scientist Initiative will continue to explore the significance of the IE to Competition and Conflict and information weaponization throughout our FY20 events — stay tuned to the MadSci Laboratory for more information. In anticipation of this, we have published The Information Environment:  Competition and Conflict anthology, a collection of previously published blog posts that serves as a primer on this topic and examines the convergence of technologies that facilitates information weaponization — Enjoy!

52. Potential Game Changers

The Mad Scientist Initiative brings together cutting-edge leaders and thinkers from the technology industry, research laboratories, academia, and across the military and Government to explore the impact of potentially disruptive technologies. Much like Johannes Gutenberg’s moveable type (illustrated above), these transformational game changers have the potential to impact how we live, create, think, and prosper. Understanding their individual and convergent impacts is essential to continued battlefield dominance in the Future Operational Environment. In accordance with The Operational Environment and the Changing Character of Future Warfare, we have divided this continuum into two distinct timeframes:

The Era of Accelerated Human Progress (Now through 2035):
The period where our adversaries can take advantage of new technologies, new doctrine, and revised strategic concepts to effectively challenge U.S. military forces across multiple domains. Game changers during this era include:

• Robotics: Forty plus countries develop military robots with some level of autonomy. Impact on society, employment.
Vulnerable: To Cyber/Electromagnetic (EM) disruption, battery life, ethics without man in the loop.
Formats: Unmanned/Autonomous; ground/air vehicles/subsurface/sea systems. Nano-weapons.
Examples: (Air) Hunter/killer Unmanned Aerial Vehicle (UAV) swarms; (Ground) Russian Uran: Recon, ATGMs, SAMs.

• Artificial Intelligence: Human-Agent Teaming, where humans and intelligent systems work together to achieve either a physical or mental task. The human and the intelligent system will trade-off cognitive and physical loads in a collaborative fashion.

• Swarms/Semi Autonomous: Massed, coordinated, fast, collaborative, small, stand-off. Overwhelm target systems. Mass or disaggregate.



• Internet of Things (IoT): Trillions of internet linked items create opportunities and vulnerabilities. Explosive growth in low Size Weight and Power (SWaP) connected devices (Internet of Battlefield Things), especially for sensor applications (situational awareness). Greater than 100 devices per human. Significant end device processing (sensor analytics, sensor to shooter, supply chain management).
Vulnerable: To Cyber/EM/Power disruption. Privacy concerns regarding location and tracking.
Sensor to shooter: Accelerate kill chain, data processing, and decision-making.

• Space: Over 50 nations operate in space, increasingly congested and difficult to monitor, endanger Positioning, Navigation, and Timing (PNT)

GPS Jamming/Spoofing: Increasingly sophisticated, used successfully in Ukraine.
Anti Satellite: China has tested two direct ascent anti-satellite missiles.

The Era of Contested Equality (2035 through 2050):
The period marked by significant breakthroughs in technology and convergences in terms of capabilities, which lead to significant changes in the character of warfare. During this period, traditional aspects of warfare undergo dramatic, almost revolutionary changes which at the end of this timeframe may even challenge the very nature of warfare itself. Game changers during this era include:

• Hyper Velocity Weapons:
Rail Guns (Electrodynamic Kinetic Energy Weapons): Electromagnetic projectile launchers. High velocity/energy and space (Mach 5 or higher). Not powered by explosive.
No Propellant: Easier to store and handle.
Lower Cost Projectiles: Potentially. Extreme G-force requires sturdy payloads.
Limiting factors: Power. Significant IR signature. Materials science.
Hyper Glide Vehicles: Less susceptible to anti-ballistic missile countermeasures.

• Directed Energy Weapons: Signature not visible without technology, must dwell on target. Power requirements currently problematic.
Potential: Tunable, lethal, and non-lethal.
Laser: Directed energy damages intended target. Targets: Counter Aircraft, UAS, Missiles, Projectiles, Sensors, Swarms.
Radio Frequency (RF): Attack targets across the frequency spectrum. Targets: Not just RF; Microwave weapons “cook targets,” people, electronics.

• Synthetic Biology: Engineering / modification of biological entities
Increased Crop Yield: Potential to reduce food scarcity.
Weaponization: Potential for micro-targeting, Seek & destroy microbes that can target DNA. Potentially accessible to super-empowered individuals.
Medical Advances: Enhance soldier survivability.
Genetic Modification: Disease resistant, potentially designer babies and super athletes/soldiers. Synthetic DNA stores digital data. Data can be used for micro-targeting.
CRISPR: Genome editing.

• Information Environment: Use IoT and sensors to harness the flow of information for situational understanding and decision-making advantage.




In envisioning Future Operational Environment possibilities, the Mad Scientist Initiative employs a number of techniques. We have found Crowdsourcing (i.e., the gathering of ideas, thoughts, and concepts from a wide variety of interested individuals assists us in diversifying thoughts and challenging conventional assumptions) to be a particularly effective technique. To that end, we have published our latest, 2-page compendium of Potential Game Changers here — we would like to hear your feedback regarding them. Please let us know your thoughts / observations by posting them in this blog post’s Comment box (found below, in the Leave a Reply section). Alternatively, you can also submit them to us via email at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil. Thank you in advance for your contributions!

47. Quanta of Competition

(Editor’s Note: Mad Scientist Laboratory is pleased to present the following post by repeat guest blogger Mr. Victor R. Morris. Strap in and prepare yourselves for a mind-expanding discussion on the competition field’s application of quantum field theory to political warfare and the extended battlefield!
Mr. Morris’ previous post addressing the cross-domain effects of human-machine networks may be read here.)

The competition field is a field of fields. It is the unification of physical, information, electromagnetic and cyber, political warfare, and extended military battle fields manifested through cross-field synergy and information feedback loop.

The competition field interacts with the physical, information, and cyber and electromagnetic fields. Political warfare and extended military battle are field quanta and reach excitable states due to cross-field synergy and information exchange. These excitable states are unpredictable, yet measurable via probability in the competition continuum. The measurements correlate to the information feedback loop of relative and finite information. The feedback loop results from system interactions, decision-making, effects, and learning. Learning drives interactions, ensuring information exchange in the competition continuum.

The competition field concept was developed from quantum mechanics, multi-domain battle operational frameworks, and geostrategic competition fundamentals to address grand strategy design, long-term, strategic inter-state competition, and non-state actor considerations in macro scale and spacetime.

The concept applies quantum field theory to political warfare and the “extended battlefield,” where Joint and multinational systems are the quanta of these fields, prone to excitable states like field quanta. In quantum mechanics, “quanta” refers to the minimum amount of physical entity involved in an interaction, like a photon or bit. The concept also unites the “Gray Zone” with the political warfare field interacting with the extended military battlefield.

Multi-domain battle and gray zone phenomena result from interactions in the extended military battle and political warfare fields. In quantum field theory, “interactions” refer to particles and corresponding underlying quantum fields. The competition field is the fundamental starting point for strategy design and system of systems thinking.

War/conflict, “Gray Zone,” and peace manifest based on uncertain, yet probability-determined interactions that drive decision-making, effects, and learning to continue the feedback loop of finite information. In the competition field, competition is relative or relational to information. Information does not measure what is known, but the probabilities of something. The competition field correlates the scientific and granular notions of information with the Operational Environment’s fields (also called domains) and physical systems during interactions. Systems are quantized like subatomic particles in the form of Centers of Gravity (COG), subsystems, critical factors, flows, nodes, and entities.

System and particle interactions are uncertain and not deterministic predictions described in exporting security as preventive war strategy and Newtonian physics. Measures short of war and war itself (i.e., violent or armed competition) are interactions in the competition field based on convergence, acceleration, force, distance, time, and other variables. Systems or things do not enter into relations; relations ground the notion of the system.

The information environment is also a field of fields. It exists with the physical, electromagnetic, cyberspace, and space-time fields in the competition field. In Joint doctrine, this is the holistic operational environment. Quantum mechanic’s granularity, relationality, and uncertainty of this field are described in the cognitive, informational, and physical dimensions.

These dimensions or fields include the quanta of human beings, Internet of Things (IoT), data, and individual or group decision-making. The cognitive dimension encompasses the minds of those who transmit, receive, and respond to or act on information.

The cognitive dimension is the most important component of the information environment and influences decision-making in the competition field. The scientific notion of information and probability of occurrence measurement are the largest contributors to understanding quantum physics and the concept of competition.

Colonel John Boyd, a military strategist, was a student of Sun Tzu and Clausewitz and studied military history to see where concepts overlapped and diverged. He knowingly or unknowingly described quantum mechanic’s postulates when he critiqued Clausewitz’s center of gravity concept. He suggested finding the thing that allows the organic whole to stay connected and breaking down those connections.

In theories of quantum gravity, that “thing” is the quanta of gravity, hypothetically called a graviton. In this assessment, it is the quanta of competition. The quanta of competition are not in competition; they are themselves competition and are described by links and the relation they express. The quanta of competition are also suited for quantum biology, since they involve both biological and environmental objects and problem sets.

Additionally, what Clausewitz described as polarity, intelligence, and friction are information at the quantum state. Position, momentum, spin, and the polarization of entangled particles are measured and correlated. The constant exchange of relevant and irrelevant information occurs as competition field quanta interact in the competition continuum.

In this vision, Joint and multinational systems are their own fields, oscillating in the political and extended military battle fields. Interactions manifest forces to exploit windows of superiority, seize the initiative, and attain positions of relative advantage in the competition continuum. Interagency and intergovernmental systems are also manifested in granular and relational manners to enable these objectives. This is only possible through combination, cooperation, and information.

The competition field attempts to explain the relationship between the holistic operational environment and physical systems bridging quantum mechanics and geostrategic competition constructs.

Clausewitz said, “War is merely a continuation of policy by other means.” Policy is a continuation of processes and events between interactions. Lethal or non-lethal effects are based on the measurement of possible alternatives enumerated by reciprocal information and the ability to make decisions in the competition field.

Victor R. Morris is a civilian irregular warfare and threat mitigation instructor at the Joint Multinational Readiness Center (JMRC) in Germany.