131. Omega

[Editor’s Note:  Story Telling is a powerful tool that allows us to envision how innovative and potentially disruptive technologies could be employed and operationalized in the Future Operational Environment. In today’s guest blog post, proclaimed Mad Scientist Mr. August Cole and Mr. Amir Husain use story telling to effectively:

  • Describe what the future might look like if our adversaries out-innovate us using Artificial Intelligence and cheap robotics;
  • Address how the U.S. might miss a strategic breakthrough due to backward-looking analytical mindsets; and
  • Imagine an unconventional Allied response in Europe to an emboldened near-peer conflict.

Enjoy reading how the NATO Alliance could react to Omega — “a Russian autonomous joint force in a … ready-to-deploy box… [with an] area-denial bubble projected by their new S-600s extend[ing] all the way to the exo-sphere, … cover[ing] the entirety of the ground, sea and cyber domains” — on the cusp of a fictional not-so-distant future near-peer conflict!]

Omega

22 KILOMETERS NORTH OF KYIV / UKRAINE

“Incoming!” shouted Piotr Nowak, a master sergeant in Poland’s Jednostka Wojskowa Komandosów special operations unit. Dropping to the ground, he clawed aside a veil of brittle green moss to wedge himself into a gap beneath a downed tree. He hoped the five other members of his military advisory team, crouched around the fist-shaped rock formation behind him, heard his shouts. To further reinforce Ukraine’s armed forces against increasingly brazen Russian military support for separatists in the eastern part of the country, Poland’s government had been quietly supplying military trainers. A pro-Russian military coup in Belarus two weeks earlier only served to raise tensions in the region – and the stakes for the JWK on the ground.

An instant later incoming Russian Grad rocket artillery announced itself with a shrill shriek. Then a rapid succession of sharp explosive pops as the dozen rockets burst overhead. Nowak quickly realized these weren’t ordinary fires.

Russian 9a52-4 MLRS conducting a fire mission / Source: The National Interest

There was no spray of airburst shrapnel or the lung-busting concussion of a thermobaric munition. Instead, it sounded like summer fireworks – the explosive separation of the 122mm rocket artillery shell’s casing. Once split open, each weapon’s payload deployed an air brake to slow its approach.

During that momentary silence, Nowak edged out slightly from under the log to look up at the sky. He saw the drifting circular payload extend four arms and then, suddenly, it came to life as it sprang free of its parachute harness. With a whine from its electric motors, the quadcopter darted out of sight.

That sound built and built over the next minute as eleven more of these Russian autonomous drones darted menacingly in a loose formation through the forest above the Polish special operations commandos. Nowak cursed the low-profile nature of their mission: The Polish soldiers had not yet received the latest compact American counter-UAS electronic-warfare systems that could actually fit in their civilian Skoda Kodiaq SUVs.

Nowak held his airplane-mode mobile phone out from under the log to film the drones, using his arm like a selfie-stick. Nowak needed to report in what he was seeing – this was proof Russian forces had turned their new AI battle management system online inside Ukraine. But he also knew that doing so would be a death sentence, whether he texted the video on the country’s abominably slow mobile networks or used his secure NATO comms. These Russian drones could detect either type of transmission in an instant. Once the drones cued to his transmission he would be targeted either by their own onboard anti-personnel munitions or a follow-on strike by conventional artillery.

This was no mere variation on the practice of using Leer-3 drones  for electronic warfare and to spot for Russian artillery. It marked the first-ever deployment of an entirely new Russian AI battle system complex, Omega. Nowak had only heard about the Russians firing entire drone swarms from inexpensive Grad rocket-artillery rounds once before in Syria while deployed with a US task force. But they had never done so in Ukraine, at least not that he knew about.  Most observers chalked up Russia’s Syrian experimentations with battlefield robots and drone swarms to clumsy failures. Clearly something had changed.

With his phone, Nowak recorded how the drones appeared to be coordinating their search activities as if they were a single hive intelligence. They divided the dense forest into cells they searched cooperatively. Within seconds, they climbed and dove from treetop height looking for anyone or anything hiding below.

At that very instant, the drone’s computer vision algorithms detected Novak’s team. Each and every one of them. Within seconds, six of the aggressively maneuvering drones revealed themselves in a disjointed dive down from the treetops and zoomed in on the JWK fighters’ positions.

Nobody needed to be told what to do. The team raised their weapons and fired short bursts at the Russian drones. One shattered like a clay pigeon. But two more buzzed into view to take its place. Another drone went down to a shotgun-fired SkyNet round. Then the entire drone formation shifted its flight patterns, dodging and maneuvering even more erratically, making it nearly impossible to shoot the rest down. The machines learned from their own losses, Nowak realized. Would his superiors do the same for him?

Nowak emptied his magazine with a series of quick bursts, but rather than reload he put his weapon aside and rolled out from under the log. Fully exposed and clutching the phone with shaking hands, he hastily removed one of his gloves with his teeth. Then he switched the device on. Network connected. He scrolled to the video of the drones. Send! Send! Send!

Eleven seconds later, Novak’s entire Polish JWK special forces team lay dead on the forest floor.

Jednostka Wojskowa Komandosow (JWK) / Source: Wikimedia Commons

________________________________

Omega is not any one specific weapon, rather it is made up of a menagerie of Russian weapons, large and small. It’s as if you fused information warfare, SAMs, fires, drones, tactical autonomous bots… There’s everything from S-600 batteries to cheap Katyusha-style rocket artillery to Uran-9 and -13 tanks. But it is what controls the hardware that makes Omega truly unique: AI. At its core, it’s an artificial intelligence system fusing data from thousands of sensors, processed information, and found patterns that human eyes and minds cannot fathom. The system’s AI is not only developing a comprehensive real-time picture, it’s also developing probabilities and possible courses of enemy action. It can coordinate thousands of “shooters”, from surface-to-air missiles, to specialized rocket artillery deploying autonomous tactical drones like the ones that killed the JWK team, to UGVs like the latest Uran-13 autonomous tracked units.

The developers of the Omega system incorporated technologies such as software-defined radio, which uses universal receivers that could listen in to a broad array of frequencies. Thousands of these bands are monitored with machine learning algorithms to spot insurgent radio stations, spy on the locations of Ukrainian military and police, and even determine if a certain frequency is being used to remotely control explosives or other military equipment. When a threat is discovered, the system will dispatch drones to observe the triangulated location of the source. If the threat needs to be neutralized a variety of kinetic systems – from guided artillery shells to loitering munitions and autonomous drones – can be dispatched for the kill.

________________________________

If you enjoyed this excerpt, please:

Read the complete Omega short story, hosted by our colleagues at the Atlantic Council NATOSource blog,

Learn how the U.S. Joint Force and our partners are preparing to prevail in competition with our strategic adversaries and, when necessary, penetrate and dis-integrate their anti-access and area denial systems and exploit the resultant freedom of maneuver to achieve strategic objectives (win) and force a return to competition on favorable terms in The U.S. Army in Multi-Domain Operations 2028 Executive Summary, and

See one prescription for precluding the strategic surprise that is the fictional Omega in The Importance of Integrative Science/Technology Intelligence (InS/TINT) to the Prediction of Future Vistas of Emerging Threats, by Dr. James Giordano,  CAPT (USN – Ret.) L. R. Bremseth, and Mr. Joseph DeFranco.

Reminder: You only have 1 week left to enter your submissions for the Mad Scientist Science Fiction Writing Contest 2019.  Click here for more information about the contest and how to submit your short story(ies) for consideration by our 1 April 2019 deadline!

Mr. August Cole is a proclaimed Mad Scientist, author, and futurist focusing on national security issues. He is a non-resident senior fellow at the Art of the Future Project at the Atlantic Council. He also works on creative foresight at SparkCognition, an artificial intelligence company, and is a senior advisor at Avascent, a consulting firm. His novel with fellow proclaimed Mad Scientist P.W. Singer, entitled Ghost Fleet: A Novel of the Next World War, explores the future of great power conflict and disruptive technologies in wartime.

Mr. Amir Husain is the founder and CEO of SparkCognition, a company envisioned to be at the forefront of the “AI 3.0” revolution. He serves as advisor and board member to several major institutions, including IBM Watson, University of Texas Department of Computer Science, Makerarm, ClearCube Technology, uStudio and others; and his work has been published in leading tech journals, including Network World, IT Today, and Computer World. In 2015, Amir was named Austin’s Top Technology Entrepreneur of the Year.

Disclaimer: This publication is a work of fiction by Messrs. August Cole and Amir Husain, neither of whom have any affiliation with U.S. Army Training and Doctrine Command, the U.S. Army, or the U.S. Government. This piece is meant to be thought-provoking and entertaining, and does not reflect the current position of the U.S. Army.

130. Trouble in Paradise: The Technological Upheaval of Modern Political and Economic Systems

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish the following post by returning guest blogger and proclaimed Mad Scientist Ms. Marie Murphy, addressing how advances in various technologies have the potential to upset the international order and empower individuals and non-state actors.  Read on to learn who will be the winners and losers in this technological upheaval!]

Access to new and advanced technologies has the potential to upset the current power dynamic of the world. From the proliferation of smartphones to commercially available software and hardware, individuals and states that were previously discounted as threats now have the potential to launch sophisticated attacks against powerful international players. Power will no longer remain in the upper echelons of society, where it is primarily held by national governments, multinational corporations, and national news services. These groups are losing their information dominance as individuals, local authorities, and other organizations now have the ability to access and distribute unfiltered information at their fingertips.1

A historical example of technology altering the balance of power are cassette tapes. Ayatollah Khomeini used cassette tape recordings to deliver sermons and direct the Iranian Revolution when exiled in Paris, while the United States observed the use of cassette tapes by the USSR in the spreading of communist propaganda.2 A new technology in the hands of empowered individuals and states allowed for events to transpire that otherwise would not have been possible with the same speed and effectiveness. Adaptation of technology created new agency for actors to direct movements from thousands of miles away, forever shaping the course of history. A more contemporary example is the role of smartphones and social media in the Arab Spring. These new disruptive technologies enabled the organizing of protests and the broadcasting of videos in real time, eclipsing traditional journalism’s ability to report.3

Near-term Analysis:

Technologically sophisticated international actors, such as the United States and the European Union, will maintain the capacity to manage the growth and use of technology within their own borders without adversely affecting governance. However, the increased availability of these technologies may strain civil/government relations in both developing countries and authoritarian systems.4 Technologies such as smartphones and the ability to instantly transmit data may force governments to be accountable for their actions, especially if their abuses of power are recorded and distributed globally by personal devices. At the same time however, “smart” devices may also be used by governments as instruments of social control, repression, and misinformation.

Technology also affords non-state actors new methods for recruiting and executing operations.  Technology-enabled platforms have allowed these groups to network near instantaneously across borders and around the world in a manner that would have been impossible prior to the advent of the digital age.5 A well-known example is the use of social media platforms by terrorist groups such as al-Qaeda and ISIS for propaganda and recruitment. These groups and others, such as Hezbollah and the political opposition in Venezuela, have deployed drones for both reconnaissance and as lethal weapons.6 The availability of these information age technologies has enabled these groups to garner more power and control than similar organizations could have done in the past, posing a real threat to major international actors.

Distant Future Analysis:

There is an extremely high chance of future political disruption stemming from technological advancement. There are some who predict a non-polar power balance emerging. In this scenario, the world is dominated by dozens of technologically capable actors with various capabilities. “Hyperconnected,” developed states such as Sweden, Finland, and Israel may become greater international players and brokers of technologically backed global power. “Partially-connected” nations, today’s developing world, will face multiple challenges and could possibly take advantage of new opportunities due to the proliferation of technology. Technologically empowered individuals, groups, or neighboring states may have the ability to question or threaten the legitimacy of an otherwise weak government. However, in these “partially-connected” states, technology will serve to break down social barriers to equalize social discourse among all strata of society. Other predictions suggest the dissolution of national boundaries and the creation of an “interconnected state” comprised of different national laws without borders in a virtual space.7

Democracy itself is evolving due to technological innovation. Increasing concerns about the roles of privacy, big data, internet security, and artificial intelligence in the digital age raise the following questions: how much does technology influence and control the lives of people in democratic countries, and what effect does this have on politics? Algorithms control the advertisements on the internet based on users’ search history, the collection and sale of personal data, and “fake news” which affects the opinions of millions.8  While these technologies provide convenience in the daily lives of internet-connected citizens, such as recommending items for purchase on Amazon and other platforms, they also lead to an erosion of public trust, a pillar upon which democracy is founded. Democracies must remain vigilant regarding how emerging technologies influence and affect their people and how governments use technology to interact with its citizens.

The changing geopolitical dynamics of the world is inextricably linked with economic power, and increasing economic power is positively correlated with technological advancement. Power is becoming more diffused as Brazil, Russia, India, China, and South Africa (i.e., the BRICS states), the Philippines, Mexico, Turkey, and others develop stronger economies. States with rising economic power may begin to shun traditional global political and economic institutions in favor of regional institutions and bilateral agreements.9 There will be many more emerging markets competing for market share,10 driving up competition and forcing greater innovation and integration to remain relevant.

One of the major factors of the changing economic landscape is the growth of robotics use. Today these technologies are exclusive to world economic leaders but are likely to proliferate as more technological advancements make them cost-effective for a wider range of industries and companies. The adaptation of artificial intelligence will also dictate the future success of businesses in developed and emerging economies. It is important for governments to consider “retraining programs” for those workers laid off by roboticization and AI domination of their career fields.11 Economically dominant countries of the future will be driven by technology and hold the majority of political power in the political arena. These states will harness these technologies and use them to increase their productivity while training their workforce to participate in a technologically aided market.

The Winners and Losers of the Future:

Winners:

  • Countries with stable governments and emerging economies which are able to adapt to the rapid pace of technological innovation without severe political disruption.
  • Current international powers which invest in the development and application of advanced technologies.

Losers:

  • Countries with fragile governments which can be overpowered by citizens, neighbors, or non-state actors armed with technology and authoritarian regimes who use technology as a tool of repression.
  • Traditional international powers which put themselves at risk of losing political and financial leverage if they only work to maintain the status quo. Those systems that do not adapt will struggle to remain relevant in a world dominated by a greater number of powers who fall into the “winners” category.

Conclusion

Modern power players in the world will have to adapt to the changing role of technology, particularly the influence of technology-empowered individuals. Technology will change how democracies and other political systems operate both domestically and on the world stage. The major international players of today will also have to accept that rising economic powers will gain more influence in the global market as they are more technologically enabled. As power becomes more diluted when states gain equalizing technology, the hegemony of the current powers that lead international institutions will begin to lose relevancy if they do not adapt.

If you enjoyed this post, please also see:

… and Ms. Murphy‘s previous posts:

… and crank up Bob Marley and the Wailers Get Up, Stand Up!

Marie Murphy is a junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is a regular contributor to the Mad Scientist Laboratory; interned at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative during the Summer of 2018; and is currently a Research Fellow for William and Mary’s Project on International Peace and Security.


1 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.” Strategy, A T Kearney, www.middle-east.atkearney.com/strategy/featured-article/-/asset_publisher/KwarGm4gaWhz/content/global-trends-2015-2025-divergence-disruption-and-innovation/10192?inheritRedirect=false&redirect=http://www.middle-east.atkearney.com/strategy/featured-article?p_p_id=101_INSTANCE_KwarGm4gaWhz&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1.

2 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.” Foreign Affairs, Foreign Affairs Magazine, 27 Oct. 2010, www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

3 Duffy, Matt J. “Smartphones in the Arab Spring.” Academia.edu – Share Research, 2011, www.academia.edu/1911044/Smartphones_in_the_Arab_Spring

4 China is a unique case here because it’s a major developer of technology and counter-technology systems which block the use of certain devices, applications, or programs within their borders. But Chinese people do find loopholes and other points of access in the system, defying the government.

5 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.” www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

6 “Drone Terrorism Is Now a Reality, and We Need a Plan to Counter the Threat.” International Security: Fragility, Violence and Conflict, World Economic Forum, 20 Aug. 2018, www.weforum.org/agenda/2018/08/drone-terrorism-is-now-a-reality-and-we-need-a-plan-to-counter-the-threat.

7 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.”  www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

8 Unver, Hamid Akin. “Artificial Intelligence, Authoritarianism and the Future of Political Systems.” SSRN, EDAM Research Reports, 2018, 26 Feb. 2019, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331635.

9 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.”

10 Stowell, Joshua. The Emerging Seven Countries Will Hold Increasing Levels of Global Economic Power by 2050. Global Security Review, 26 Apr. 2018, www.globalsecurityreview.com/will-global-economic-order-2050-look-like/.

11 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.”

129. “The Queue”

[Editor’s Note: Mad Scientist Laboratory is pleased to present our latest edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Mad Scientist Initiative has come across during the previous month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment (OE). We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

Recently ML Cavanaugh asked and answered in a LA Times Op-Ed piece, “Can science fiction help us prepare for 21st Century Warfare?

The Mad Science team answers this question with an emphatic, “YES!

Below is a re-run of our review of Eliot Peper’s argument for business leaders to read more science fiction. His urban planning business case speaks for itself.

For the burgeoning authors among you, submit a story to our Science Fiction Writing Contest 2019 –- you only have two weeks left! — see contest details here.

1.Why Business Leaders Need to Read More Science Fiction,” by Eliot Peper, Harvard Business Review, 24 July 17.

New York City’s Fifth Avenue bustling with horse-drawn traffic on Easter Sunday, 1900 (see if you can spot the horseless carriage!) / Source: Commons Wikimedia

There are no facts about the future and the future is not a linear extrapolation from the present. We inherently understand this about the future, but Leaders oftentimes seek to quantify the unquantifiable. Eliot Peper opens his Harvard Business Review article with a story about one of the biggest urban problems in New York City at the end of the 19th century – it stank!

Horses were producing 45,000 tons of manure a month. The urban planners of 1898 convened a conference to address this issue, but the experts failed to find a solution. More importantly, they could not envision a future only a decade and a half hence, when cars would outnumber horses. The urban problem of the future was not horse manure, but motor vehicle-generated pollution and road infrastructure. All quantifiable data available to the 1898 urban planners only extrapolated to more humans, horses, and manure. It is likely that any expert sharing an assumption about cars over horses would have been laughed out of the conference hall. Flash forward a century and the number one observation from the 9/11 Commission was that the Leaders and experts responsible for preventing such an attack lacked imagination. Story telling and the science fiction genre allow Leaders to imagine beyond the numbers and broaden the assumptions needed to envision possible futures.

2. Challenges to Security in Space, Defense Intelligence Agency, January 2019.

Source: Evan Vucci / AP / REX / Shutterstock

On 19 Feb 19, President Trump signed Space Policy Directive-4 (SPD-4), establishing the Space Force as the nation’s newest military branch. This force will initially reside within the U.S. Air Force, much as the U.S.  Marine Corps resides within the U.S. Navy. Acting Secretary of Defense Patrick Shanahan, as Deputy Secretary of Defense, must now provide the associated draft legislative proposal to the President via the Office of Management and Budget; then it will be submitted to Congress for approval – its specific “details… and how effectively Administration officials defend it on Capitol Hill will determine its fate.

Given what is sure to be a contentious and polarizing congressional debate, the Defense Intelligence Agency’s Challenges to Security in Space provides a useful unclassified reference outlining our near-peer adversaries’ (China and Russia) space strategy, doctrine, and intent; key space and counterspace organizations; and space and counterspace capabilities. These latter capabilities are further broken out into: space launch capabilities; human spaceflight and space exploration; Intelligence, Surveillance, and Reconnaissance (ISR); navigation and communications; and counterspace.

In addition to our near-peer’s space capabilities, Iranian and North Korean space challenges are also addressed. The paper explores these nations’ respective national space launch facilities as venues for testing ballistic missile technologies.

The paper concludes with an outlook assessment addressing the increasing number of spacefaring nations, with “some actors integrat[ing] space and counterspace capabilities into military operations,” and “trends… pos[ing] a challenge to U.S. space dominance and present[ing] new risks for assets on orbit.”

A number of useful appendices are also included, addressing the implications of debris and orbital collisions; counterspace threats illustrating the associated capabilities on a continuum from reversible (e.g., Electronic Warfare and Denial and Deception) to irreversible (e.g., Ground Site Attacks and Nuclear Detonation in Space); and a useful list defining space acronyms.

With the U.S. and our allies’ continued dependence on space domain operations in maintaining a robust deterrence, and failing that, winning on future battlefields, this DIA assessment is an important reference for warfighters and policy makers, alike.

3. Superconduction: Why does it have to be so cold?Vienna University of Technology via ScienceDaily, 20 February 2019.  (Reviewed by Marie Murphy)

One of the major barriers to quantum computing is a rather unexpected one: in order for superconduction to occur, it must be very cold. Superconduction is an electrical current that moves “entirely without resistance” and, as of now, with standard materials superconduction is only possible at -200oC. In quantum computing there are massive amounts of particles moving in interdependent trajectories, and precisely calculating all of them is impossible. Researchers at TU Wien (Technische Universität Wien – Vienna University of Technology) were able to add on to an existing equation that allows for the approximate calculation of these particles in solid matter, not just a vacuum. This new formula may make it easier to develop different superconducting materials and potentially identify materials that could conduct at room temperature.

Quantum computing is heralded as the next big step in the technological revolution and the key to unlocking unthinkable possibilities of human and technological advancement. If there was a way for quantum computing to work at closer to room temperature, then that could lead to a major breakthrough in the technology and the rapid application of quantum computing to the operational environment. There is also a massive first mover advantage in quantum computing technology: the organization that solves the problem first will have unlimited and uncontested use of the technology, and very few people in the world have the technological expertise to quickly replicate the discovery.

4.The Twenty-First Century General, with Dr. Anthony King,” hosted by John Amble, Modern War Institute Podcast, 7 March 2019.

Command: The Twenty-First Century General / Source: Cambridge University Press

In this prescient episode of the Modern War Institute podcast, John Amble interviews Dr. Anthony King (Chair of War Studies in the Politics and International Studies Department at Warwick University in the United Kingdom) about his new book Command: The Twenty-First Century General. Amble and Dr. King have a detailed and informative discussion about the future of command as the world has moved into a digital age and what it’s meant for the battlefield, warfighters, commanders, and even organizational staffs.

One of the more impactful ideas explored in this podcast, in relation to the future of warfare, was the idea of collective decision-making on the part of commanders, as opposed to previous “hero era” individualistic leadership typified by General Patton and Field Marshals Rommel and Montgomery. Command teams (divisional staff, for example) have swelled in size not simply to create meaningless career milestones but due to digital age revolutions that allowed for increasingly complex operations.

With artificial intelligence becoming increasingly pervasive throughout the future operational environment and likely ever-present on future command staffs, Dr. King points out that staffs may not become smaller but actually may increase as operations become even more complex. The changing character of future warfare (especially the emergence of AI) may enable incredible new capabilities in coordination, synchronization, and convergence of effects but adversaries using more simplistic command structures could expose this inherent complexity through speed and decisiveness.

5. Alexa, call the police! Smart assistants should come with a ‘moral AI’ to decide whether to report their owners for breaking the law, experts say,” by Peter Lloyd, Daily Mail.com, 22 February 2019.

Scientists at the University of Bergen in Norway discussed the idea of a “moral A.I.” for smart home assistants, like the Amazon Echo, Google Home, and Apple HomePod at the AAAI / ACM Conference for Artificial Intelligence, Ethics and Society in Hawaii.  Marija Slavkovik, associate professor at the department of information science and media studies “suggested that digital assistants should possess an ethical awareness that at once represents both the owner and the authorities — or, in the case of a minor, their parents.” Recall that previously, police have seized information gathered by smart devices.

Moral A.I. would require home assistants to “decide whether to report their owners for breaking the law,” or to remain silent. “This would let them weigh whether to report illegal activity to the police, effectively putting millions of people under constant surveillance.” Stakeholders “need to be identified and have a say, including when machines shouldn’t be able to listen in. Right now only the manufacturer decides.” At present, neither stakeholders nor consumers are in charge of their own information and companies use our personal information freely, without commensurate compensation.

If developed, brought to market, and installed (presumably willingly) in our homes (or public spaces), is Moral A.I. a human problem?

Yes. Broadly speaking, no place on earth is completely homogeneous; each country has a different culture, language, beliefs, norms, and society. Debating the nuances, the dystopian sounding and murky path of Moral A.I. involves the larger question on how should ethics be incorporated in AI.

Furthermore – should lethal autonomous weapons be used on humans? In his recent post entitled “AI Enhancing EI in War,” MAJ Vincent Dueñas addressed how AI can mitigate a human commander’s cognitive biases and enhance his/her (and their staff’s) decision-making to assist them in commanding, fighting, and winning on future battlefields. Humans are susceptible to cognitive biases and these biases sometimes result in catastrophic outcomes—particularly in the high stress environment of wartime decision-making.  AI offers the possibility of mitigating the susceptibility of negative outcomes in the commander’s decision-making process by enhancing the collective Emotional Intelligence (EI) of the commander and his/her staff.  For now, however, AI is too narrow to carry this out in someone’s home, let alone on the battlefield.

6.SS7 Cellular Network Flaw Nobody Wants To Fix Now Being Exploited To Drain Bank Accounts,” by Karl Bode, Techdirt.com, 11 February 2019.

Signaling System 7 (SS7) is a series of cellular telephone protocols first built in 1975 that allows for telephonic communication around the globe. Within this set of protocols is a massive security vulnerability that has been public knowledge for over a decade. The vulnerability allows a nefarious actor to, among other things, track user location, dodge encryption, and record conversations. What’s more, this can be done while looking like ordinary carrier chatter and, in some cases, can be used to gain access to bank accounts through 2-factor authentication and effectively drain them.

This is significant from a military perspective because, as highlighted within a recent blog post, we have already seen near-peer adversarial states execute attacks through cellphone activity, personal wearable device location data, and social media. These states attempt to degrade soldier morale by launching information operations campaigns targeted at soldier families or the soldiers themselves through text messages, social media, or cell phone calls. The SS7 vulnerability could make these campaigns more successful or easier to execute and allow them to penetrate farther into the personal lives of soldiers than ever before.

Lastly, this vulnerability highlights an enduring trend: legacy communications infrastructure still exists and is still heavily used by civilian and military alike. This infrastructure is old and vulnerable and was designed before cellphones were commonplace. Modernizing this infrastructure around the world would be costly and time consuming and there has been little movement on fixing the vulnerability itself. Despite this vulnerability being known since 2008, is this something that will affect operations going forward? With no intrusion signature, will the Army need to modify existing policy on personal electronic devices for Soldiers and their families?

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future OE, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

126. Nowhere to Hide: Information Exploitation and Sanitization

[Editor’s Note:  In today’s post, Mad Scientist Laboratory explores how humankind’s recent exponential growth in interconnectivity will continue to affect warfare in the Future Operational Environment.  Using several contemporary use cases, we identify a number of vulnerabilities that have already been exploited by our adversaries.  The U.S. Army must learn how to sanitize its information signatures while simultaneously exploit those presented by our adversaries.  As previously stated on this site by COL Stefan J. Banach (USA-Ret.),  “Virtual Space is the decisive terrain and securing it is the decisive operation.]

Internet of Battle Things (IOBT) / Source: Alexander Kott, ARL

The timeless competition of finders vs. hiders is a key characteristic of the Future Operational Environment (FOE). Through the proliferation of sensors creating the Internet of Battlefield Things (IoBT), ubiquitous global communication, and pervasive personal electronic devices, the finders will be ascendant on the battlefield. They have more advantages and access than ever before – with the ability to make impactful non-kinetic action – and the hiders are creating bigger, enduring, and more conspicuous signatures. In the FOE, our ability to wade through the petabytes of raw sensor and communications data input to generate a Common Operating Picture and arrive at actionable courses of action will be significantly challenged. Will we be able to sanitize Blue Forces’ signatures to prevent our adversaries from detecting and exploiting similar information, while simultaneously seeing through Red Forces’ deception measures to strike decisively?

A recent example highlighting the inherent and unpredictable vulnerabilities presented by these emerging technologies is the incident involving personal fitness devices that track users via GPS. Many military personnel have used these devices to track personal performance while conducting physical fitness training.  The associated tracking information was transmitted back to fitness-tracking company Strava, where it was aggregated and then published as maps that were then made available to the public. Unfortunately, these maps contained articulate outlines of PT routes in and around military bases, the locations of which were not intended to be made public. This now publically available information inadvertently provided our adversaries with sensitive information that, in years past, would have required considerable time and other resources to acquire.

In response, the DoD issued a memorandum through Deputy Defense Secretary Patrick Shanahan effectively banning the use of geolocation capabilities in operational areas. While there was swift policy resolution in this case, albeit after-the-fact, there are a number of continuing and emergent threats presented by the information age that still need to be addressed.

In the previous example, the culprit was a smart watch or fitness tracking device that is a companion piece to the smart phone. Removing or prohibiting these devices is less detrimental to the overall morale, spirit, and will power of our Soldiers than removing their cell phones — their primary means of voice, data, and social media connectivity — oftentimes their sole link with their family back home. Adversaries have already employed tactics designed to exploit vulnerabilities arising from Soldier cellphone use. In the Ukraine, a popular Russian tactic is to send spoofed text messages to Ukrainian soldiers informing them that their support battalion has retreated, their bank account has been exhausted, or that they are simply surrounded and have been abandoned. Taking it one step further, they have even sent false messages to the families of soldiers informing them that their loved one was killed in action.

Russian 9a52-4 MLRS conducting a fire mission / Source: The National Interest

This sets off a chain of events where the family member will immediately call or text the soldier, followed by another spoofed message to the original phone. With a high number of messages to enough targets, an artillery strike is called in on the area where an excess of cellphone usage has been detected.

Similarly, a NATO red team was able to easily infiltrate their own forces through information gathered on social media sites – amassing locations, dates, and other data – to influence their Soldiers’ behavior.  Facebook and Instagram allowed them to track Soldiers, determine exact locations of exercises, and identify all members of a certain unit.

Hamas employed a similar tactic against Israeli Defense Force soldiers, using fake accounts to pose as attractive women in honey trap operations to access sensitive operational information.

Each of these examples illustrate recent, low-cost, and effective means of deception. Device exploitation, the over-sharing of sensitive data, and the challenge in determining information credibility will only increase as connected devices continue to both proliferate and transition from being portable and wearable to embeddable and implantable. The following questions must be addressed by the U.S. Army:

– How can we sanitize ourselves to mitigate these and other vulnerabilities from adversely affecting us operationally on future battlefields?

– How do we ensure that the information we are receiving and processing is legitimate and that we are not being spoofed?

– How are we preparing to exploit similar vulnerabilities in our adversaries?

Fictitious 1st Army Group patch. Commanded by then LTG George S. Patton, to deceive the Germans prior to the invasion of France

– Is this even possible in a hyper-connected and complex battlefield or are we destined to be on the wrong side of some future Operation Fortitude, where effective military deception helped ensure the success GEN Eisenhower’s Great Crusade to liberate Europe from the Nazis in World War II?

One final thought — geolocation information and high resolution remote sensing capabilities, which only a short decade and a half ago were limited to a handful of national intelligence services, have entered into a new, democratized era.  As recently demonstrated in three warzone use casesanyone (including non-spacefaring nations, non-state actors, and super-empowered individuals) can now access current and past imagery to generate high resolution, three dimensional views for geolocation, analysis, and (unfortunately) exploitation.  The convergence of this capability with the proliferation of personalized information signatures truly means that there is “Nowhere to Run, Nowhere to Hide.”  (Crank it up with Martha and the Vandellas!)

If you enjoyed this post, please also read the following blog posts addressing the weaponization of social media, the future of battlefield deception, and virtual warfare:

125. The Importance of Integrative Science/Technology Intelligence (InS/TINT) to the Prediction of Future Vistas of Emerging Threats

[Editor’s Note: Mad Scientist Laboratory is pleased to feature today’s post by returning guest bloggers Dr. James Giordano and CAPT (USN – Ret.) L. R. Bremseth, and co-author Joseph DeFranco. Given on-going collaboration by our near-peer adversaries in Science and Technology (S/T) development and the execution of non-kinetic operations, today’s authors propose an expanded, integrated, and multi-national approach to S/T Intelligence. Enjoy!]

InS/TINT Karma *

(click on the link above to listen along as you read this post!)

“[it’s]… gonna get you; gonna knock you right on the head; you better get yourself together; pretty soon you’re gonna be dead.”

John Lennon 1

On January 29th, 2019, Daniel Coats, the United States Director of National Intelligence, reported to the Senate Select Committee on Intelligence about emerging threats to national security.2  The report stated that “…rapid advances in biotechnology, including gene editing, synthetic biology, and neuroscience, are likely to present new economic, military, ethical, and regulatory challenges worldwide as governments struggle to keep pace. These technologies hold…potential for adversaries to develop novel biological warfare agents, threaten food security, and enhance or degrade human performance

Supportive of our ongoing work,3 the report detailed the ways that existing S/T (i.e., radical leveling science and technologies, or RLT) and newly developing methods and tools (i.e., emerging science and technologies, or ET) can force-multiply non-kinetic engagements that disrupt the extant balances of economic, political, and military power. This is further fortified by the Intelligence Community’s observation of recent Chinese and Russian activities and collaborative efforts4 in S/T development and execution of non-kinetic operations. China and Russia have made significant investments and deepened political interest in research and innovation to assert growing effect, if not dominance, in international scientific, biomedical, and technological markets. Specifically, the report stated:

During the past two decades, the US lead in S&T fields has been significantly eroded, most predominantly by China, which is well ahead in several areas.5

China’s expanding efforts in bio S/T research and innovation is significant as it can, and is intended to alter the international geopolitical landscape.6, 7 Chinese philosophy and political culture establish ethico-legal grounds for research practices that can differ from those of the west and that enable somewhat more rapid progress across a broader range of S/T enterprises.8, 9, 10

Beijing has stepped up efforts to reshape the international discourse around human rights, especially within the UN system. Beijing has sought not only to block criticism of its own system but also to erode norms, such as the notion that the international community has a legitimate role in scrutinizing other countries’ behavior on human rights (e.g., initiatives to proscribe country-specific resolutions), and to advance narrow definitions of human rights based on economic standards.11

This is occurring via Chinese interest and engagement in (1) academic and university research; (2) the economic and political encouragement of government scientific agencies; (3) commercial investment; and (4) establishing legal bases for intellectual property in order to gain greater ownership and control of S/T development. China’s current and proposed Five-Year Plans (FYPs) conjoin governmental, academic, and commercial enterprises to initiate and fulfill long-term agendas to establish and sustain S/T development and use to exercise multi-dimensional global power.12

Xinhua News Agency (Li Gang/Xinhua via AP)

At the 2018 Central Foreign Affairs Work Conference, Xi stated his desire to lead the reform of the global governance system, driving a period of increased Chinese foreign policy activism and a Chinese worldview that links China’s domestic vision to its international vision.13

As we have claimed, we believe that it will be increasingly important to analyze, quantify, and predict how particular RLTs and ETs can and likely will be employed by foreign competitors and advisories in both non-kinetic and kinetic ways.14 Currently, the models used by the United States and its allies tend to favor a somewhat limited timescale and linear pattern of S/T development.15 And if/when more extensive timescales are used, linear modeling and limited analysis for the scope of effects can constrain accuracy and reliability of predictions.

However, current research and progress in S/T is assuming a more exponential increase (Figure 1), which reflects China’s more long-term visions, if not aspirations. Thus, we feel that it is near-sighted to solely focus on five-ten-year developments. Yet it may be that the lenses currently used for more far-sighted views tend to be restricted in scope. This is problematic because such models can fail to recognize and appreciate the ways that both short- and long-term enterprises may be used to evoke strategically latent, multi-focal, disruptive effects to establish balances of power in the future.

Figure 1

To this point, we advocate expanding and improving the focus of the “predictability horizon” to better perceive three vistas of future S/T development and use. As shown in Figure 2, these are the: (1) vista of probability (present to 5 years); (2) vista of possibility (6 to 15 years); and (3) vista of potentiality (16 to 30 years). We assert that in light of current trends in global S/T research and development, it is important to examine what is probable, and from such probabilities, what is possible thereafter. Identification and depiction of possibilities (and the multi-dimensional factors that would be necessary for their actualization) enables a more salient view to better gauge the potentialities that could be realized 16 to 30 years into the future.

Figure 2

Of course, more proximate developments are easier to define and predict. Moving farther into the future, extant and emerging technologies can foster a greater variety of uses and effects. The potential uses and influences of S/T are more difficult to accurately model due to (1) diverse socio-political and economic pushing and pulling forces (in society and science), and (2) the contingencies of socio-cultural and political variables that establish “fertile” grounds for viable uses of S/T. Using a solely inductive (i.e., advancing) approach to S/T analysis and prediction may be inadequate. Rather, we recommend combining inductive methods with deductive (i.e., retrospective) analytics that are aimed at identifying potential uses and values of S/T (and the multi-varied factors required for its articulation) in the 16-30 year future timeframe, and working backwards to address and model what possibilities and probabilities would be necessary to allow such long-term occurrences. We refer to this deductive-inductive approach as Integrative S/T Intelligence (InS/TINT) that engages temporal and socio-cultural trends, contingencies, and necessities to define, analyze, model, and predict strategically-latent S/T developments, uses, and effects on the global stage.

Such an enterprise requires:  (1) an ongoing assessment of current S/T, research trends, and implicitly and/or explicitly stated long-term goals of competitors and/or possible adversaries; (2) multi-national cooperation to monitor the development of S/T that could be weaponized; and (3) establishing more acute, improved perspectives of non-kinetic engagements and the viable roles that S/T can play in leveraging their effects. Toward these goals, the United States and its allies must recognize and assess both the explicit/overt and more tacit aspects of research and use activities of several countries that already have enterprises dedicated to dual- and/or direct-use of S/T in warfare, intelligence, and national security (WINS) operations.16, 17 This will mandate deeper surveillance of international S/T research and agendas to accurately evaluate both near-and longer-term activities, progress, and trajectories. Surveillance should focus on (1) university and research sites; (2) the extent and directions of private and public support in S/T; (3) efforts toward recruitment of researchers; (4) S/T commercialization; (5) current/future military postures; and (6) current/future market space occupation and leveraging potential.

As we have previously described, an effort of this magnitude demands conjoined efforts from multiple national resources (that are beyond a whole-of-government approach).18 The type of program of record or program management office (PMO) that we have proposed is crucial. Such a program will require ongoing domestic funding and participation and support of like-minded, multi-national allies. But we perceive such effort and commitment to be worthwhile, important, and necessary, as the threat of adversaries’ use of emerging technologies in non-kinetic engagements is clear – both at present and for the future. Therefore, we consider it prudent to dedicate funding and resources to prevent such engagements of emergent S/T from becoming a national emergency.

History punishes strategic frivolity sooner or later

Henry Kissinger

If you enjoyed this post, please also see:

… and her presentation on PLA Human-Machine Integration at the Mad Scientist Bio Convergence and Soldier 2050 Conference at SRI International’s Menlo Park Campus on Day 2 (9 March 2018).

Mad Scientist James Giordano, PhD, is Professor of Neurology and Biochemistry, Chief of the Neuroethics Studies Program, and Co-Director of the O’Neill-Pellegrino Program in Brain Science and Global Law and Policy at Georgetown University Medical Center. As well, he is J5 Donovan Group Senior Fellow, Biowarfare and Biosecurity, at US Special Operations Command, (USSOCOM). He has served as Senior Science Advisory Fellow to the SMA Group of the Joint Staff of the Pentagon; as Research Fellow and Task Leader of the EU-Human Brain Project Sub-Program on Dual-Use Brain Science, and as an appointed member of the Neuroethics, Legal and Social Issues Advisory Panel of the Defense Advanced Research Projects Agency (DARPA). He is an elected member of the European Academy of Science and Arts, and a Fellow of the Royal Society of Medicine (UK).

L. R. Bremseth, CAPT, USN SEAL (Ret.), is Senior Special Operations Forces Advisor for CSCI, Springfield, VA. A 29+ years veteran of the US Navy, he commanded SEAL Team EIGHT, Naval Special Warfare GROUP THREE, and completed numerous overseas assignments. He also served as Deputy Director, Operations Integration Group, for the Department of the Navy.

Joseph DeFranco is J5 Donovan Group Fellow in Biowarfare and Biosecurity, at U.S. Special Operations Command (USSOCOM). He is currently studying neuroscience in the college of arts and sciences, and biodefense at the Schar School of Policy and Government of George Mason University, VA, and formerly served on the staff of Congressman Donald S. Beyer (VA-08). His current research focuses upon the possible use of novel microbiological agents and big data as force-multiplying elements in non-kinetic, hybrid, and kinetic engagements, and the role of global agencies in biosecurity.

DISCLAIMER: This blog post was adapted from portions the authors’ whitepaper of the Strategic Multilayer Assessment Group, Joint Staff, Pentagon, and their essay to appear in the Defense Life Sciences Journal. The opinions expressed in this post are those of the authors, and do not necessarily represent those of the US Government, Department of Defense, and/or the institutions with which the authors are affiliated.


* Crank it up!  Karma is the sum of all actions in this and previous states of existence, viewed as deciding one’s fate in their future existence(s). https://en.oxforddictionaries.com/definition/karma

1 Lennon J. “Instant Karma! (We All Shine On).” Instant Karma! Apple Records, 1970.

2 Worldwide Threat Assessment of the US Intelligence Community, Senate, 116th Congress. p. 16 (2019) (Testimony of Daniel R. Coats).

3 Bremseth LR, Giordano J. Emerging technologies as threats in non-kinetic engagements. Mad Scientist Laboratory Post #105, 13. December, 2018. Available online at:
http://madsciblog.tradoc.army.mil/105-emerging-technologies-as-threats-in-non-kinetic-engagements/.

4 Ibid. ref. 2. p.24.

5 Ibid. ref. 2. p. 15.

6 Chen C, Andriola J, Giordano J. Biotechnology, commercial veiling and implications for strategic latency: The exemplar of neuroscience and neurotechnology research and development in China. In: Davis ZD, Nacht M. (eds.) Strategic Latency Red, White and Blue: Managing the National and International Security Consequences of Disruptive Technologies. Livermore, CA: Lawrence Livermore Press, 2018, pp. 12-32.

7 Nach, M, Laderman S, Beeston J. Strategic Competition in China-US Relations. No. 5, Lawrence Livermore National Laboratory Center for Global Security Research, October 2018.

8 Giordano J. Looking ahead: The importance of views, values, and voices in neuroethics –now. Camb Q Health Care Ethics 27(4): 728-731 (2018).

9 Shook JR, Giordano J. Ethics transplants? Addressing the risks and benefits of guiding international biomedicine. AJOB-Neurosci 8(4): 230-232 (2017).

10 Palchik G, Chen C, Giordano J. Monkey business? Development, influence and ethics of potentially dual-use brain science on the world stage. Neuroethics, 10:1-4 (2017).

11 Ibid. ref. 2. p. 26.

12 Ibid. ref. 6.

13 Ibid. ref. 2. p. 25.

14 Ibid. ref. 3.

15 Pillsbury M. The Hundred-Year Marathon: China’s Secret Strategy to Replace America as the Global Superpower. NY: Griffin, 2016. For additional overviews, see: Bipartisan Report of the Blue-Ribbon Study Panel on Biodefense. Biodefense Indicators: One Year Later; Events Outpacing Efforts to Defend the Nation, December 2016.  Siegrist DW, Tennyson SL (eds.) Technologically-based Biodefense. Arlington, VA: Potomac Institute Press (2003).

16 Ben Ouagrham-Gormley S. The bioweapons convention; A new approach. Bull Atomic Sci 71, Nov 24 (2015).

17 Giordano J. The neuroweapons threat. Bull Atomic Sci 72(3): May 31 (2016).

18 Ibid. ref. 3.

107. “The Queue”

[Editor’s Note: Mad Scientist Laboratory is pleased to present our November edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the previous month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment (OE). We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

1. Is China a global leader in research and development? China Power Project, Center for Strategic and International Studies (CSIS), 2018. 

The United States Army’s concept of Multi-Domain Operations 2028 describes Russia and China as strategic competitors working to synthesize emerging technologies, such as artificial intelligence, hypersonics, machine learning, nanotechnology, and robotics, with their analysis of military doctrine and operations. The Future OE’s Era of Contested Equality (i.e., 2035 through 2050) describes China’s ascent to a peer competitor and our primary pacing threat. The fuel for these innovations is research and development funding from the Chinese Government and businesses.

CSIS’s China Power Project recently published an assessment of the rise in China’s research and development funding. There are three key facts that demonstrate the remarkable increase in funding and planning that will continue to drive Chinese innovation. First, “China’s R&D expenditure witnessed an almost 30-fold increase from 1991 to 2015 – from $13 billion to $376 billion. Presently, China spends more on R&D than Japan, Germany, and South Korea combined, and only trails the United States in terms of gross expenditure. According to some estimates, China will overtake the US as the top R&D spender by 2020.”

Second, globally businesses are funding the majority of the research and development activities. China is now following this trend with its “businesses financing 74.7 percent ($282 billion) of the country’s gross expenditure on R&D in 2015.” Tracking the origin of this funding is difficult with the Chinese government also operating a number of State Owned Entities. This could prove to be a strength for the Chinese Army’s access to commercial innovation.

China’s Micius quantum satellite, part of their Quantum Experiments at Space Scale (QUESS) program

Third, the Chinese government is funding cutting edge technologies where they are seeking to be global leaders. “Expenditures by the Chinese government stood at 16.2 percent of total R&D usage in 2015. This ratio is similar to that of advanced economies, such as the United States (11.2 percent). Government-driven expenditure has contributed to the development of the China National Space Administration. The Tiangong-2 space station and the “Micius’ quantum satellite – the first of its kind – are just two such examples.”

2. Microsoft will give the U.S. military access to ‘all the technology we create’, by Samantha Masunaga, Los Angeles Times (on-line), 1 December 2018.

Success in the future OE relies on many key assumptions. One such assumption is that the innovation cycle has flipped. Where the DoD used to drive technological innovation in this country, we now see private industry (namely Silicon Valley) as the driving force with the Army consuming products and transitioning technology for military use. If this system is to work, as the assumption implies, the Army must be able to work easily with the country’s leading technology companies.  Microsoft’s President Brad Smith stated recently that his company will “provide the U.S. military with access to the best technology … all the technology we create. Full stop.”

This is significant to the DoD for two reasons: It gives the DoD, and thus the Army, access to one of the leading technology developers in the world (with cloud computing and AI solutions), and it highlights that the assumptions we operate under are never guaranteed. Most recently, Google made the decision not to renew its contract with the DoD to provide AI support to Project Maven – a decision motivated, in part, by employee backlash.

Our near-peer competitors do not appear to be experiencing similar tensions or friction between their respective governments and private industry.  China’s President Xi is leveraging private sector advances for military applications via a “whole of nation” strategy, leading China’s Central Military-Civil Fusion Development Commission to address priorities including intelligent unmanned systems, biology and cross-disciplinary technologies, and quantum technologies.  Russia seeks to generate innovation by harnessing its defense industries with the nation’s military, civilian, and academic expertise at their Era Military Innovation Technopark to concentrate on advances in “information and telecommunication systems, artificial intelligence, robotic complexes, supercomputers, technical vision and pattern recognition, information security, nanotechnology and nanomaterials, energy tech and technology life support cycle, as well as bioengineering, biosynthetic, and biosensor technologies.”

Microsoft openly declaring its willingness to work seamlessly with the DoD is a substantial step forward toward success in the new innovation cycle and success in the future OE.

3. The Truth About Killer Robots, directed by Maxim Pozdorovkin, Third Party Films, premiered on HBO on 26 November 2018.

This documentary film could have been a highly informative piece on the disruptive potential posed by robotics and autonomous systems in future warfare. While it presents a jumble of interesting anecdotes addressing the societal changes wrought by the increased prevalence of autonomous systems, it fails to deliver on its title. Indeed, robot lethality is only tangentially addressed in a few of the documentary’s storylines:  the accidental death of a Volkswagen factory worker crushed by autonomous machinery; the first vehicular death of a driver engrossed by a Harry Potter movie while sitting behind the wheel of an autonomous-driving Tesla in Florida, and the use of a tele-operated device by the Dallas police to neutralize a mass shooter barricaded inside a building.

Russian unmanned, tele-operated BMP-3 shooting its 30mm cannon on a test range / Zvezda Broadcasting via YouTube

Given his choice of title, Mr. Pozdorovkin would have been better served in interviewing activists from the Campaign to Stop Killer Robots and participants at the Convention on Certain Conventional Weapons (CCW) who are negotiating in good faith to restrict the proliferation of lethal autonomy. A casual search of the Internet reveals a number of relevant video topics, ranging from the latest Russian advances in unmanned Ground Combat Vehicles (GCV) to a truly dystopian vision of swarming killer robots.

Instead, Mr. Pozdorovkin misleads his viewers by presenting a number creepy autonomy outliers (including a sad Chinese engineer who designed and then married his sexbot because of his inability to attract a living female mate given China’s disproportionately male population due to their former One-Child Policy); employing a sinister soundtrack and facial recognition special effects; and using a number of vapid androids (e.g., Japan’s Kodomoroid) to deliver contrived narration hyping a future where the distinction between humanity and machines is blurred. Where are Siskel and Ebert when you need ’em?

4. Walmart will soon use hundreds of AI robot janitors to scrub the floors of U.S. stores,” by Tom Huddleston Jr., CNBC, 5 December 2018.

The retail superpower Walmart is employing hundreds of robots in stores across the country, starting next month. These floor-scrubbing janitor robots will keep the stores’ floors immaculate using autonomous navigation that will be able to sense both people and obstacles.

The introduction of these autonomous cleaners will not be wholly disruptive to Walmart’s workforce operations, as they are only supplanting a task that is onerous for humans. But is this just the beginning? As humans’ comfort levels grow with the robots, will there then be an introduction of robot stocking, not unlike what is happening with Amazon? Will robots soon handle routine exchanges? And what of the displaced or under-employed workers resulting from this proliferation of autonomy, the widening economic gap between the haves and the have-nots, and the potential for social instability from neo-luddite movements in the Future OE?   Additionally, as these robots become increasingly conspicuous throughout our everyday lives in retail, food service, and many other areas, nefarious actors could hijack them or subvert them for terroristic, criminal, or generally malevolent uses.

The introduction of floor-cleaning robots at Walmart has larger implications than one might think. Robots are being considered for all the dull, dirty, and dangerous tasks assigned to the Army and the larger Department of Defense. The autonomous technology behind robots in Walmart today could have implications for our Soldiers at their home stations or on the battlefield of the future, conducting refueling and resupply runs, battlefield recovery, medevac, and other logistical and sustainment tasks.

5. What our science fiction says about us, by Tom Cassauwers, BBC News, 3 December 2018.

Right now the most interesting science fiction is produced in all sorts of non-traditional places,” says Anindita Banerjee, Associate Professor at Cornell University, whose research focuses on global sci-fi.  Sci-Fi and story telling enable us to break through our contemporary, mainstream echo chamber of parochialism to depict future technological possibilities and imagined worlds, political situations, and conflict. Unsurprisingly, different visions of the future imagining alternative realities are being written around the world – in China, Russia, and Africa. This rise of global science fiction challenges how we think about the evolution of the genre.  Historically, our occidental bias led us to believe that sci-fi was spreading from Western centers out to the rest of the world, blinding us to the fact that other regions also have rich histories of sci-fi depicting future possibilities from their cultural perspectives. Chinese science fiction has boomed in recent years, with standout books like Cixin Liu’s The Three-Body ProblemAfrofuturism is also on the rise since the release of the blockbuster Black Panther.

The Mad Scientist Initiative uses Crowdsourcing and Story Telling as two innovative tools to help us envision future possibilities and inform the OE through 2050. Strategic lessons learned from looking at the Future OE show us that the world of tomorrow will be far more challenging and dynamic. In our FY17 Science Fiction Writing Contest, we asked our community of action to describe Warfare in 2030-2050.  The stories submitted showed virtually every new technology is connected to and intersecting with other new technologies and advances.  The future OE presents us with a combination of new technologies and societal changes that will intensify long-standing international rivalries, create new security dynamics, and foster instability as well as opportunities. Sci-fi transcends beyond a global reflection on resistance; non-Western science fiction also taps into a worldwide consciousness – helping it conquer audiences beyond their respective home markets.

6. NVIDIA Invents AI Interactive Graphics, Nvidia.com, 3 December 2018.

A significant barrier to the modeling and simulation of dense urban environments has been the complexity of these areas in terms of building, vehicle, pedestrian, and foliage density. Megacities and their surrounding environments have such a massive concentration of entities that it has been a daunting task to re-create them digitally.  Nvidia has recently developed a first-step solution to this ongoing problem. Using neural networks and generative models, the developers are able to train AI to create realistic urban environments based off of real-world video.

As Nvidia admits, “One of the main obstacles developers face when creating virtual worlds, whether for game development, telepresence, or other applications is that creating the content is expensive. This method allows artists and developers to create at a much lower cost, by using AI that learns from the real world.” This process could significantly compress the development timeline, and while it wouldn’t address the other dimensions of urban operations — those entities that are underground or inside buildings (multi-floor and multi-room) — it would allow the Army to divert and focus more resources in those areas. The Chief of Staff of the Army has made readiness his #1 priority and stated, “In the future, I can say with very high degrees of confidence, the American Army is probably going to be fighting in urban areas,” and the Army “need[s] to man, organize, train and equip the force for operations in urban areas, highly dense urban areas.” 1  Nvidia’s solution could enable and empower the force to meet that goal.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future OE, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!


1Commentary: The missing link to preparing for military operations in megacities and dense urban areas,” by Claudia ElDib and John Spencer, Army Times, 20 July 2018, https://www.armytimes.com/opinion/commentary/2018/07/20/commentary-the-missing-link-to-preparing-for-military-operations-in-megacities-and-dense-urban-areas/.

105. Emerging Technologies as Threats in Non-Kinetic Engagements

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s post by returning guest blogger and proclaimed Mad Scientist Dr. James Giordano and CAPT (USN – Ret.) L. R. Bremseth, identifying the national security challenges presented by emerging technologies, specifically when employed by our strategic competitors and non-state actors alike in non-kinetic engagements.

Dr. Giordano’s and CAPT Bremseth’s post is especially relevant, given the publication earlier this month of TRADOC Pamphlet 525-3-1, U.S. Army in Multi-Domain Operations 2028, and its solution to the “problem of layered standoff,” namely “the rapid and continuous integration of all domains of warfare to deter and prevail as we compete short of armed conflict; penetrate and dis-integrate enemy anti-access and area denial systems; exploit the resulting freedom of maneuver to defeat enemy systems, formations and objectives and to achieve our own strategic objectives; and consolidate gains to force a return to competition on terms more favorable to the U.S., our allies and partners.”]

“Victorious warriors seek to win first then go to war, while defeated warriors go to war first then seek to win.” — Sun Tzu

Non-kinetic Engagements

Political and military actions directed at adversely impacting or defeating an opponent often entail clandestine operations which can be articulated across a spectrum that ranges from overt warfare to subtle “engagements.” Routinely, the United States, along with its allies (and adversaries), has employed clandestine tactics and operations across the kinetic and non-kinetic domains of warfare. Arguably, the execution of clandestine kinetic operations is employed more readily as these collective activities often occur after the initiation of conflict (i.e., “Right of Bang”), and their effects may be observed (to various degrees) and/or measured. Given that clandestine non-kinetic activities are less visible and insidious, they may be particularly (or more) effective because often they are unrecognized and occur “Left of Bang.” Other nations, especially adversaries, understand the relative economy of force that non-kinetic engagements enable and increasingly are focused upon developing and articulating advanced methods for operations.

Much has been written about the fog of war. Non-kinetic engagements can create unique uncertainties prior to and/or outside of traditional warfare, precisely because they have qualitatively and quantitatively “fuzzy boundaries” as blatant acts of war. The “intentionally induced ambiguity” of non-kinetic engagements can establish plus-sum advantages for the executor(s) and zero-sum dilemmas for the target(s). For example, a limited scale non-kinetic action, which exerts demonstrably significant effects but does not meet defined criteria for an act of war, places the targeted recipient(s) at a disadvantage:  First, in that the criteria for response (and proportionality) are vague and therefore any response could be seen as questionable; and second, in that if the targeted recipient(s) responds with bellicose action(s), there is considerable likelihood that they may be viewed as (or provoked to be) the aggressor(s) (and therefore susceptible to some form of retribution that may be regarded as sanctionable).

Nominally, non-kinetic engagements often utilize non-military means to expand the effect-space beyond the conventional battlefield. The Department of Defense and Joint Staff do not have a well agreed-upon lexicon to define and to express the full spectrum of current and potential activities that constitute non-kinetic engagements. It is unfamiliar – and can be politically uncomfortable – to use non-military terms and means to describe non-kinetic engagements. As previously noted, it can be politically difficult – if not precarious– to militarily define and respond to non-kinetic activities.

Non-kinetic engagements are best employed to incur disruptive effects in and across various dimensions of effect (e.g., biological, psychological, social) that can lead to intermediate to long-term destructive manifestations (in a number of possible domains, ranging from the economic to the geo-political). The latent disruptive and destructive effects should be framed and regarded as “Grand Strategy” approaches that evoke outcomes in a “long engagement/long war” context rather than merely in more short-term tactical situations.1

Thus, non-kinetic operations must be seen and regarded as “tools of mass disruption,” incurring “rippling results” that can evoke both direct and indirect de-stabilizing effects. These effects can occur and spread:  1) from the cellular (e.g., affecting physiological function of a targeted individual) to the socio-political scales (e.g., to manifest effects in response to threats, burdens and harms incurred by individual and/or groups); and 2) from the personal (e.g., affecting a specific individual or particular group of individuals) to the public dimensions in effect and outcome (e.g., by incurring broad scale reactions and responses to key non-kinetic events).2

Given the increasing global stature, capabilities, and postures of Asian nations, it becomes increasingly important to pay attention to aspects of classical Eastern thought (e.g., Sun Tzu) relevant to bellicose engagement. Of equal importance is the recognition of various nations’ dedicated enterprises in developing methods of non-kinetic operations (e.g., China; Russia), and to understand that such endeavors may not comport with the ethical systems, principles, and restrictions adhered to by the United States and its allies.3, 4 These differing ethical standards and practices, if and when coupled to states’ highly centralized abilities to coordinate and to synchronize activity of the so-called “triple helix” of government, academia, and the commercial sector, can create synergistic force-multiplying effects to mobilize resources and services that can be non-kinetically engaged.5 Thus, these states can target and exploit the seams and vulnerabilities in other nations that do not have similarly aligned, multi-domain, coordinating capabilities.

Emerging Technologies – as Threats

Increasingly, emerging technologies are being leveraged as threats for such non-kinetic engagements. While the threat of radiological, nuclear, and (high yield) explosive technologies have been and remain generally well surveilled and controlled to date, new and convergent innovations in the chemical, biological, cyber sciences, and engineering are yielding tools and methods that currently are not completely, or effectively addressed. An overview of these emerging technologies is provided in Table 1 below.

Table 1

Of key interest are the present viability and current potential value of the brain sciences to be engaged in these ways.6, 7, 8 The brain sciences entail and obtain new technologies that can be applied to affect chemical and biological systems in both kinetic (e.g., chemical and biological ‘warfare’ but in ways that may sidestep definition – and governance – by existing treaties and conventions such as the Biological Toxins and Weapons Convention (BTWC), and Chemical Weapons Convention (CWC), and/or non-kinetic ways (which fall outside of, and therefore are not explicitly constrained by, the scope and auspices of the BTWC or CWC).9, 10

As recent incidents (e.g., “Havana Syndrome”; use of novichok; infiltration of foreign-produced synthetic opioids to US markets) have demonstrated, the brain sciences and technologies have utility to affect “minds and hearts” in (kinetic and non-kinetic) ways that elicit biological, psychological, socio-economic, and political effects which can be clandestine, covert, or attributional, and which evoke multi-dimensional ripple effects in particular contexts (as previously discussed). Moreover, apropos current events, the use of gene editing technologies and techniques to modify existing microorganisms11, and/or selectively alter human susceptibility to disease12 , reveal the ongoing and iterative multi-national interest in and considered weaponizable use(s) of emerging biotechnologies as instruments to incur “precision pathologies” and “immaculate destruction” of selected targets.

Toward Address, Mitigation, and Prevention

Without philosophical understanding of and technical insight into the ways that non-kinetic engagements entail and affect civilian, political, and military domains, the coordinated assessment and response to any such engagement(s) becomes procedurally complicated and politically difficult. Therefore, we advocate and propose increasingly dedicated efforts to enable sustained, successful surveillance, assessment, mitigation, and prevention of the development and use of Emerging Technologies as Threats (ETT) to national security. We posit that implementing these goals will require coordinated focal activities to:  1) increase awareness of emerging technologies that can be utilized as non-kinetic threats; 2) quantify the likelihood and extent of threat(s) posed; 3) counter identified threats; and 4) prevent or delay adversarial development of future threats.

Further, we opine that a coordinated enterprise of this magnitude will necessitate a Whole of Nations approach so as to mobilize the organizations, resources, and personnel required to meet other nations’ synergistic triple helix capabilities to develop and non-kinetically engage ETT.

Utilizing this approach will necessitate establishment of:

1. An office (or network of offices) to coordinate academic and governmental research centers to study and to evaluate current and near-future non-kinetic threats.

2. Methods to qualitatively and quantitatively identify threats and the potential timeline and extent of their development.

3. A variety of means for protecting the United States and allied interests from these emerging threats.

4. Computational approaches to create and to support analytic assessments of threats across a wide range of emerging technologies that are leverageable and afford purchase in non-kinetic engagements.

In light of other nations’ activities in this domain, we view the non-kinetic deployment of emerging technologies as a clear, present, and viable future threat. Therefore, as we have stated in the past13, 14, 15 , and unapologetically re-iterate here, it is not a question of if such methods will be utilized but rather questions of when, to what extent, and by which group(s), and most importantly, if the United States and its allies will be prepared for these threats when they are rendered.

If you enjoyed reading this post, please also see Dr. Giordano’s presentations addressing:

War and the Human Brain podcast, posted by our colleagues at Modern War Institute on 24 July 2018.

Neurotechnology in National Security and Defense from the Mad Scientist Visioning Multi-Domain Battle in 2030-2050 Conference, co-hosted by Georgetown University in Washington, D.C., on 25-26 July 2017.

Brain Science from Bench to Battlefield: The Realities – and Risks – of Neuroweapons from Lawrence Livermore National Laboratory’s Center for Global Security Research (CGSR), on 12 June 2017.

Mad Scientist James Giordano, PhD, is Professor of Neurology and Biochemistry, Chief of the Neuroethics Studies Program, and Co-Director of the O’Neill-Pellegrino Program in Brain Science and Global Law and Policy at Georgetown University Medical Center. He also currently serves as Senior Biosciences and Biotechnology Advisor for CSCI, Springfield, VA, and has served as Senior Science Advisory Fellow of the Strategic Multilayer Assessment Group of the Joint Staff of the Pentagon.

R. Bremseth, CAPT, USN SEAL (Ret.), is Senior Special Operations Forces Advisor for CSCI, Springfield, VA. A 29+ years veteran of the US Navy, he commanded SEAL Team EIGHT, Naval Special Warfare GROUP THREE, and completed numerous overseas assignments. He also served as Deputy Director, Operations Integration Group, for the Department of the Navy.

This blog is adapted with permission from a whitepaper by the authors submitted to the Strategic Multilayer Assessment Group/Joint Staff Pentagon, and from a manuscript currently in review at HDIAC Journal. The opinions expressed in this piece are those of the authors, and do not necessarily reflect those of the United States Department of Defense, and/or the organizations with which the authors are involved. 


1 Davis Z, Nacht M. (Eds.) Strategic Latency- Red, White and Blue: Managing the National and international Security Consequences of Disruptive Technologies. Livermore CA: Lawrence Livermore Press, 2018.

2 Giordano J. Battlescape brain: Engaging neuroscience in defense operations. HDIAC Journal 3:4: 13-16 (2017).

3 Chen C, Andriola J, Giordano J. Biotechnology, commercial veiling, and implications for strategic latency: The exemplar of neuroscience and neurotechnology research and development in China. In: Davis Z, Nacht M. (Eds.) Strategic Latency- Red, White and Blue: Managing the National and international Security Consequences of Disruptive Technologies. Livermore CA: Lawrence Livermore Press, 2018.

4 Palchik G, Chen C, Giordano J. Monkey business? Development, influence and ethics of potentially dual-use brain science on the world stage. Neuroethics, 10:1-4 (2017).

5 Etzkowitz H, Leydesdorff L. The dynamics of innovation: From national systems and “Mode 2” to a Triple Helix of university-industry-government relations. Research Policy, 29: 109-123 (2000).

6 Forsythe C, Giordano J. On the need for neurotechnology in the national intelligence and defense agenda: Scope and trajectory. Synesis: A Journal of Science, Technology, Ethics and Policy 2(1): T5-8 (2011).

7 Giordano J. (Ed.) Neurotechnology in National Security and Defense: Technical Considerations, Neuroethical Concerns. Boca Raton: CRC Press (2015).

8 Giordano J. Weaponizing the brain: Neuroscience advancements spark debate. National Defense, 6: 17-19 (2017).

9 DiEuliis D, Giordano J. Why gene editors like CRISPR/Cas may be a game-changer for neuroweapons. Health Security 15(3): 296-302 (2017).

10 Gerstein D, Giordano J. Re-thinking the Biological and Toxin Weapons Convention? Health Security 15(6): 1-4 (2017).

11 DiEuliis D, Giordano J. Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity. Protein and Cell 15: 1-2 (2017).

12 See, for example: https://www.vox.com/science-and-health/2018/11/30/18119589/crispr-technology-he-jiankui (Accessed 2. December, 2018).

13 Giordano J, Wurzman R. Neurotechnology as weapons in national intelligence and defense. Synesis: A Journal of Science, Technology, Ethics and Policy 2: 138-151 (2011).

14 Giordano J, Forsythe C, Olds J. Neuroscience, neurotechnology and national security: The need for preparedness and an ethics of responsible action. AJOB-Neuroscience 1(2): 1-3 (2010).

15 Giordano J. The neuroweapons threat. Bulletin of the Atomic Scientists 72(3): 1-4 (2016).

97. The Cryptoruble as a Stepping Stone to Digital Sovereignty

“By 2038, there won’t just be one internet — there will be many, split along national lines” — An Xiao Mina, 2038 podcast, Episode 2, New York Magazine Intelligencer, 25 October 2018.

[Editor’s Note:  While the prediction above is drawn from a podcast that posits an emerging tech cold war between China and the U.S., the quest for digital sovereignty and national cryptocurrencies is an emerging global trend that portends the fracturing of the contemporary internet into national intranets.  This trend erodes the prevailing Post-Cold War direction towards globalization.  In today’s post, Mad Scientist Laboratory welcomes back guest blogger Dr. Mica Hall, who addresses Russia’s move to adopt a national cryptocurrency, the cryptoruble, as a means of asserting its digital sovereignty and ensuring national security.  The advent of the cryptoruble will have geopolitical ramifications far beyond Mother Russia’s borders, potentially ushering in an era of economic hegemony over those states that embrace this supranational cryptocurrency. (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

At the nexus of monetary policy, geopolitics, and information control is Russia’s quest to expand its digital sovereignty. At the October 2017 meeting of the Security Council, “the FSB [Federal Security Service] asked the government to develop an independent ‘Internet’ infrastructure for BRICS nations [Brazil, Russia, India, China, South Africa], which would continue to work in the event the global Internet malfunctions.” 1 Security Council members argued the Internet’s threat to national security is due to:

“… the increased capabilities of Western nations to conduct offensive operations in the informational space as well as the increased readiness to exercise these capabilities.”2

This echoes the sentiment of Dmitry Peskov, Putin’s Press Secretary, who stated in 2014,

We all know who the chief administrator of the global Internet is. And due to its volatility, we have to think about how to ensure our national security.”3

At that time, the Ministry of Communications (MinCom) had just tested a Russian back-up to the Internet to support a national “Intranet,” lest Russia be left vulnerable if the global Domain Name Servers (DNS) are attacked. MinCom conducted “a major exercise in which it simulated ‘switching off’ global Internet services,” and in 2017, the Security Council decided to create just such a backup system “which would not be subject to control by international organizations” for use by the BRICS countries.4

While an Internet alternative (or Alternet) may be sold to the Russian public as a way to combat the West’s purported advantage in the information war, curb excessive dependency on global DNS, and protect the country from the foreign puppet masters of the Internet that “pose a serious threat to Russia’s security,”5 numerous experts doubt Russia’s actual ability to realize the plan, given its track record.

Take the Eurasian Economic Union (EAEU), for example, an international organization comprised of Russia, Kazakhstan, Kyrgyzstan, Armenia, and Belarus. Russia should be able to influence the EAEU even more than the BRICS countries, given its leading role in establishing the group. The EAEU was stood up in January 2016, and by December, “MinCom and other government agencies were given the order to develop and confirm a program for the ‘Digital Economy,’ including plans to develop [it in] the EAEU.”6 As Slavin observes, commercial ventures have already naturally evolved to embrace the actual digital economy: “The digital revolution has already occurred, business long ago switched to electronic interactions,”7 while the state has yet to realize its Digital Economy platform.

Changing the way the government does business has proven more difficult than changing the actual economy. According to Slavin, “The fact that Russia still has not developed a system of digital signatures, that there’s no electronic interaction between government and business or between countries of the EAEU, and that agencies’ information systems are not integrated – all of that is a problem for the withered electronic government that just cannot seem to ripen.”8 The bridge between the state and the actual digital economy is still waiting for “legislation to support it and to recognize the full equality of electronic and paper forms.”9 Consequently, while the idea to create a supranational currency to be used in the EAEU has been floated many times, the countries within the organization have not been able to agree on what that currency would be.

The cryptoruble could be used to affect geopolitical relationships. In addition to wielding untraceable resources, Russia could also leverage this technology to join forces with some countries against others. According to the plan President Putin laid out upon announcing the launch of a cryptoruble, Russia would form a “single payment space” for the member states of the EAEU, based on “the use of new financial technologies, including the technology of distributed registries.”10 Notably, three months after the plan to establish a cryptoruble was announced, Russia’s Central Bank stated the value of working on establishing a supranational currency to be used either across the BRICS countries or across the EAEU, or both, instead of establishing a cryptoruble per se.11

This could significantly affect the balance of power not only in the region, but also in the world. Any country participating in such an economic agreement, however, would subject themselves to being overrun by a new hegemony, that of the supranational currency.

 

As long as the state continues to cloak its digital sovereignty efforts in the mantle of national security – via the cryptoruble or the Yarovaya laws, which increase Internet surveillance – it can continue to constrict the flow of information without compunction. As Peskov stated, “It’s not about disconnecting Russia from the World Wide Web,” but about “protecting it from external influence.”12 After Presidents Putin and Trump met at the G20 Summit in July 2017, MinCom Nikiforov said the two countries would establish a working group “for the control and security of cyberspace,” which the U.S. Secretary of State said would “develop a framework for cybersecurity and a non-interference agreement.”13 Prime Minister Medvedev, however, said digitizing the economy is both “a matter of Russia’s global competitiveness and national security,”14 thus indicating Russia is focused not solely inward, but on a strategic competitive stance. MinCom Nikiforov makes the shortcut even clearer, stating, “In developing the economy, we need digital sovereignty,”15 indicating a need to fully control how the country interacts with the rest of the world in the digital age.

The Kremlin’s main proponent for digital sovereignty, Igor Ashmanov, claims, “Digital sovereignty is the right of the government to independently determine what is happening in their digital sphere. And make its own decisions.” He adds, “Only the Americans have complete digital sovereignty. China is growing its sovereignty. We are too.”16 According to Lebedev, “Various incarnations of digital sovereignty are integral to the public discourse in most countries,” and in recent years, “The idea of reining in global information flows and at least partially subjugating them to the control of certain traditional or not-so-traditional jurisdictions (the European Union, the nation-state, municipal administrations) has become more attractive.”17   In the Russian narrative, which portrays every nation as striving to gain the upper hand on the information battlefield, Ashmanov’s fear that, “The introduction of every new technology is another phase in the digital colonization of our country,”18 does not sound too far-fetched.

The conspiracy theorists to the right of the administration suggest the “global world order” represented by the International Monetary Fund intends to leave Russia out of its new replacement reference currency, saying “Big Brother is coming to blockchain.”19 Meanwhile, wikireality.ru reports the Russian government could limit web access in the name of national security, because the Internet “is a CIA project and the U.S. is using information wars to destroy governments,” using its “cybertroops.”20 As the site notes, the fight against terrorism has been invoked as a basis for establishing a black list of websites available within Russia. Just as U.S. citizens have expressed concerns over the level of surveillance made legal by the Patriot Act, so Russian netizens have expressed concerns over the Yarovaya laws and moves the state has made to facilitate information sovereignty.

According to the Financial Times, “This interest in cryptocurrencies shows Russia’s desire to take over an idea originally created without any government influence. It was like that with the Internet, which the Kremlin has recently learned to tame.”21 Meanwhile, a healthy contingent of Russian language netizens continue to express their lack of faith in the national security argument, preferring to embrace a more classical skepticism, as reflected in comments in response to a 2017 post by msmash called, “From the Never-Say-Never-But-Never Department,” — “In Putin’s Russia, currency encrypts you!”22 To these netizens, the state looks set to continue to ratchet down on Internet traffic: “It’s really descriptive of just how totalitarian the country has become that they’re hard at work out-Chinaing China itself when it comes to control of the Internet,” but “China is actually enforcing those kind of laws against its people. In Russia, on the other hand, the severity of the laws is greatly mitigated by the fact that nobody gives a **** about the law.”23 In addition to suggesting personal security is a fair price to be paid for national security via surveillance and Internet laws, the state appears poised to argue all information about persons in the country, including about their finances, should also be “transparent” to fight terrorism and crime in general.

If you enjoyed reading this post, please also see:

Dr. Mica Hall is a Russian linguist and holds an MA and PhD in Slavic Linguistics and an MPA.

The views expressed in this article are those of the author and do not reflect the official policy or position of the Department of the Army, DoD, or the U.S. Government.


1 Russia to Launch ‘Independent Internet’ for BRICS Nations – Report, 2017, RT.com, https://www.rt.com/politics/411156-russia-to-launch-independent-internet/, 28 November 2017.

2 Russia to Launch.

3 Russia to Launch.

4 Russia to Launch.

5 Russia to Launch.

6 Boris Slavin, 2017, People or Digits: Which One Do We Need More? vedomosti.ru, https://www.vedomosti.ru/opinion/articles/2017/01/17/673248-lyudi-tsifri-nuzhnee, 17 January 2017.

7 Slavin, People or Digits.

8 Slavin, People or Digits.

9 Slavin, People or Digits.

10 Kyree Leary, 2017, Vladimir Putin Just Revealed Russia’s Plans for Cryptocurrencies, futurism.com, https://futurism.com/vladimir-putin-just-revealed-russias-plans-for-cryptocurrencies/, 26 October 26017.

11 CB is Discussing Creating a Supranational Cryptocurrency Together With EAEU and BRICS, 2017, vedomosti.ru, https://www.vedomosti.ru/finance/news/2017/12/28/746856-sozdanie-kriptovalyuti-v-ramkah-eaes-i-briks-bank-rossii-v-2018-g, 28 December 2017.

12 Russia to Launch.

13 Russia and the US to Create a Working Group for the Regulation of Cyberspace, 2017, RIA Novosti, https://ria.ru/world/20170708/1498126496.html?=inj=1, 8 July 2017.

14 MinComSvyazi: We Need Digital Sovereignty to Develop the Economy, 2017, RIA Novosti, https://ria.ru/soceity/20170905/1501809181.html, 5 September 2017.

15 MinComSvyazi: We Need Digital Sovereignty.

16 Irina Besedovala, 2016, The Yarovaya Laws Will Save Us from the CIA, fontanka.ru, http://www.fontanka.ru/2016/10/22/061/, 22 October 2016.

17 Dmitry Lebedev, 2017, Digital Sovereignty à la Russe, opendemocracy.net, https://www.opendemocracy.net/od-russia/dmitry-lebedev/digital-sovereignty-a-la-russe, 3 November 2017.

18 Igor Ashmanov, 2017, The Recipe for Digital Sovereignty, Rossijskoe Agentstvo Novostej, http://www.ru-an.info/, 22 August 2017.

19 Global Elites’ Secret Plan for Cryptocurrencies, 2017, pravosudija.net, http://www. pravdosudija.net/article/sekretynyy-plan-globalnyh-elit-otnositelno-kriptovalyut, 5 September 2017.

20 Information Sovereignty, 2017, wikireality.ru, http://www.wikireality.ru/wiki/Информационный_сувернитет, 28 March 2017.

21 FT: Russia Is Looking For A Way to “Cut Off” Cryptocurrencies, 2018, Russian RT, https://russian.rt.com/inotv/2018-01-02/FT-Rossiya-ishhet-sposob-ukrotit, 2 January 2018.

22 msmash, 2017, We’ll Never Legalize Bitcoin, Says Russian Minister, yro.slashdot.org, https://yro.slashdot.org/story/17/11/22/2111216/well-never-legalize-bitcoin-says-russian-minister, 22 November 2017.

23 We’ll Never Legalize Bitcoin.

81. “Maddest” Guest Blogger!

[Editor’s Note: Since its inception last November, the Mad Scientist Laboratory has enabled us to expand our reach and engage global innovators from across industry, academia, and the Government regarding emergent disruptive technologies and their individual and convergent impacts on the future of warfare. For perspective, our blog has accrued almost 60K views by over 30K visitors from around the world!

Our Mad Scientist Community of Action continues to grow — in no small part due to the many guest bloggers who have shared their provocative, insightful, and occasionally disturbing visions of the future. Almost half (36 out of 81) of the blog posts published have been submitted by guest bloggers. We challenge you to contribute your ideas!

In particular, we would like to recognize Mad Scientist Mr. Sam Bendett by re-posting his submission entitled “Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward,” originally published on 25 June 2018. This post generated a record number of visits and views during the past six month period. Consequently, we hereby declare Sam to be the Mad Scientist Laboratory’s “Maddest” Guest Blogger! for the latter half of FY18. In recognition of his achievement, Sam will receive much coveted Mad Scientist swag.

While Sam’s post revealed the many challenges Russia has experienced in combat testing the Uran-9 Unmanned Ground Vehicle (UGV) in Syria, it is important to note that Russia has designed, prototyped,  developed, and operationally tested this system in a combat environment, demonstrating a disciplined and proactive approach to innovation.  Russia is learning how to integrate robotic lethal ground combat systems….

Enjoy re-visiting Sam’s informative post below, noting that many of the embedded links are best accessed using non-DoD networks.]

Russia’s Forpost UAV (licensed copy of IAI Searcher II) in Khmeimim, Syria; Source: https://t.co/PcNgJ811O8

Russia, like many other nations, is investing in the development of various unmanned military systems. The Russian defense establishment sees such systems as mission multipliers, highlighting two major advantages: saving soldiers’ lives and making military missions more effective. In this context, Russian developments are similar to those taking place around the world. Various militaries are fielding unmanned systems for surveillance, intelligence, logistics, or attack missions to make their forces or campaigns more effective. In fact, the Russian military has been successfully using Unmanned Aerial Vehicles (UAVs) in training and combat since 2013. It has used them with great effect in Syria, where these UAVs flew more mission hours than manned aircraft in various Intelligence, Surveillance, and Reconnaissance (ISR) roles.

Russia is also busy designing and testing many unmanned maritime and ground vehicles for various missions with diverse payloads. To underscore the significance of this emerging technology for the nation’s armed forces, Russian Defense Minister Sergei Shoigu recently stated that the serial production of ground combat robots for the military “may start already this year.”

Uran-9 combat UGV at Victory Day 2018 Parade in Red Square; Source: independent.co.uk

But before we see swarms of ground combat robots with red stars emblazoned on them, the Russian military will put these weapons through rigorous testing in order to determine if they can correspond to battlefield realities. Russian military manufacturers and contractors are not that different from their American counterparts in sometimes talking up the capabilities of their creations, seeking to create the demand for their newest achievement before there is proof that such technology can stand up to harsh battlefield conditions. It is for this reason that the Russian Ministry of Defense (MOD) finally established several centers such as Main Research and Testing Center of Robotics, tasked with working alongside the defense-industrial sector to create unmanned military technology standards and better communicate warfighters’ needs.  The MOD is also running conferences such as the annual “Robotization of the Armed Forces” that bring together military and industry decision-makers for a better dialogue on the development, growth, and evolution of the nation’s unmanned military systems.

Uran-9 Combat UGV, Source: nationalinterest.org

This brings us to one of the more interesting developments in Russian UGVs. Then Russian Deputy Defense Minister Borisov recently confirmed that the Uran-9 combat UGV was tested in Syria, which would be the first time this much-discussed system was put into combat. This particular UGV is supposed to operate in teams of three or four and is armed with a 30mm cannon and 7.62 mm machine guns, along with a variety of other weapons.

Just as importantly, it was designed to operate at a distance of up to three kilometers (3000 meters or about two miles) from its operator — a range that could be extended up to six kilometers for a team of these UGVs. This range is absolutely crucial for these machines, which must be operated remotely. Russian designers are developing operational electronics capable of rendering the Uran-9 more autonomous, thereby moving the operators to a safer distance from actual combat engagement. The size of a small tank, the Uran-9 impressed the international military community when first unveiled and it was definitely designed to survive battlefield realities….

Uran-9; Source: Defence-Blog.com

However, just as “no plan survives first contact with the enemy,” the Uran-9, though built to withstand punishment, came up short in its first trial run in Syria. In a candid admission, Andrei P. Anisimov, Senior Research Officer at the 3rd Central Research Institute of the Ministry of Defense, reported on the Uran-9’s critical combat deficiencies during the 10th All-Russian Scientific Conference entitled “Actual Problems of Defense and Security,” held in April 2018. In particular, the following issues came to light during testing:

• Instead of its intended range of several kilometers, the Uran-9 could only be operated at distance of “300-500 meters among low-rise buildings,” wiping out up to nine-tenths of its total operational range.

• There were “17 cases of short-term (up to one minute) and two cases of long-term (up to 1.5 hours) loss of Uran-9 control” recorded, which rendered this UGV practically useless on the battlefield.

• The UGV’s running gear had problems – there were issues with supporting and guiding rollers, as well as suspension springs.

• The electro-optic stations allowed for reconnaissance and identification of potential targets at a range of no more than two kilometers.

• The OCH-4 optical system did not allow for adequate detection of adversary’s optical and targeting devices and created multiple interferences in the test range’s ground and airspace.

Uran-9 undergoing testing; Source: YouTube

• Unstable operation of the UGV’s 30mm automatic cannon was recorded, with firing delays and failures. Moreover, the UGV could fire only when stationary, which basically wiped out its very purpose of combat “vehicle.”

• The Uran-9’s combat, ISR, and targeting weapons and mechanisms were also not stabilized.

On one hand, these many failures are a sign that this much–discussed and much-advertised machine is in need of significant upgrades, testing, and perhaps even a redesign before it gets put into another combat situation. The Russian military did say that it tested nearly 200 types of weapons in Syria, so putting the Uran-9 through its combat paces was a logical step in the long development of this particular UGV. If the Syrian trial was the first of its kind for this UGV, such significant technical glitches would not be surprising.

However, the MOD has been testing this Uran-9 for a while now, showing videos of this machine at a testing range, presumably in Russia. The truly unexpected issue arising during operations in Syria had to do with the failure of the Uran-9 to effectively engage targets with its cannon while in motion (along with a number of other issues). Still, perhaps many observers bought into the idea that this vehicle would perform as built – tracks, weapons, and all. A closer examination of the publicly-released testing video probably foretold some of the Syrian glitches – in this particular one, Uran-9 is shown firing its machine guns while moving, but its cannon was fired only when the vehicle was stationary. Another interesting aspect that is significant in hindsight is that the testing range in the video was a relatively open space – a large field with a few obstacles around, not the kind of complex terrain, dense urban environment encountered in Syria. While today’s and future battlefields will range greatly from open spaces to megacities, a vehicle like the Uran-9 would probably be expected to perform in all conditions. Unless, of course, Syrian tests would effectively limit its use in future combat.

Russian Soratnik UGV

On another hand, so many failures at once point to much larger issues with the Russian development of combat UGVs, issues that Anisimov also discussed during his presentation. He highlighted the following technological aspects that are ubiquitous worldwide at this point in the global development of similar unmanned systems:

• Low level of current UGV autonomy;

• Low level of automation of command and control processes of UGV management, including repairs and maintenance;

• Low communication range, and;

• Problems associated with “friend or foe” target identification.

Judging from the Uran-9’s Syrian test, Anisimov made the following key conclusions which point to the potential trajectory of Russian combat UGV development – assuming that other unmanned systems may have similar issues when placed in a simulated (or real) combat environment:

• These types of UGVs are equipped with a variety of cameras and sensors — and since the operator is presumably located a safe distance from combat, he may have problems understanding, processing, and effectively responding to what is taking place with this UGV in real-time.

• For the next 10-15 years, unmanned military systems will be unable to effectively take part in combat, with Russians proposing to use them in storming stationary and well-defended targets (effectively giving such combat UGVs a kamikaze role).

• One-time and preferably stationary use of these UGVs would be more effective, with maintenance and repair crews close by.

• These UGVs should be used with other military formations in order to target and destroy fortified and firing enemy positions — but never on their own, since their breakdown would negatively impact the military mission.

The presentation proposed that some of the above-mentioned problems could be overcome by domestic developments in the following UGV technology and equipment areas:

• Creating secure communication channels;

• Building miniaturized hi-tech navigation systems with a high degree of autonomy, capable of operating with a loss of satellite navigation systems;

• Developing miniaturized and effective ISR components;

• Integrating automated command and control systems, and;

• Better optics, electronics and data processing systems.

According to Anisimov’s report, the overall Russian UGV and unmanned military systems development arch is similar to the one proposed by the United States Army Capabilities Integration Center (ARCIC):  the gradual development of systems capable of more autonomy on the battlefield, leading to “smart” robots capable of forming “mobile networks” and operating in swarm configurations. Such systems should be “multifunctional” and capable of being integrated into existing armed forces formations for various combat missions, as well as operate autonomously when needed. Finally, each military robot should be able to function within existing and future military technology and systems.

Source: rusmilitary.wordpress.com

Such a candid review and critique of the Uran-9 in Syria, if true, may point to the Russian Ministry of Defense’s attitude towards its domestic manufacturers. The potential combat effectiveness of this UGV was advertised for the past two years, but its actual performance fell far short of expectations. It is a sign for developers of other Russian unmanned ground vehicles – like Soratnik, Vihr, and Nerehta — since it displays the full range of deficiencies that take place outside of well-managed testing ranges where such vehicles are currently undergoing evaluation. It also brought to light significant problems with ISR equipment — this type of technology is absolutely crucial to any unmanned system’s successful deployment, and its failures during Uran-9 tests exposed a serious combat weakness.

It is also a useful lesson for many other designers of domestic combat UGVs who are seeking to introduce similar systems into existing order of battle. It appears that the Uran-9’s full effectiveness can only be determined at a much later time if it can perform its mission autonomously in the rapidly-changing and complex battlefield environment. Fully autonomous operation so far eludes its Russian developers, who are nonetheless still working towards achieving such operational goals for their combat UGVs. Moreover, Russian deliberations on using their existing combat UGV platforms in one-time attack mode against fortified adversary positions or firing points, tracking closely with ways that Western military analysts are thinking that such weapons could be used in combat.

Source: Nikolai Novichkov / Orbis Defense

The Uran-9 is still a test bed and much has to take place before it could be successfully integrated into current Russian concept of operations. We could expect more eye-opening “lessons learned” from its and other UGVs potential deployment in combat. Given the rapid proliferation of unmanned and autonomous technology, we are already in the midst of a new arms race. Many states are now designing, building, exporting, or importing various technologies for their military and security forces.

To make matters more interesting, the Russians have been public with both their statements about new technology being tested and evaluated, and with the possible use of such weapons in current and future conflicts. There should be no strategic or tactical surprise when military robotics are finally encountered in future combat.

Source: Block13
by djahal; Diviantart.com

For another perspective on Russian military innovation, please read Mr. Ray Finch’s guest post The Tenth Man” — Russia’s Era Military Innovation Technopark.

Samuel Bendett is a Research Analyst at the CNA Corporation and a Russia Studies Fellow at the American Foreign Policy Council. He is an official Mad Scientist, having presented and been so proclaimed at a previous Mad Scientist Conference.  The views expressed here are his own.