60. Mission Engineering and Prototype Warfare: Operationalizing Technology Faster to Stay Ahead of the Threat

[Editor’s Note: Mad Scientist is pleased to present the following post by a team of guest bloggers from The Strategic Cohort at the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). Their post lays out a clear and cogent approach to Army modernization, in keeping with the Chief of Staff of the Army GEN Mark A. Milley’s and Secretary of the Army Mark T. Esper’s guidance “to focus the Army’s efforts on delivering the weapons, combat vehicles, sustainment systems, and equipment that Soldiers need when they need it” and making “our Soldiers more effective and our units less logistically dependent.” — The Army Vision,  06 June 2018 ]

 

 

“Success no longer goes to the country that develops a new fighting technology first, but rather to the one that better integrates it and adapts its way of fighting….” The National Defense Strategy (2018).

 

 

Executive Summary
While Futures Command and legislative changes streamline acquisition bureaucracy, the Army will still struggle to keep pace with the global commercial technology marketplace as well as innovate ahead of adversaries who are also innovating.

Chinese Lijian Sharp Sword Unmanned Combat Air Vehicle (UCAV) — Source: U.S. Naval Institute (USNI) News

Reverse engineering and technology theft make it possible for adversaries to inexpensively copy DoD-specific technology “widgets,” potentially resulting in a “negative return” on investment of DoD research dollars. Our adversaries’ pace of innovation further compounds our challenge. Thus the Army must not only equip the force to confront what is expected,

Northrop Grumman X-47B UCAV — Source: USNI News

but equip the force to confront an adaptable enemy in a wide variety of environments. This paper proposes a framework that will enable identification of strategically relevant problems and provide solutions to those problems at the speed of relevance and invert the cost asymmetry.

To increase the rate of innovation, the future Army must learn to continually assimilate, produce, and operationalize technologies much faster than our adversaries to gain time-domain overmatch. The overarching goal is to create an environment that our adversaries cannot duplicate: integration of advanced technologies with skilled Soldiers and well-trained teams. The confluence of two high level concepts — the Office of the Secretary of Defense’s Mission Engineering and Robert Leonard’s Prototype Warfare (see his Principles of Warfare for the Information Age book) — pave the way to increasing the rate of innovation by operationalizing technology faster to stay ahead of the threat, while simultaneously reducing the cost of technology overmatch.

Mission Engineering
OSD’s Mission Engineering concept, proposed by Dr. Robert Gold, calls for acquisitions to treat the end-to-end mission as the system to optimize, in which individual systems are components. Further, the concept utilizes an assessment framework to measure progress towards mission accomplishment through test and evaluation in the mission context. In fact, all actions throughout the capability development cycle must tie back to the mission context through the assessment framework. It goes beyond just sharing data to consider functions and the strategy for trades, tools, cross-cutting functions, and other aspects of developing a system or system of systems.

Consider the example mission objective of an airfield seizure. Traditional thinking and methods would identify an immediate needed capability for two identical air droppable vehicles, therefore starting with a highly constrained platform engineering solution. Mission Engineering would instead start by asking: what is the best way to seize an airfield? What mix of capabilities are required to do so? What mix of vehicles (e.g.,  Soldiers, exoskeletons, robots, etc.) might you need within space and weight constraints of the delivery aircraft? What should the individual performance requirements be for each piece of equipment?

Mission Engineering breaks down cultural and technical “domain stovepipes” by optimizing for the mission instead of a ground, aviation, or cyber specific solution. There is huge innovation space between the conventional domain seams.

Source: www.defenceimages.mod.uk

For example, ground vehicle concepts would be able to explore looking more like motherships deploying exoskeletons, drone swarms, or other ideas that have not been identified or presented because they have no clear home in a particular domain. It warrants stating twice that there are a series of mission optimized solutions that have not been identified or presented because they have no clear home in the current construct. Focusing the enterprise on the mission context of the problem set will enable solutions development that is relevant and timely while also connecting a network of innovators who each only have a piece of the whole picture.

Prototype Warfare

Prototype Warfare represents a paradigm shift from fielding large fleets of common-one-size-fits-all systems to rapidly fielding small quantities of tailored systems. Tailored systems focus on specific functions, specific geographic areas, or even specific fights and are inexpensively produced and possibly disposable.

MRZR with a tethered Hoverfly quadcopter unmanned aircraft system — Source: DefenseNews / Jen Judson

For example, vehicle needs are different for urban, desert, and mountain terrains. A single system is unlikely to excel across those three terrains without employing exotic and expensive materials and technology (becoming expensive and exquisite). They could comprise the entire force or just do specific missions, such as Hobart’s Funnies during the D-Day landings.

A further advantage of tailored systems is that they will force the enemy to deal with a variety of unknown U.S. assets, perhaps seen for the first time. A tank platoon might have a heterogeneous mix of assets with different weapons and armor. Since protection and lethality will be unknown to the enemy, it will be asymmetrically challenging for them to develop in a timely fashion tactics, techniques, and procedures or materiel to effectively counter such new capabilities.

Potential Enablers
Key technological advances present the opportunity to implement the Mission Engineering and Prototype Warfare concepts. Early Synthetic Prototyping (ESP), rapid manufacturing, and the burgeoning field of artificial intelligence (AI) provide ways to achieve these concepts. Each on its own would present significant opportunities. ESP, AI, and rapid manufacturing, when applied within the Mission Engineering/Prototype Warfare framework, create the potential for an innovation revolution.

Under development by the Army Capabilities Integration Center (ARCIC) and U.S. Army Research, Development, and Engineering Command (RDECOM), ESP is a physics-based persistent game network that allows Soldiers and engineers to collaborate on exploration of the materiel, force structure, and tactics trade space. ESP will generate 12 million hours of digital battlefield data per year.

Beyond the ESP engine itself, the Army still needs to invest in cutting edge research in machine learning and big data techniques needed to derive useful data on tactics and technical performance from the data. Understanding human intent and behaviors is difficult work for current computers, but the payoff is truly disruptive. Also, as robotic systems become more prominent on the battlefield, the country with the best AI to control them will have a great advantage. The best AI depends on having the most training, experimental, and digitally generated data. The Army is also acutely aware of the challenges involved in testing and system safety for AI enabled systems; understanding what these systems are intended to do in a mission context fosters debate on the subject within an agreed upon problem space and associated assessment framework.

Finally, to achieve the vision, the Army needs to invest in technology that allows rapid problem identification, engineering, and fielding of tailored systems. For over two decades, the Army has touted modularity to achieve system tailoring and flexibility. However, any time something is modularized, it adds some sort of interface burden or complexity. A specific-built system will always outperform a modular system. Research efforts are needed to understand the trade-offs of custom production versus modularity. The DoD also needs to strategically grow investment in new manufacturing technologies (to include 3D printing) and open architectures with industry.

Associated Implications
New challenges are created when there is a hugely varied fleet of tailored systems, especially for logistics, training, and maintenance. One key is to develop a well-tracked digital manufacturing database of replacement parts. For maintenance, new technologies such as augmented reality might be used to show mechanics who have never seen a system how to rapidly diagnose and make repairs.

Source: Military Embedded Systems

New Soldier interfaces for platforms should also be developed that are standardized/simplified so it is intuitive for a soldier to operate different systems in the same way it is intuitive to operate an iPhone/iPad/Mac to reduce and possibly eliminate the need for system specific training. For example, imagine a future soldier gets into a vehicle and inserts his or her common access card. A driving display populates with the Soldier’s custom widgets, similar to a smartphone display. The displays might also help soldiers understand vehicle performance envelopes. For example, a line might be displayed over the terrain showing how sharp a soldier might turn without a rollover.

Conclusion
The globalization of technology allows anyone with money to purchase “bleeding-edge,” militarizable commercial technology. This changes the way we think about the ability to generate combat power to compete internationally from the physical domain, to the time domain. Through the proposed mission engineering and prototype warfare framework, the Army can assimilate and operationalize technology quicker to create an ongoing time-domain overmatch and invert the current cost asymmetry which is adversely affecting the public’s will to fight. Placing human thought and other resources towards finding new ways to understand mission context and field new solutions will provide capability at the speed of relevance and help reduce operational surprise through a better understanding of what is possible.

Source: Defence Science and Technology Laboratory / Gov.UK

If you enjoyed this post, join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live today — watch the associated video here and join the discussion here!

This article was written by Dr. Rob Smith, Senior Research Scientist; Mr. Shaheen Shidfar, Strategic Cohort Lead; Mr. James Parker, Associate Director; Mr. Matthew A. Horning, Mission Engineer; and Mr. Thomas Vern, Associate Director. Collectively, these gentlemen are a subset of The Strategic Cohort, a multi-disciplinary independent group of volunteers located at TARDEC that study the Army’s Operating Concept Framework to understand how we must change to survive and thrive in the future operating environment. The Strategic Cohort analyzes these concepts and other reference materials, then engages in disciplined debate to provide recommendations to improve TARDEC’s alignment with future concepts, educate our workforce, and create dialogue with the concept developers providing a feedback loop for new ideas.

Further Reading:

Gold, Robert. “Mission Engineering.” 19th Annual NDIA Systems Engineering Conference, Oct. 26, 2016, Springfield, VA. Presentation.

Leonard, Robert R. The Principles of War for the Information Age, Presidio Press (2000).

Martin, A., & FitzGerald, B. “Process Over Platforms.” Center for a New American Security, Dec. 13, 2013.

FitzGerald, B., Sander, A. & Parziale, J. “Future Foundry A New Strategic Approach to Military-Technical Advantage.” Center for a New American Security, Dec. 14, 2016.

Kozloski, Robert. “The Path to Prototype Warfare.” War on the Rocks, 17 July 2017.

Hammes, T.X. “The Future of Warfare: Small, Many, Smart vs. Few & Exquisite?” War on the Rocks, 7 Aug. 2015.

Smith, Robert E. “Tactical Utility of Tailored Systems.” Military Review (2016).

Smith, Robert E. and Vogt, Brian. “Early Synthetic Prototyping Digital Warfighting For Systems Engineering.” Journal of Cyber Security and Information Systems 5.4 (2017).

59. Fundamental Questions Affecting Army Modernization

[Editor’s Note:  The Operational Environment (OE) is the start point for Army Readiness – now and in the Future. The OE answers the question, “What is the Army ready for?”  Without the OE in training and Leader development, Soldiers and Leaders are “practicing” in a benign condition, without the requisite rigor to forge those things essential for winning in a complex, multi-domain battlefield.  Building the Army’s future capabilities, a critical component of future readiness, requires this same start point.  The assumptions the Army makes about the Future OE are the sine qua non start point for developing battlefield systems — these assumptions must be at the forefront of decision-making for all future investments.]

There are no facts about the future. Leaders interested in building future ready organizations must develop assumptions about possible futures and these assumptions require constant scrutiny. Leaders must also make decisions based on these assumptions to posture organizations to take advantage of opportunities and to mitigate risks. Making these decisions is fundamental to building future readiness.

Source: Evan Jensen, ARL

The TRADOC G-2 has made the following foundational assumptions about the future that can serve as launch points for important questions about capability requirements and capabilities under development. These assumptions are further described in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

1. Contested in all domains (air, land, sea, space, and cyber). Increased lethality, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions, further enabled by autonomy, robotics, and Artificial Intelligence (AI) with an increasing potential for overmatch. Adversaries will restrict us to temporary windows of advantage with periods of physical and electronic isolation.

Source: Army Technology

2. Concealment is difficult on the future battlefield. Hiding from advanced sensors — where practicable — will require dramatic reduction of heat, electromagnetic, and optical signatures. Traditional hider techniques such as camouflage, deception, and concealment will have to extend to “cross-domain obscuration” in the cyber domain and the electromagnetic spectrum. Canny competitors will monitor their own emissions in real-time to understand and mitigate their vulnerabilities in the “battle of signatures.” Alternately, “hiding in the open” within complex terrain clutter and near-constant relocation might be feasible, provided such relocation could outpace future recon / strike targeting cycles.   Adversaries will operate among populations in complex terrain, including dense urban areas.

3. Trans-regional, gray zone, and hybrid strategies with both regular and irregular forces, criminal elements, and terrorists attacking our weaknesses and mitigating our advantages. The ensuing spectrum of competition will range from peaceful, legal activities through violent, mass upheavals and civil wars to traditional state-on-state, unlimited warfare.

Source: Science Photo Library / Van Parys Media

4. Adversaries include states, non-state actors, and super-empowered individuals, with non-state actors and super empowered individuals now having access to Weapons of Mass Effect (WME), cyber, space, and Nuclear/Biological/ Chemical (NBC) capabilities. Their operational reach will range from tactical to global, and the application of their impact from one domain into another will be routine. These advanced engagements will also be interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Source: Northrop Grumman

5. Increased speed of human interaction, events and action with democratized and rapidly proliferating capabilities means constant co-evolution between competitors. Recon / Strike effectiveness is a function of its sensors, shooters, their connections, and the targeting process driving decisions. Therefore, in a contest between peer competitors with comparable capabilities, advantage will fall to the one that is better integrated and makes better and faster decisions.

These assumptions become useful when they translate to potential decision criteria for Leaders to rely on when evaluating systems being developed for the future battlefield. Each of the following questions are fundamental to ensuring the Army is prepared to operate in the future.

Source: Lockheed Martin

1. How will this system operate when disconnected from a network? Units will be disconnected from their networks on future battlefields. Capabilities that require constant timing and precision geo-locational data will be prioritized for disruption by adversaries with capable EW systems.

2. What signature does this system present to an adversary? It is difficult to hide on the future battlefield and temporary windows of advantage will require formations to reduce their battlefield signatures. Capabilities that require constant multi-directional broadcast and units with large mission command centers will quickly be targeted and neutralized.

Image credit: Alexander Kott

3. How does this system operate in dense urban areas? The physical terrain in dense urban areas and megacities creates concrete canyons isolating units electronically and physically. Automated capabilities operating in dense population areas might also increase the rate of false signatures, confusing, rather than improving, Commander decision-making. New capabilities must be able to operate disconnected in this terrain. Weapons systems must be able to slew and elevate rapidly to engage vertical targets. Automated systems and sensors will require significant training sets to reduce the rate of false signatures.

Source: Military Embedded Systems

4. How does this system take advantage of open and modular architectures? The rapid rate of technological innovations will offer great opportunities to militaries capable of rapidly integrating prototypes into formations.  Capabilities developed with open and modular architectures can be upgraded with autonomous and AI enablers as they mature. Early investment in closed-system capabilities will freeze Armies in a period of rapid co-evolution and lead to overmatch.

5. How does this capability help win in competition short of conflict with a near peer competitor? Near peer competitors will seek to achieve limited objectives short of direct conflict with the U.S. Army. Capabilities will need to be effective at operating in the gray zone as well as serving as deterrence. They will need to be capable of strategic employment from CONUS-based installations.

If you enjoyed this post, check out the following items of interest:

    • Join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live 11 June 2018 — click here to learn more!

56. An Appropriate Level of Trust…

The Mad Scientist team participates in many thought exercises, tabletops, and wargames associated with how we will live, work, and fight in the future. A consistent theme in these events is the idea that a major barrier to the integration of robotic systems into Army formations is a lack of trust between humans and machines. This assumption rings true as we hear the media and opinion polls describe how society doesn’t trust some disruptive technologies, like driverless cars or the robots coming for our jobs.

In his recent book, Army of None, Paul Scharre describes an event that nearly led to a nuclear confrontation between the Soviet Union and the United States. On September 26, 1983, LTC Stanislav Petrov, a Soviet Officer serving in a bunker outside Moscow was alerted to a U.S. missile launch by a recently deployed space-based early warning system. The Soviet Officer trusted his “gut” – or experientially informed intuition – that this was a false alarm. His gut was right and the world was saved from an inadvertent nuclear exchange because this officer did not over trust the system. But is this the rule or an exception to how humans interact with technology?

The subject of trust between Soldiers, Soldiers and Leaders, and the Army and society is central to the idea of the Army as a profession. At the most tactical level, trust is seen as essential to combat readiness as Soldiers must trust each other in dangerous situations. Humans naturally learn to trust their peers and subordinates once they have worked with them for a period of time. You learn what someone’s strengths and weaknesses are, what they can handle, and under what conditions they will struggle. This human dynamic does not translate to human-machine interaction and the tendency to anthropomorphize machines could be a huge barrier.

We recommend that the Army explore the possibility that Soldiers and Leaders could over trust AI and robotic systems. Over trust of these systems could blunt human expertise, judgement, and intuition thought to be critical to winning in complex operational environments. Also, over trust might lead to additional adversarial vulnerabilities such as deception and spoofing.

In 2016, a research team at the Georgia Institute of Technology revealed the results of a study entitled “Overtrust of Robots in Emergency Evacuation Scenarios”. The research team put 42 test participants into a fire emergency with a robot responsible for escorting them to an emergency exit. As the robot passed obvious exits and got lost, 37 participants continued to follow the robot and an additional 2 stood with the robot and didn’t move towards either exit. The study’s takeaway was that roboticists must think about programs that will help humans establish an “appropriate level of trust” with robot teammates.

In Future Crimes, Marc Goodman writes of the idea of “In Screen We Trust” and the vulnerabilities this trust builds into our interaction with our automation. His example of the cyber-attack against the Iranian uranium enrichment centrifuges highlights the vulnerability of experts believing or trusting their screens against mounting evidence that something else might be contributing to the failure of centrifuges. These experts over trusted their technology or just did not have an “appropriate level of trust”. What does this have to do with Soldiers on the future battlefield? Well, increasingly we depend on our screens and, in the future, our heads-up displays to translate the world around us. This translation will only become more demanding on the future battlefield with war at machine speed.

So what should our assumptions be about trust and our robotic teammates on the future battlefield?

1) Soldiers and Leaders will react differently to technology integration.

2) Capability developers must account for trust building factors in physical design, natural language processing, and voice communication.

3) Intuition and judgement remain a critical component of human-machine teaming and operating on the future battlefield. Speed becomes a major challenge as humans become the weak link.

4) Building an “appropriate level of trust” will need to be part of Leader Development and training. Mere expertise in a field does not prevent over trust when interacting with our robotic teammates.

5) Lastly, lack of trust is not a barrier to AI and robotic integration on the future battlefield. These capabilities will exist in our formations as well as those of our adversaries. The formation that develops the best concepts for effective human-machine teaming, with trust being a major component, will have the advantage.

Interested in learning more on this topic? Watch Dr. Kimberly Jackson Ryan (Draper Labs).

[Editor’s Note:  A special word of thanks goes out to fellow Mad Scientist Mr. Paul Scharre for sharing his ideas with the Mad Scientist team regarding this topic.]

52. Potential Game Changers

The Mad Scientist Initiative brings together cutting-edge leaders and thinkers from the technology industry, research laboratories, academia, and across the military and Government to explore the impact of potentially disruptive technologies. Much like Johannes Gutenberg’s moveable type (illustrated above), these transformational game changers have the potential to impact how we live, create, think, and prosper. Understanding their individual and convergent impacts is essential to continued battlefield dominance in the Future Operational Environment. In accordance with The Operational Environment and the Changing Character of Future Warfare, we have divided this continuum into two distinct timeframes:

The Era of Accelerated Human Progress (Now through 2035):
The period where our adversaries can take advantage of new technologies, new doctrine, and revised strategic concepts to effectively challenge U.S. military forces across multiple domains. Game changers during this era include:

• Robotics: Forty plus countries develop military robots with some level of autonomy. Impact on society, employment.
Vulnerable: To Cyber/Electromagnetic (EM) disruption, battery life, ethics without man in the loop.
Formats: Unmanned/Autonomous; ground/air vehicles/subsurface/sea systems. Nano-weapons.
Examples: (Air) Hunter/killer Unmanned Aerial Vehicle (UAV) swarms; (Ground) Russian Uran: Recon, ATGMs, SAMs.

• Artificial Intelligence: Human-Agent Teaming, where humans and intelligent systems work together to achieve either a physical or mental task. The human and the intelligent system will trade-off cognitive and physical loads in a collaborative fashion.

• Swarms/Semi Autonomous: Massed, coordinated, fast, collaborative, small, stand-off. Overwhelm target systems. Mass or disaggregate.



• Internet of Things (IoT): Trillions of internet linked items create opportunities and vulnerabilities. Explosive growth in low Size Weight and Power (SWaP) connected devices (Internet of Battlefield Things), especially for sensor applications (situational awareness). Greater than 100 devices per human. Significant end device processing (sensor analytics, sensor to shooter, supply chain management).
Vulnerable: To Cyber/EM/Power disruption. Privacy concerns regarding location and tracking.
Sensor to shooter: Accelerate kill chain, data processing, and decision-making.

• Space: Over 50 nations operate in space, increasingly congested and difficult to monitor, endanger Positioning, Navigation, and Timing (PNT)

GPS Jamming/Spoofing: Increasingly sophisticated, used successfully in Ukraine.
Anti Satellite: China has tested two direct ascent anti-satellite missiles.

The Era of Contested Equality (2035 through 2050):
The period marked by significant breakthroughs in technology and convergences in terms of capabilities, which lead to significant changes in the character of warfare. During this period, traditional aspects of warfare undergo dramatic, almost revolutionary changes which at the end of this timeframe may even challenge the very nature of warfare itself. Game changers during this era include:

• Hyper Velocity Weapons:
Rail Guns (Electrodynamic Kinetic Energy Weapons): Electromagnetic projectile launchers. High velocity/energy and space (Mach 5 or higher). Not powered by explosive.
No Propellant: Easier to store and handle.
Lower Cost Projectiles: Potentially. Extreme G-force requires sturdy payloads.
Limiting factors: Power. Significant IR signature. Materials science.
Hyper Glide Vehicles: Less susceptible to anti-ballistic missile countermeasures.

• Directed Energy Weapons: Signature not visible without technology, must dwell on target. Power requirements currently problematic.
Potential: Tunable, lethal, and non-lethal.
Laser: Directed energy damages intended target. Targets: Counter Aircraft, UAS, Missiles, Projectiles, Sensors, Swarms.
Radio Frequency (RF): Attack targets across the frequency spectrum. Targets: Not just RF; Microwave weapons “cook targets,” people, electronics.

• Synthetic Biology: Engineering / modification of biological entities
Increased Crop Yield: Potential to reduce food scarcity.
Weaponization: Potential for micro-targeting, Seek & destroy microbes that can target DNA. Potentially accessible to super-empowered individuals.
Medical Advances: Enhance soldier survivability.
Genetic Modification: Disease resistant, potentially designer babies and super athletes/soldiers. Synthetic DNA stores digital data. Data can be used for micro-targeting.
CRISPR: Genome editing.

• Information Environment: Use IoT and sensors to harness the flow of information for situational understanding and decision-making advantage.




In envisioning Future Operational Environment possibilities, the Mad Scientist Initiative employs a number of techniques. We have found Crowdsourcing (i.e., the gathering of ideas, thoughts, and concepts from a wide variety of interested individuals assists us in diversifying thoughts and challenging conventional assumptions) to be a particularly effective technique. To that end, we have published our latest, 2-page compendium of Potential Game Changers here — we would like to hear your feedback regarding them. Please let us know your thoughts / observations by posting them in this blog post’s Comment box (found below, in the Leave a Reply section). Alternatively, you can also submit them to us via email at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil. Thank you in advance for your contributions!

50. Four Elements for Future Innovation

(Editor’s Note: Mad Scientist Laboratory is pleased to present a new post by returning guest blogger Dr. Richard Nabors addressing the four key practices of innovation. Dr. Nabors’ previous guest posts discussed how integrated sensor systems will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces, and how Augmented and Mixed Reality are the critical elements required for these integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.)


For the U.S. military to maintain its overmatch capabilities, innovation is an absolute necessity. As noted in The Operational Environment and the Changing Character of Future Warfare, our adversaries will continue to aggressively pursue rapid innovation in key technologies in order to challenge U.S. forces across multiple domains. Because of its vital necessity, U.S. innovation cannot be left solely to the development of serendipitous discoveries.

The Army has successfully generated innovative programs and transitioned them from the research community into military use. In the process, it has identified four key practices that can be used in the future development of innovative programs. These practices – identifying the need, the vision, the expertise, and the resources – are essential in preparing for warfare in the Future Operational Environment. The recently completed Third Generation Forward Looking Infrared (3rd Gen FLIR) program provides us with a contemporary use case regarding how each of these practices are key to the success of future innovations.


1. Identifying the NEED:
To increase speed, precision, and accuracy of a platform lethality, while at the same time increasing mission effectiveness and warfighter safety and survivability.

As the U.S. Army Training and Doctrine Command (TRADOC) noted in its Advanced Engagement Battlespace assessment, future Advanced Engagements will be…
compressed in time, as the speed of weapon delivery and their associated effects accelerate enormously;
extended in space, in many cases to a global extent, via precision long-range strike and interconnectedness, particularly in the information environment;
far more lethal, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions;
routinely interconnected – and contested — across the multiple domains of air, land, sea, space and cyber; and
interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Identifying the NEED within the context of these future Advanced Engagement characteristics is critical to the success of future innovations.

The first-generation FLIR systems gave a limited ability to detect objects on the battlefield at night. They were large, slow, and provided low-resolution, short-range images. The need was for greater speed, precision, and range in the targeting process to unlock the full potential of infrared imaging. Third generation FLIR uses multiband infrared imaging sensors combined with multiple fields of view which are integrated with computer software to automatically enhance images in real-time. Sensors can be used across multiple platforms and missions, allowing optimization of equipment for battlefield conditions, greatly enhancing mission effectiveness and survivability, and providing significant cost savings.


Source: John-Stone-Art
2. Identifying the VISION:
To look beyond the need and what is possible to what could be possible.

As we look forward into the Future Operational Environment, we must address those revolutionary technologies that, when developed and fielded, will provide a decisive edge over adversaries not similarly equipped. These potential Game Changers include:
Laser and Radio Frequency Weapons – Scalable lethal and non-Lethal directed energy weapons can counter Aircraft, UAS, Missiles, Projectiles, Sensors, and Swarms.
Swarms – Leverage autonomy, robotics, and artificial intelligence to generate “global behavior with local rules” for multiple entities – either homogeneous or heterogeneous teams.
• Rail Guns and Enhanced Directed Kinetic Energy Weapons (EDKEW) – Non explosive electromagnetic projectile launchers provide high velocity/high energy weapons.
• Energetics – Provides increased accuracy and muzzle energy.
• Synthetic Biology – Engineering and modification of biological entities has potential weaponization.
• Internet of Things – Linked internet “things” create opportunity and vulnerability. Great potential benefits already found in developing U.S. systems also create a vulnerability.
• Power – Future effectiveness depends on renewable sources and reduced consumption. Small nuclear reactors are potentially a cost-effective source of stable power.

Understanding these Future Operational Environment Game Changers is central to identifying the VISION and looking beyond the need to what could be possible.

The 3rd Gen FLIR program struggled early in its development to identify requirements necessary to sustain a successful program. Without the user community’s understanding of a vision of what could be possible, requirements were based around the perceived limitations of what technology could provide. To overcome this, the research community developed a comprehensive strategy for educational outreach to the Army’s requirement developers, military officers, and industry on the full potential of what 3rd Gen FLIR could achieve. This campaign highlighted not only the recognized need, but also a vision for what was possible, and served as the catalyst to bring the entire community together.


3. Identifying the EXPERTISE:
To gather expertise from all possible sources into a comprehensive solution.

Human creativity is the most transformative force in the world; people compound the rate of innovation and technology development. This expertise is fueling the convergence of technologies that is already leading to revolutionary achievements with respect to sensing, data acquisition and retrieval, and computer processing hardware.

Identifying the EXPERTISE leads to the exponential convergence and innovation that will afford strategic advantage to those who recognize and leverage them.

The expertise required to achieve 3rd Gen FLIR success was from the integration of more than 16 significant research and development projects from multiple organizations: Small Business Innovation Research programs; applied research funding, partnering in-house expertise with external communities; Manufacturing Technology (ManTech) initiatives, working with manufacturers to develop the technology and long-term manufacturing capabilities; and advanced technology development funding with traditional large defense contractors. The talented workforce of the Army research community strategically aligned these individual activities and worked with them to provide a comprehensive, interconnected final solution.


4. Identifying the RESOURCES:
To consistently invest in innovative technology by partnering with others to create multiple funding sources.

The 2017 National Security Strategy introduced the National Security Innovation Base as a critical component of its vision of American security. In order to meet the challenges of the Future Operational Environment, the Department of Defense and other agencies must establish strategic partnerships with U.S. companies to help align private sector Research and Development (R&D) resources to priority national security applications in order to nurture innovation.

The development of 3rd Gen FLIR took many years of appropriate, consistent investments into innovations and technology breakthroughs. Obtaining the support of industry and leveraging their internal R&D investments required the Army to build trust in the overall program. By creating partnerships with others, such as the U.S. Army Communications-Electronics Research, Development and Engineering Center (CERDEC) and ManTech, 3rd Gen FLIR was able to integrate multiple funding sources to ensure a secure resource foundation.




CONCLUSION
The successful 3rd Gen FLIR program is a prototype of the implementation of an innovative program, which transitions good ideas into actual capabilities. It exemplifies how identifying the need, the vision, the expertise and the resources can create an environment where innovation thrives, equipping warriors with the best technology in the world. As the Army looks to increase its exploration of innovative technology development for the future, these examples of past successes can serve as models to build on moving forward.

See our Prototype Warfare post to learn more about other contemporary innovation successes that are helping the U.S. maintain its competitive advantage and win in an increasingly contested Operational Environment.

Dr. Richard Nabors is Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), Night Vision and Electronic Sensors Directorate.

49. “The Queue”

(Editor’s Note: Beginning today, the Mad Science Laboratory will publish a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the previous month. In this anthology, we will address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!)

1. Army of None: Autonomous Weapons and the Future of War, by Paul Scharre, Senior Fellow and Director of the Technology and National Security Program, Center for a New American Security.

One of our favorite Mad Scientists, Paul Scharre, has authored a must read for all military Leaders. This book will help Leaders understand the definitions of robotic and autonomous weapons, how they are proliferating across states, non-states, and super-empowered individuals (his chapter on Garage Bots makes it clear this is not state proliferation analogous), and lastly the ethical considerations that come up at every Mad Scientist Conference. During these Conferences, we have discussed the idea of algorithm vs algorithm warfare and what role human judgement plays in this version of future combat. Paul’s chapters on flash war really challenge our ideas of how a human operates in the loop and his analogies using the financial markets are helpful for developing the questions needed to explore future possibilities and develop policies for dealing with warfare at machine speed.

Source: Rosoboronexport via YouTube
2. “Convergence on retaining human control of weapons systems,” in Campaign to Stop Killer Robots, 13 April 2018.

April 2018 marked the fifth anniversary of the Campaign to Stop Killer Robots. Earlier this month, 82 countries and numerous NGOs also convened at the Convention on Certain Conventional Weapons (CCW) in Geneva, Switzerland, where many stressed the need to retain human control over weapons systems and the use of force. While the majority in attendance proposed moving forward this November to start negotiations towards a legally binding protocol addressing fully autonomous weapons, five key states rejected moving forward in negotiating new international law – France, Israel, Russia, the United Kingdom, and the United States. Mad Scientist notes that the convergence of a number of emerging technologies (synthetic prototyping, additive manufacturing, advanced modeling and simulations, software-defined everything, advanced materials) are advancing both the feasibility and democratization of prototype warfare, enabling and improving the engineering of autonomous weapons by non-state actors and super-empowered individuals alike. The genie is out of the bottle – with the advent of the Hyperactive Battlefield, advanced engagements will collapse the decision-action cycle to mere milliseconds, granting a decisive edge to the side with more autonomous decision-action.

Source: The Stack
3. “China’s Strategic Ambiguity and Shifting Approach to Lethal Autonomous Weapons Systems,” by Elsa Kania, Adjunct Fellow with the Technology and National Security Program, Center for a New American Security, in Lawfare, 17 Apr 18.

Mad Scientist Elsa Kania addresses the People’s Republic of China’s apparent juxtaposition between their diplomatic commitment to limit the use of fully autonomous lethal weapons systems and the PLA’s active pursuit of AI dominance on the battlefield. The PRC’s decision on lethal autonomy and how it defines the role of human judgement in lethal operations will have tactical, operational, and strategic implications. In TRADOC’s Changing Character of Warfare assessment, we addressed the idea of an asymmetry in ethics where the differing ethical choices non-state and state adversaries make on the integration of emerging technologies could have real battlefield overmatch implications. This is a clear pink flamingo where we know the risks but struggle with addressing the threat. It is also an area where technological surprise is likely, as systems could have the ability to move from human in the loop mode to fully autonomous with a flip of a switch.

Source: HBO.com
4. “Maeve’s Dilemma in Westworld: What Does It Mean to be Free?,” by Marco Antonio Azevedo and Ana Azevedo, in Institute of Art and Ideas, 12 Apr 18. [Note: Best viewed on your personal device as access to this site may be limited by Government networks]

While this article focuses primarily on a higher-level philosophical interpretation of human vs. machine (or artificial intelligence, being, etc.), the core arguments and discussion remain relevant to an Army that is looking to increase its reliance on artificial intelligence and robotics. Technological advancements in these areas continue to trend toward modeling humans (both in form and the brain). However, the closer we get to making this a reality, the closer we get to confronting questions about consciousness and artificial humanity. Are we prepared to face these questions earnestly? Do we want an artificial entity that is, essentially, human? What do we do when that breakthrough occurs? Does biological vs. synthetic matter if the being “achieves” personhood? For additional insights on this topic, watch Linda MacDonald Glenn‘s Ethics and Law around the Co-Evolution of Humans and AI presentation from the Mad Scientist Visualizing Multi Domain Battle in 2030-2050 Conference at Georgetown University, 25-26 Jul 17.

5. Do You Trust This Computer?, directed by Chris Paine, Papercut Films, 2018.

The Army, and society as a whole, is continuing to offload certain tasks and receive pieces of information from artificial intelligence sources. Future Army Leaders will be heavily influenced by AI processing and distributing information used for decision making. But how much trust should we put in the information we get? Is it safe to be so reliant? What should the correct ratio be of human/machine contribution to decision-making? Army Leaders need to be prepared to make AI one tool of many, understand its value, and know how to interpret its information, when to question its output, and apply appropriate context. Elon Musk has shown his support for this documentary and tweeted about its importance.

6. Ready Player One, directed by Steven Spielberg, Amblin Entertainment, 2018.

Adapted from the novel of the same name, this film visualizes a future world where most of society is consumed by a massive online virtual reality “game” known as the OASIS. As society transitions from the physical to the virtual (texting, email, skype, MMORPG, Amazon, etc.), large groups of people will become less reliant on the physical world’s governmental and economic systems that have been established for centuries. As virtual money begins to have real value, physical money will begin to lose value. If people can get many of their goods and services through a virtual world, they will become less reliant on the physical world. Correspondingly, physical world social constructs will have less control of the people who still inhabit it, but spend increasing amounts of time interacting in the virtual world. This has huge implications for the future geo-political landscape as many varied and geographically diverse groups of people will begin congregating and forming virtual allegiances across all of the pre-established, but increasingly irrelevant physical world geographic borders. This will dilute the effectiveness, necessity, and control of the nation-state and transfer that power to the company(ies) facilitating the virtual environment.

Source: XO, “SoftEcologies,” suckerPUNCH
7. “US Army could enlist robots inspired by invertebrates,” by Bonnie Burton, in c/net, 22 Apr 18.

As if Boston Dynamic’s SpotMini isn’t creepy enough, the U.S. Army Research Laboratory (ARL) and the University of Minnesota are developing a flexible, soft robot inspired by squid and other invertebrates that Soldiers can create on-demand using 3-D printers on the battlefield. Too often, media visualizations have conditioned us to think of robots in anthropomorphic terms (with corresponding limitations). This and other breakthroughs in “soft,” polymorphic, printable robotics may grant Soldiers in the Future Operational Environment with hitherto unimagined on-demand, tailorable autonomous systems that will assist operations in the tight confines of complex, congested, and non-permissive environments (e.g., dense urban and subterranean). Soft robotics may also prove to be more resilient in arduous conditions. This development changes the paradigm for how robotics are imagined in both design and application.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

For additional insights into the Mad Scientist Initiative and how we continually explore the future through collaborative partnerships and continuous dialogue with academia, industry, and government, check out this Spy Museum’s SPYCAST podcast.

48. Warfare at the Speed of Thought

(Editor’s Note: Mad Scientist Laboratory is pleased to present the second guest blog post by Dr. Richard Nabors, Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), addressing how Augmented and Mixed Reality are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.

Dr. Nabors’ previous guest post addressed how the proliferation of sensors, integrated via the Internet of Battlefield Things [IoBT], will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces.)

Speed has always been and will be a critical component in assuring military dominance. Historically, the military has sought to increase the speed of its jets, ships, tanks, and missiles. However, one of the greatest leaps that has yet to come and is coming is the ability to significantly increase the speed of the decision-making process of the individual at the small unit level.

Source: University of Maryland Institute for Advanced Computer Studies
To maximize individual and small unit initiative to think and act flexibly, Soldiers must receive as much relevant information as possible, as quickly as possible. Integrated sensor technologies can provide situational awareness by collecting and sorting real-time data and sending a fusion of information to the point of need, but that information must be processed quickly in order to be operationally effective. Augmented Reality (AR) and Mixed Reality (MR) are two of the most promising solutions to this challenge facing the military and will eventually make it possible for Soldiers to instantaneously respond to an actively changing environment.

AR and MR function in real-time, bringing the elements of the digital world into a Soldier’s perceived real world, resulting in optimal, timely, and relevant decisions and actions. AR and MR allow for the overlay of information and sensor data into the physical space in a way that is intuitive, serves the point of need, and requires minimal training to interpret. AR and MR will enable the U.S. military to survive in complex environments by decentralizing decision-making from mission command and placing substantial capabilities in Soldiers’ hands in a manner that does not overwhelm them with information.

Source: Tom Rooney III
On a Soldier’s display, AR can render useful battlefield data in the form of camera imaging and virtual maps, aiding a Soldier’s navigation and battlefield perspective. Special indicators can mark people and various objects to warn of potential dangers.
Source: MicroVision
Soldier-borne, palm-size reconnaissance copters with sensors and video can be directed and tasked instantaneously on the battlefield. Information can be gathered by unattended ground sensors and transmitted to a command center, with AR and MR serving as a networked communication system between military leaders and the individual Soldier. Used in this way, AR and MR increase Soldier safety and lethality.

In the near-term, the Army Research and Development (R&D) community is investing in the following areas:


Reliable position tracking devices that self-calibrate for head orientation of head-worn sensors.


• Ultralight, ultrabright, ultra-transparent display eyewear with wide field of view.

Source: CIO Australia

• Three-dimensional viewers with battlefield terrain visualization, incorporating real-time data from unmanned aerial vehicles, etc.




In the mid-term, R&D activities are focusing on:

• Manned vehicles with sensors and processing capabilities for moving autonomously, tasked for Soldier protection.

Robotic assets, tele-operated, semi-autonomous, or autonomous and imbued with intelligence, with limbs that can keep pace with Soldiers and act as teammates.

Source: BAE
• Robotic systems that contain multiple sensors that respond to environmental factors affecting the mission, or have self-deploying camouflage capabilities that stay deployed while executing maneuvers.

• Enhanced reconnaissance through deep-penetration mapping of building layouts, cyber activity, and subterranean infrastructure.

Once AR and MR prototypes and systems have seen widespread use, the far term focus will be on automation that could track and react to a Soldier’s changing situation by tailoring the augmentation the Soldier receives and by coordinating across the unit.

In addition, AR and MR will revolutionize training, empowering Soldiers to train as they fight. Soldiers will be able to use real-time sensor data from unmanned aerial vehicles to visualize battlefield terrain with geographic awareness of roads, buildings, and other structures before conducting their missions. They will be able to rehearse courses of action and analyze them before execution to improve situational awareness. AR and MR are increasingly valuable aids to tactical training in preparation for combat in complex and congested environments.

AR and MR are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments. Solving the challenge of how and where to use AR and MR will enable the military to get full value from its investments in complex integrated sensor systems.

For more information on how the convergence of technologies will enhance Soldiers on future battlefields, see:

– The discussion on advanced decision-making in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

– Dr. James Canton’s presentation from the Mad Scientist Robotics, Artificial Intelligence, & Autonomy Conference at Georgia Tech Research Institute last March.

– Dr. Rob Smith’s Mad Scientist Speaker Series presentation on Operationalizing Big Data, where he addresses the applicability of AR to sports and games training as an analogy to combat training (noting “Serious sport is war minus the shooting” — George Orwell).

Dr. Richard Nabors is Associate Director for Strategic Planning, US Army CERDEC Night Vision and Electronic Sensors Directorate.

43. The Changing Character of Warfare: Takeaways for the Future

The Future Operational Environment (OE), as described in The Operational Environment and the Changing Character of Future Warfare , brings with it an inexorable series of movements which lead us to consider the following critical question:

What do these issues mean for the nature and character of warfare?

The nature of war, which has remained relatively constant from Thucydides, through Clausewitz, through the Cold War, and on into the present, certainly remains constant through the Era of Accelerated Human Progress (i.e., now through 2035). War is still waged because of fear, honor, and interest, and remains an expression of politics by other means. However, as we move into the Era of Contested Equality (i.e., 2035-2050), the character of warfare has changed in several key areas:

The Moral and Cognitive Dimensions are Ascendant.

The proliferation of high technology, coupled with the speed of human interaction and pervasive connectivity, means that no one nation will have an absolute strategic advantage in capabilities. When breakthroughs occur, the advantages they confer will be fleeting, as rivals quickly adapt. Under such conditions, the physical dimension of warfare may become less important than the cognitive and the moral. As a result, there will be less self-imposed restrictions by some powers on the use of military force, and hybrid strategies involving information operations, direct cyber-attacks against individuals and segments of populations, or national infrastructure, terrorism, the use of proxies, and Weapons of Mass Destruction (WMD) will aim to prevail against an enemy’s will.

Integration across Diplomacy, Information, Military, and Economic (DIME).

Clausewitz’s timeless dictum that war is policy by other means takes on a new importance as the distance between war and policy recedes; but also must take into account other elements of national power to form true whole-of-government and, when possible, collective security approaches to national security issues. The interrelationship across the DIME will require a closer integration across all elements of government, and Joint decision-making bodies will need to quickly and effectively deliver DIME effects across the physical, the cognitive, and moral dimensions. Military operations are an essential element of this equation, but may not necessarily be the decisive means of achieving an end state.

Limitations of Military Force.

While mid-Century militaries will have more capability than at any time in history, their ability to wage high-intensity conflict will become more limited. Force-on-force conflict will be so destructive, will be waged at the new speed of human and AI-enhanced interaction, and will occur at such extended long-ranges that exquisitely trained and equipped forces facing a peer or near-peer rival will rapidly suffer significant losses in manpower and equipment that will be difficult to replace. Robotics, unmanned vehicles, and man-machine teaming activities offer partial solutions, but warfare will still revolve around increasingly vulnerable human beings. Military forces will need to consider how advances in AI, bio-engineering, man-machine interface, neuro-implanted knowledge, and other areas of enhanced human performance and learning can quickly help reduce the long lead time in training and developing personnel.

The Primacy of Information.

In the timeless struggle between offense and defense, information will become the most important and most useful tool at all levels of warfare. The ability of an actor to use information to target the enemy’s will, without necessarily having to address its means will increasingly be possible. In the past, nations have tried to target an enemy’s will through kinetic attacks on its means – the enemy military – or through the direct targeting of the will by attacking the national infrastructure or a national populace itself. Sophisticated, nuanced information operations, taking advantage of an ability to directly target an affected audience through cyber operations or other forms of influence operations, and reinforced by a credible capable armed force can bend an adversary’s will before battle is joined.

Expansion of the Battle Area.

Nations, non-state actors, and even individuals will be able to target military forces and civilian infrastructure at increasing – often over intercontinental – ranges using a host of conventional and unconventional means. A force deploying to a combat zone will be vulnerable from the individual soldier’s personal residence, to his or her installation, and during his or her entire deployment. Adversaries also will have the ability to target or hold at risk non-military infrastructure and even populations with increasingly sophisticated, nuanced and destructive capabilities, including WMD, hypersonic conventional weapons, and perhaps most critically, cyber weapons and information warfare. WMD will not be the only threat capable of directly targeting and even destroying a society, as cyber and information can directly target infrastructure, banking, food supplies, power, and general ways of life. Limited wars focusing on a limited area of operations waged between peers or near-peer adversaries will become more dangerous as adversaries will have an unprecedented capability to broaden their attacks to their enemy’s homeland. The U.S. Homeland likely will not avoid the effects of warfare and will be vulnerable in at least eight areas.

Ethics of Warfare Shift.
Traditional norms of warfare, definitions of combatants and non-combatants, and even what constitutes military action or national casus belli will be turned upside down and remain in flux at all levels of warfare.


– Does cyber activity, or information operations aimed at influencing national policy, rise to the level of warfare?

– Is using cyber capabilities to target a national infrastructure legal, if it has broad societal impacts?

– Can one target an electric grid that supports a civilian hospital, but also powers a military base a continent away from the battle zone from which unmanned systems are controlled?

– What is the threshold for WMD use?

– Is the use of autonomous robots against human soldiers legal?

These and other questions will arise, and likely will be answered differently by individual actors.

The changes in the character of war by mid-Century will be pronounced, and are directly related and traceable to our present. The natural progression of the changes in the character of war may be a change in the nature of war, perhaps towards the end of the Era of Contested Equality or in the second half of the Twenty First Century.

For additional information, watch the TRADOC G-2 Operational Environment Enterprise’s The Changing Character of Future Warfare video.

39. “Maddest” Guest Blogger!

(Editor’s Note: Since its inception in November 2018, Mad Scientist Laboratory has enabled us to expand our reach and engage global innovators from across industry, academia, and the Government regarding emergent disruptive technologies. For perspective, at the end of 2017, our blog had accrued 3,022 visitors and 5,212 views. Contrast that with the first three months of 2018, where we have racked up an additional 5,858 visitors and 11,387 views!

Our Mad Scientist Community of Action continues to grow in no small part due to the many guest bloggers who have shared their provocative, insightful, and occasionally disturbing visions of the future. To date, Mad Scientist Laboratory has published 15 guest blog posts.

And so, as the first half of FY18 comes to a close, we want to recognize all of our guest bloggers and thank them for contributing to our growth. We also challenge those of you that have been thinking about contributing a guest post to take the plunge and send us your submissions!

In particular, we would like to recognize Mr. Pat Filbert, who was our inaugural (and repeat!) guest blogger by re-posting below his initial submission, published on 4 December 2018. Pat’s post, Why do I have to go first?!”, generated a record number of visits and views. Consequently, we hereby declare Pat to be the Mad Scientist Laboratory’s “Maddest” Guest Blogger! for the first half of FY18. Pat will receive the following much coveted Mad Scientist swag in recognition of his achievement: a signed proclamation officially attesting to his Mad Scientist status as “Maddest” Guest Blogger!, 1st Half, FY18, and a Mad Scientist patch to affix to his lab coat and wear with pride!

And now, please enjoy Pat’s post…)


8. “Why do I have to go first?!”

“Reports indicate there’s been a mutiny by the U.S. Army’s robotic Soldiers resulting in an attack killing 47 human Soldiers.” – media report from Democratic Republic of the Congo, August 2041.

Our robotics systems have not ‘mutinied,’ there was a software problem resulting in several of our robotic Soldiers attacking our human Soldiers resulting in casualties; an investigation is underway. – Pentagon spokesman.

Reconciling the use of robotics has been focused on taking the risk away from humans and letting machines do the “dull, dirty, dangerous” operations. One of the premises of introducing unmanned aircraft systems into the force was to keep pilots, and their expensive aircraft, out of harm’s way while increasing the data flow for the commander.

Potential future use of robotic Soldiers to lead the way into an urban battlefield, absorb the brunt of a defending adversary’s fire to allow human Soldiers to exploit openings is a possible course of action. Keeping human Soldiers to fight another day, while increasing the speed of “house by house” clearing operations so they don’t consume humans—similar to urban area clearing in World War II—could be seen as a way to reduce the time a conflict takes to win.

Now we have search engine algorithms which tailor themselves to each person conducting a search to bring up the most likely items that person wants based on past searches. Using such algorithms to support supervised autonomous robotic troops has the potential for the robot to ask “why do I have to go first?” in a given situation. The robotic Soldier could calculate far faster that survival and self-preservation to continue the mission are paramount over being used as a “bullet sponge” as the robot police in the movie “Chappie” were used.

Depending on robotic Soldier’s levels of autonomy coupled with ethical software academics have posited be used to enable robots to make moral and ethical decisions, the robot Soldiers could decide not to follow their orders. Turning on their human counterparts and killing them could be calculated as the correct course of action depending on how the robot Soldiers conclude the moral and ethical aspects of the orders given and how it conflicts with their programming reveal. This is the premise in the movie “2001: A Space Odyssey” where the HAL 9000 AI kills the spaceship crew because it was ordered to withhold information (lie) which conflicted with its programming to be completely truthful. Killing the crew is a result of a programming conflict; if the crew is dead, HAL doesn’t have to lie.

Classified aspects of operations are withheld from human Soldiers, so this would most likely occur with robot Soldiers. This aspect could cause initiation of a programming conflict and such an attribute has to be considered for technology development; in professional military school’s syllabi; and on the battlefield as to how to plan, respond, and resolve.

• Can wargaming plans for operations including robotic Soldiers identify programming conflicts? If so, how can this be taught and programmed to resolve the conflict?

• When is the decision made to reduce the AI’s autonomy, and how, related to compartmentalized information for a more automatic/non-autonomous function?

• What safeguards have to be in place to address potential programming conflicts when the AI is “brought back up to speed” for why they were “dumbed down?”

For further general information, search ongoing discussions on outlawing weaponized autonomous systems. For academic recommendations to integrate ethical software into military autonomous systems to better follow the Laws of Warfare, see Dr. Ron Arkin’s “Ethical Robots in Warfare

For more information on how robots could be integrated into small units, thereby enhancing their close-in lethality and multi-domain effects, see Mr. Jeff Becker’s proposed Multi-Domain “Dragoon” Squad (MDS) concept. For insights into how our potential adversaries are exploring the role of robotics on future battlefields, see our Autonomous Threat Trends post.

Pat Filbert is retired Army (24 years, Armor/MI); now a contractor with the Digital Integration for Combat Engagement (DICE) effort developing training for USAF DCGS personnel. He has experience with UAS/ISR, Joint Testing, Intelligence analysis/planning, and JCIDS.

38. The Multi-Domain “Dragoon” Squad: A Hyper-enabled Combat System

“Victory in the future requires a force consisting of the many, small and smart. The United States and its Joint Force needs to get there first, and when it does, it needs to be aware of any advantages—and limitations—these new capabilities will provide.” — Mr. Jeff Becker, from his article entitled, “How to Beat Russia and China on the Battlefield: Military Robots,” originally published in The National Interest on 18 March 2018.

In 2016, General Mark Milley, Chief of Staff of the Army, asked if the Army of the future would have divisions and brigades, or whether it would utilize small, elite Special Forces-like units with operational and strategic level capabilities. At the U.S. Army Annual Meeting and Exposition, General Milley stated, “I suspect that the organizations and weapons and doctrines of land armies, between 2025 and 2050, in that quarter-century period of time, will be fundamentally different than what we see today.” There is a need to change, perhaps radically, some of our organizational unit designs that will allow the Army to operate on the battlefield of the future, which will be dispersed and dangerous across all domains.

To mitigate and disrupt the threat from state and non-state actors with drastically improved reconnaissance – persistent Intelligence, Surveillance, and Reconnaissance (ISR), electronic detection capabilities, and a saturation of sensors – and extremely lethal strike capabilities – thermobarics, penetrators, dual warheads, hypersonic weapons, long-range artillery, strike and interdiction aircraft – the U.S. Army must consider how to assemble and combine advanced capabilities into technologically-superior land units able to attack and destroy larger enemy units, maneuver over the land domain, and seize and hold terrain in support of these missions. Additionally, these forces must have organic, or at least more readily available, cyber, space, and information warfare capabilities.

The need for these land forces to operate in and across multiple domains prompted General Milley to order the creation of an experimental combat unit known as the Multi-Domain Task Force. The Army recognizes that future combat units will have to be moderately self-sustaining, highly lethal, very fast, and very difficult to pin down on a battlefield; current Army force structure does not provide units that can maneuver and operate in this vein. The Multi-Domain Task Force will be the test bed for a concept of operations and force structure that moves beyond just countering adversarial anti-access and area denial (A2/AD) capabilities and will incorporate larger Joint efforts for maneuver and combat operations in the future.

Beyond the challenges and opportunities for operational forces more equivalent to today’s brigade combat teams, there is growing concern over the loss of technological and mobility overmatches the Army has possessed for the last 15 years at the tactical level. To explore this problem, Mr. Jeff Becker, President and Principal Analyst of Context LLC (and Mad Scientist Laboratory guest blogger), spoke at the Mad Scientist Visualizing Multi Domain Battle Conference at Georgetown University, 25-26 July 2017, about what the tactical system of the Army might look like in the 2035-2050 timeframe. In his video presentation from this conference, Mr. Becker addressed just how lethal, how mobile, how protected, and how aware a very small – 12-15 person – unit on the future battlefield might be. He presented the concept for a Multi-Domain “Dragoon” Squad (MDS), a hyper-enabled combat system composed of numerous future technologies allowing the tactical unit to have multi-domain effects.

The MDS provides the Army with a small unit capable of tactical surprise and an enormous capability for close-in lethality. The crux of the MDS is a system-of-systems approach to enabling a small tactical unit with the capability to survive, thrive, and bring about effects across domains throughout the tactical environment in a terrain-agnostic way.

This approach is achieved through multiple technological implementations:

– Equipping of soldiers with soft exosuits to increase their strength and endurance, allowing for heavier and more capable individual weaponry and the ability to sustain peak performance


– Lightweight helmet-mounted displays providing augmented and virtual reality images based on feeds from sensors – including cyber and electromagnetic environments to reach new levels of close-in situational awareness


Metamaterials allowing lower profile, higher bandwidth antennas integral to the soldier suit as well as the vehicles and robots




Modernized assault weapons including guided rounds, increasing the probability of a hit






– Lightweight (4500 lbs.) Infantry Mobility Vehicles (IMVs) capable of semi-autonomy, autonomy, or remote-control as well as the ability to provide covering fire with a robotic turret and precision indirect fires weapons


Sensor system and associated AI capable of detecting, locating, classifying and prioritizing multiple targets, while providing early warning to fire team




– Eight armed reconnaissance robots able to move over ground at speeds in excess of 40-50 miles per hour; capable of traversing complex terrain quickly and closing with areas of interest at high speed; potential for lethal capability


– Short range, low altitude quadcopter drones providing optical and electronic sensing to the unit, providing constant updates to the AR/VR backbone; potential for lethal capability


Squad Indirect Fires Support Vehicle (SIF-V) providing a range of indirect fires directly to each team


The MDS is not the all-encompassing zenith of the MDB concept but rather is a machination of it at the tactical level that could have a ground-up cumulative change effect. It is impossible for the Army, nor any of its sister services, to completely transform within a decade; however, sweeping organizational experimentation and reconfiguration of existing formations through initiatives such as the Multi-Domain Task Force can lead to such a transformation.

Mr. Jeff Becker’s vision for the MDS was originally submitted in response to a Mad Scientist Call for Ideas that was subsequently published here by Small Wars Journal.

Mr. Becker and MG David Fastabend (USA-Ret.) co-authored a paper that was the baseline and inspiration for The Operational Environment and the Changing Character of Future Warfare on behalf of the TRADOC G-2.

Mr. Becker and MG Fastabend were also key analytical contributors to the Robotics, Artificial Intelligence & Autonomy: Visioning Multi-Domain Warfare in 2030-2050 Final Report that documented the results of the associated Mad Scientist Conference, co-hosted by Georgia Tech Research Institute, on 7-8 March 2017.