67. “The Tenth Man”

Source: Yahoo

[Editor’s Note: In the movie World War Z (I know… the book was way better!), an Israeli security operative describes how Israel prepared for the coming zombie plague. Their strategy was if nine men agreed on an analysis or a course of action, the tenth man had to take an alternative view.

This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging. The Mad Scientist Laboratory will begin a series of posts entitled “The Tenth Man” to offer a platform for the contrarians in our network (I know you’re out there!) to share their alternative perspectives and analyses regarding the Future Operational Environment.]

Our foundational assumption about the Future Operational Environment is that the Character of Warfare is changing due to an exponential convergence of emerging technologies. Artificial Intelligence, Robotics, Autonomy, Quantum Sciences, Nano Materials, and Neuro advances will mean more lethal warfare at machine speed, integrated seamlessly across all five domains – air, land, sea, cyber, and space.

We have consistently seen four main themes used to counter this idea of a changing character of war, driven by technology:

Source: danovski11 / DeviantArt

1. Cost of Robotic Warfare: All armies must plan for the need to reconstitute forces. This is particularly ingrained in the U.S. Army’s culture where we have often lost the first battles in any given conflict (e.g., Kasserine Pass in World War II and Task Force Smith in Korea). We cannot afford to have a “one loss” Army where our national wealth and industrial base can not support the reconstitution of a significant part of our Army. A high-cost, roboticized Army might also limit our political leaders’ options for the use of military force due to the risk of loss and associated cost.

Gartner Hype Cycle

2. Technology Hype: Technologists are well aware of the idea of a hype cycle when forecasting emerging technologies. Machine learning was all the rage in the 1970s, but the technology needed to drive these tools did not exist. Improved computing has finally helped us realize this vision, forty years later. The U.S. Army’s experience with the Future Combat System hits a nerve when assumptions of the future require the integration of emerging technologies.

Source: Fallout 4

3. Robotic Warfare: A roboticized Army is over-optimized to fight against a peer competitor, which is the least likely mission the Army will face. We build an Army and develop Leaders first and foremost to protect our Nation’s sovereignty. This means having an Army capable of deterring, and failing that, defeating peer competitors. At the same time, this Army must be versatile enough to execute a myriad of additional missions across the full spectrum of conflict. A hyper-connected Army enabled by robots with fewer Soldiers will be challenged in executing missions requiring significant human interactions such as humanitarian relief, building partner capacity, and counter-insurgency operations.

4. Coalition Warfare: A technology-enabled force will exasperate interoperability challenges with both our traditional and new allies. Our Army will not fight unilaterally on future battlefields. We have had difficulties with the interoperability of communications and have had gaps between capabilities that increased mission risks. These risks were offset by the skills our allies brought to the battlefield. We cannot build an Army that does not account for a coalition battlefield and our allies may not be able to afford the tech-enabled force envisioned in the Future Operational Environment.

All four of these assumptions are valid and should be further studied as we build the Army of 2028 and the Army of 2050. There are many other contrarian views about the Future Operational Environment, and so we are calling upon our network to put on their red hats and be our “Tenth Man.”

If you have an idea or concept that challenges or runs contrary to our understanding of the Future Operational Environment as described here in the Mad Scientist Laboratory, The Operational Environment and the Changing Character of Future Warfare paper, and The Changing Character of Future Warfare video, please draft it up as a blog post and forward it to our attention at:  usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for our next edition of “The Tenth Man”!

64. Top Ten Takeaways from the Installations of the Future Conference

On 19-20 June 2018, the U.S. Army Training and Doctrine Command (TRADOC) Mad Scientist Initiative co-hosted the Installations of the Future Conference with the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)) and Georgia Tech Research Institute (GTRI).  Emerging technologies supporting the hyper-connectivity revolution will enable improved training capabilities, security, readiness support (e.g., holistic medical facilities and brain gyms), and quality of life programs at Army installations. Our concepts and emerging doctrine for multi-domain operations recognizes this as increasingly important by including Army installations in the Strategic Support Area. Installations of the Future will serve as mission command platforms to project virtual power and expertise as well as Army formations directly to the battlefield.

We have identified the following “Top 10” takeaways related to our future installations:

Source: Laserfishe

1. Threats and Tensions.Army Installations are no longer sanctuaries” — Mr. Richard G. Kidd IV, Deputy Assistant Secretary of the Army, Strategic Integration. There is a tension between openness and security that will need balancing to take advantage of smart technologies at our Army installations. The revolution in connected devices and the ability to virtually project power and expertise will increase the potential for adversaries to target our installations. Hyper-connectivity increases the attack surface for cyber-attacks and the access to publicly available information on our Soldiers and their families, making personalized warfare and the use of psychological attacks and deep fakes likely.

2. Exclusion vs. Inclusion. The role of and access to future Army installations depends on the balance between these two extremes. The connections between local communities and Army installations will increase potential threat vectors, but resilience might depend on expanding inclusion. Additionally, access to specialized expertise in robotics, autonomy, and information technologies will require increased connections with outside-the-gate academic institutions and industry.

Source: pcmag.com

3. Infrastructure Sensorization.  Increased sensorization of infrastructure runs the risk of driving efficiencies to the point of building in unforeseen risks. In the business world, these efficiencies are profit-driven, with clearer risks and rewards. Use of table top exercises can explore hidden risks and help Garrison Commanders to build resilient infrastructure and communities. Automation can cause cascading failures as people begin to fall “out of the loop.”

4. Army Modernization Challenge.  Installations of the Future is a microcosm of overarching Army Modernization challenges. We are simultaneously invested in legacy infrastructure that we need to upgrade, and making decisions to build new smart facilities. Striking an effective and efficient balance will start with public-private partnerships to capture the expertise that exists in our universities and in industry. The expertise needed to succeed in this modernization effort does not exist in the Army. There are significant opportunities for Army Installations to participate in ongoing consortiums like the “Middle Georgia” Smart City Community and the Global Cities Challenge to pilot innovations in spaces such as energy resilience.

5. Technology is outpacing regulations and policy. The sensorization and available edge analytics in our public space offers improved security but might be perceived as decreasing personal privacy. While we give up some personal privacy when we live and work on Army installations, this collection of data will require active engagement with our communities. We studied an ongoing Unmanned Aerial System (UAS) support concept to detect gunshot incidents in Louisville, KY, to determine the need to involve legislatures, local political leaders, communities, and multiple layers of law enforcement.

6. Synthetic Training Environment. The Installation of the Future offers the Army significant opportunities to divest itself of large brick and mortar training facilities and stove-piped, contractor support-intensive Training Aids, Devices, Simulations, and Simulators (TADSS).  MG Maria Gervais, Deputy Commanding General, Combined Arms Center – Training (DCG, CAC-T), presented the Army’s Synthetic Training Environment (STE), incorporating Virtual Reality (VR)“big box” open-architecture simulations using a One World Terrain database, and reduced infrastructure and contractor-support footprints to improve Learning and Training.  The STE, delivering high-fidelity simulations and the opportunity for our Soldiers and Leaders to exercise all Warfighting Functions across the full Operational Environment with greater repetitions at home station, will complement the Live Training Environment and enhance overall Army readiness.

Source: The Goldwater

7. Security Technologies. Many of the security-oriented technologies (autonomous drones, camera integration, facial recognition, edge analytics, and Artificial Intelligence) that triage and fuse information will also improve our deployed Intelligence, Surveillance, and Reconnaissance (ISR) capabilities. The Chinese lead the world in these technologies today.

Source: TechViz

8. Virtual Prototyping. The U.S. Army Engineer Research and Development Center (ERDC) is developing a computational testbed using virtual prototyping to determine the best investments for future Army installations. The four drivers in planning for Future Installations are:  1) Initial Maneuver Platform (Force Projection); 2) Resilient Installations working with their community partners; 3) Warfighter Readiness; and 4) Cost effectiveness in terms of efficiency and sustainability.

9. Standard Approach to Smart Installations. A common suite of tools is needed to integrate smart technologies onto installations. While Garrison Commanders need mission command to take advantage of the specific cultures of their installations and surrounding communities, the Army cannot afford to have installations going in different directions on modernization efforts. A method is needed to rapidly pilot prototypes and then determine whether and how to scale the technologies across Army installations.

10. “Low Hanging Fruit.” There are opportunities for Army Installations to lead their communities in tech integration. Partnerships in energy savings, waste management, and early 5G infrastructure provide the Army with early adopter opportunities for collaboration with local communities, states, and across the nation. We must educate contracting officers and Government consumers to look for and seize upon these opportunities.

Videos from each of the Installations of the Future Conference presentations are posted here. The associated slides will be posted here within the week on the Mad Scientist All Partners Access Network site.

If you enjoyed this post, check out the following:

• Watch Mr. Richard Kidd IV discuss Installations of the Future on Government Matters.

• Read Mad Scientist Ed Blayney’s takeaways from the Installations of the Future Conference in his article, entitled We need more Mad Scientists in our Smart Cities.

• See the TRADOC G-2 Operational Environment Enterprise’s:

–  The Changing Character of Future Warfare video.

–  Evolving Threats to Army Installations video.

• Review our Call for Ideas winning submissions Trusting Smart Cities: Risk Factors and Implications by Dr. Margaret Loper, and Day in the Life of a Garrison Commander by the team at AT&T Global Public Sector — both are graciously hosted by our colleagues at Small Wars Journal.

• Re-visit our following blog posts: Smart Cities and Installations of the Future: Challenges and Opportunities and Base in a Box.

61. Base in a Box

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the following guest blog post by Mr. Lewis Jones. Originally a “Letter Home” submission to the Call for Ideas associated with the Mad Scientist Installations of the Future Conference (see more information about this event at the end of this post), we hope that you will enjoy Mr. Jones’ vision of a mid-Twenty First Century forward deployed base.]

Hey Dad, guess who got new PCS orders!  From March 2042 I’ll be assigned to Joint Base Harris in Japan.  You spent your early career in Japan, right?  I’ll never forget your stories about Camp Zama, a sprawling installation housing hundreds of soldiers and civilians. I  used to love hearing about the 2020s, when enemy sensors, drones, and artificial intelligence first wreaked havoc on operations there.

Source: John Lamb/The Image Bank/Getty Images

Remember the Garrison commander whose face was 3D-scanned by a rigged vending machine near the gate? The enemy released that humiliating video right before a major bilateral operation. By the time we proved it was fake, our partners had already withdrawn.




What about the incident at the intel battalion’s favorite TDY hotel with a pool-side storage safe? Soldiers went swimming and tossed their wallets into the safe, unaware that an embedded scanner would clone their SIPR tokens. To make matters worse, the soldiers secured the safe with a four digit code… using the same numbers as their token PIN.

Source: CNN
Oh, and remember the Prankenstein A.I. attack? It scanned social media to identify Army personnel living off-base, then called local law enforcement with fake complaints. The computer-generated voice was very convincing, even giving physical descriptions based on soldier’s actual photos. You said that one soured host-nation relations for years!

Or the drones that hovered over Camp Zama, broadcasting fake Wi-Fi hotspots. The enemy scooped up so much intelligence and — ah, you get the picture. Overseas bases were so vulnerable back then.


Well, the S1 sent me a virtual tour and the new base is completely different. When U.S. Forces Japan rebuilt its installations, those wide open bases were replaced by miniature, self-contained fortresses. Joint Base Harris, for example, was built inside a refurbished shopping mall: an entire installation, compressed into a single building!

Source: The Cinephile Gardener

Here’s what I saw on my virtual tour:

  • Source: Gizmodo UK

      The roof has solar panels and battery banks for independent power. There’s also an enormous greenhouse, launch pads for drones and helos, and a running trail.

 

  The ground level contains a water plant that extracts and purifies groundwater, along with indoor hydroponic farms. Special filtration units scrub the air; they’re even rated against CBRN threats.

  • Source: tandemnsi.com

      What was once a multi-floor parking garage is now a motor pool, firing range, and fitness complex. The gym walls are smart-screens, so you can work out in a different environment every day.

 

  Communications are encrypted and routed through a satellite uplink. The base even has its own cellphone tower. Special mesh in the walls prevent anybody outside from eavesdropping on emissions— the entire base is a SCIF.

Source: fortune.com

  The mall’s shops and food court were replaced by all the features and functions of a normal base: nearly 2,000 Army, Air and Cyber Force troops living, working, and training inside. They even have a kitchen-bot in the chow hall that can produce seven custom meals per minute!

 

  Supposedly, the base extends several floors underground, but the tour didn’t show that. I guess that’s where the really secret stuff happens.

Source: Gizmodo Australia

By the way, don’t worry about me feeling cooped up:  Soldiers are assigned top-notch VR specs during in-processing.  During the duty day, they’re only for training simulations. Once you’re off, personal use is authorized. I’ll be able to play virtual games, take virtual tours… MWR even lets you link with telepresence robots to “visit” family back home.

The sealed, self-contained footprint of this new base is far easier to defend in today’s high-tech threat environment. Some guys complain about being stuck inside, but you know what I think? If Navy sailors can spend months at sea in self-contained bases, then there’s no reason the Army can’t do the same on land!

Love,
Your Daughter

 

If you were intrigued by this vision of a future Army installation, please plan on joining us virtually at the Mad Scientist Installations of the Future Conference, co-sponsored by the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)); Georgia Tech Research Institute (GTRI); and Headquarters, U.S. Army Training and Doctrine Command (TRADOC),  at GTRI in Atlanta, Georgia, on 19-20 June 2018.  Click here to learn more about the conference and then participate in the live-streamed proceedings, starting at 0830 EDT on 19 June 2018.

Lewis Jones is an Army civilian with nearly 15 years of experience in the Indo-Pacific region. In addition to his Japanese and Chinese language studies, he has earned a Masters in Diplomacy and International Conflict Management from Norwich University. He has worked as a headhunter for multinational investment banks in Tokyo, as a business intelligence analyst for a DOD contractor, and has supported the Army with cybersecurity program management and contract administration. Lewis writes about geopolitics, international relations, U.S. national security, and the effects of rapid advances in technology.

60. Mission Engineering and Prototype Warfare: Operationalizing Technology Faster to Stay Ahead of the Threat

[Editor’s Note: Mad Scientist is pleased to present the following post by a team of guest bloggers from The Strategic Cohort at the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). Their post lays out a clear and cogent approach to Army modernization, in keeping with the Chief of Staff of the Army GEN Mark A. Milley’s and Secretary of the Army Mark T. Esper’s guidance “to focus the Army’s efforts on delivering the weapons, combat vehicles, sustainment systems, and equipment that Soldiers need when they need it” and making “our Soldiers more effective and our units less logistically dependent.” — The Army Vision,  06 June 2018 ]

 

 

“Success no longer goes to the country that develops a new fighting technology first, but rather to the one that better integrates it and adapts its way of fighting….” The National Defense Strategy (2018).

 

 

Executive Summary
While Futures Command and legislative changes streamline acquisition bureaucracy, the Army will still struggle to keep pace with the global commercial technology marketplace as well as innovate ahead of adversaries who are also innovating.

Chinese Lijian Sharp Sword Unmanned Combat Air Vehicle (UCAV) — Source: U.S. Naval Institute (USNI) News

Reverse engineering and technology theft make it possible for adversaries to inexpensively copy DoD-specific technology “widgets,” potentially resulting in a “negative return” on investment of DoD research dollars. Our adversaries’ pace of innovation further compounds our challenge. Thus the Army must not only equip the force to confront what is expected,

Northrop Grumman X-47B UCAV — Source: USNI News

but equip the force to confront an adaptable enemy in a wide variety of environments. This paper proposes a framework that will enable identification of strategically relevant problems and provide solutions to those problems at the speed of relevance and invert the cost asymmetry.

To increase the rate of innovation, the future Army must learn to continually assimilate, produce, and operationalize technologies much faster than our adversaries to gain time-domain overmatch. The overarching goal is to create an environment that our adversaries cannot duplicate: integration of advanced technologies with skilled Soldiers and well-trained teams. The confluence of two high level concepts — the Office of the Secretary of Defense’s Mission Engineering and Robert Leonard’s Prototype Warfare (see his Principles of Warfare for the Information Age book) — pave the way to increasing the rate of innovation by operationalizing technology faster to stay ahead of the threat, while simultaneously reducing the cost of technology overmatch.

Mission Engineering
OSD’s Mission Engineering concept, proposed by Dr. Robert Gold, calls for acquisitions to treat the end-to-end mission as the system to optimize, in which individual systems are components. Further, the concept utilizes an assessment framework to measure progress towards mission accomplishment through test and evaluation in the mission context. In fact, all actions throughout the capability development cycle must tie back to the mission context through the assessment framework. It goes beyond just sharing data to consider functions and the strategy for trades, tools, cross-cutting functions, and other aspects of developing a system or system of systems.

Consider the example mission objective of an airfield seizure. Traditional thinking and methods would identify an immediate needed capability for two identical air droppable vehicles, therefore starting with a highly constrained platform engineering solution. Mission Engineering would instead start by asking: what is the best way to seize an airfield? What mix of capabilities are required to do so? What mix of vehicles (e.g.,  Soldiers, exoskeletons, robots, etc.) might you need within space and weight constraints of the delivery aircraft? What should the individual performance requirements be for each piece of equipment?

Mission Engineering breaks down cultural and technical “domain stovepipes” by optimizing for the mission instead of a ground, aviation, or cyber specific solution. There is huge innovation space between the conventional domain seams.

Source: www.defenceimages.mod.uk

For example, ground vehicle concepts would be able to explore looking more like motherships deploying exoskeletons, drone swarms, or other ideas that have not been identified or presented because they have no clear home in a particular domain. It warrants stating twice that there are a series of mission optimized solutions that have not been identified or presented because they have no clear home in the current construct. Focusing the enterprise on the mission context of the problem set will enable solutions development that is relevant and timely while also connecting a network of innovators who each only have a piece of the whole picture.

Prototype Warfare

Prototype Warfare represents a paradigm shift from fielding large fleets of common-one-size-fits-all systems to rapidly fielding small quantities of tailored systems. Tailored systems focus on specific functions, specific geographic areas, or even specific fights and are inexpensively produced and possibly disposable.

MRZR with a tethered Hoverfly quadcopter unmanned aircraft system — Source: DefenseNews / Jen Judson

For example, vehicle needs are different for urban, desert, and mountain terrains. A single system is unlikely to excel across those three terrains without employing exotic and expensive materials and technology (becoming expensive and exquisite). They could comprise the entire force or just do specific missions, such as Hobart’s Funnies during the D-Day landings.

A further advantage of tailored systems is that they will force the enemy to deal with a variety of unknown U.S. assets, perhaps seen for the first time. A tank platoon might have a heterogeneous mix of assets with different weapons and armor. Since protection and lethality will be unknown to the enemy, it will be asymmetrically challenging for them to develop in a timely fashion tactics, techniques, and procedures or materiel to effectively counter such new capabilities.

Potential Enablers
Key technological advances present the opportunity to implement the Mission Engineering and Prototype Warfare concepts. Early Synthetic Prototyping (ESP), rapid manufacturing, and the burgeoning field of artificial intelligence (AI) provide ways to achieve these concepts. Each on its own would present significant opportunities. ESP, AI, and rapid manufacturing, when applied within the Mission Engineering/Prototype Warfare framework, create the potential for an innovation revolution.

Under development by the Army Capabilities Integration Center (ARCIC) and U.S. Army Research, Development, and Engineering Command (RDECOM), ESP is a physics-based persistent game network that allows Soldiers and engineers to collaborate on exploration of the materiel, force structure, and tactics trade space. ESP will generate 12 million hours of digital battlefield data per year.

Beyond the ESP engine itself, the Army still needs to invest in cutting edge research in machine learning and big data techniques needed to derive useful data on tactics and technical performance from the data. Understanding human intent and behaviors is difficult work for current computers, but the payoff is truly disruptive. Also, as robotic systems become more prominent on the battlefield, the country with the best AI to control them will have a great advantage. The best AI depends on having the most training, experimental, and digitally generated data. The Army is also acutely aware of the challenges involved in testing and system safety for AI enabled systems; understanding what these systems are intended to do in a mission context fosters debate on the subject within an agreed upon problem space and associated assessment framework.

Finally, to achieve the vision, the Army needs to invest in technology that allows rapid problem identification, engineering, and fielding of tailored systems. For over two decades, the Army has touted modularity to achieve system tailoring and flexibility. However, any time something is modularized, it adds some sort of interface burden or complexity. A specific-built system will always outperform a modular system. Research efforts are needed to understand the trade-offs of custom production versus modularity. The DoD also needs to strategically grow investment in new manufacturing technologies (to include 3D printing) and open architectures with industry.

Associated Implications
New challenges are created when there is a hugely varied fleet of tailored systems, especially for logistics, training, and maintenance. One key is to develop a well-tracked digital manufacturing database of replacement parts. For maintenance, new technologies such as augmented reality might be used to show mechanics who have never seen a system how to rapidly diagnose and make repairs.

Source: Military Embedded Systems

New Soldier interfaces for platforms should also be developed that are standardized/simplified so it is intuitive for a soldier to operate different systems in the same way it is intuitive to operate an iPhone/iPad/Mac to reduce and possibly eliminate the need for system specific training. For example, imagine a future soldier gets into a vehicle and inserts his or her common access card. A driving display populates with the Soldier’s custom widgets, similar to a smartphone display. The displays might also help soldiers understand vehicle performance envelopes. For example, a line might be displayed over the terrain showing how sharp a soldier might turn without a rollover.

Conclusion
The globalization of technology allows anyone with money to purchase “bleeding-edge,” militarizable commercial technology. This changes the way we think about the ability to generate combat power to compete internationally from the physical domain, to the time domain. Through the proposed mission engineering and prototype warfare framework, the Army can assimilate and operationalize technology quicker to create an ongoing time-domain overmatch and invert the current cost asymmetry which is adversely affecting the public’s will to fight. Placing human thought and other resources towards finding new ways to understand mission context and field new solutions will provide capability at the speed of relevance and help reduce operational surprise through a better understanding of what is possible.

Source: Defence Science and Technology Laboratory / Gov.UK

If you enjoyed this post, join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live today — watch the associated video here and join the discussion here!

This article was written by Dr. Rob Smith, Senior Research Scientist; Mr. Shaheen Shidfar, Strategic Cohort Lead; Mr. James Parker, Associate Director; Mr. Matthew A. Horning, Mission Engineer; and Mr. Thomas Vern, Associate Director. Collectively, these gentlemen are a subset of The Strategic Cohort, a multi-disciplinary independent group of volunteers located at TARDEC that study the Army’s Operating Concept Framework to understand how we must change to survive and thrive in the future operating environment. The Strategic Cohort analyzes these concepts and other reference materials, then engages in disciplined debate to provide recommendations to improve TARDEC’s alignment with future concepts, educate our workforce, and create dialogue with the concept developers providing a feedback loop for new ideas.

Further Reading:

Gold, Robert. “Mission Engineering.” 19th Annual NDIA Systems Engineering Conference, Oct. 26, 2016, Springfield, VA. Presentation.

Leonard, Robert R. The Principles of War for the Information Age, Presidio Press (2000).

Martin, A., & FitzGerald, B. “Process Over Platforms.” Center for a New American Security, Dec. 13, 2013.

FitzGerald, B., Sander, A. & Parziale, J. “Future Foundry A New Strategic Approach to Military-Technical Advantage.” Center for a New American Security, Dec. 14, 2016.

Kozloski, Robert. “The Path to Prototype Warfare.” War on the Rocks, 17 July 2017.

Hammes, T.X. “The Future of Warfare: Small, Many, Smart vs. Few & Exquisite?” War on the Rocks, 7 Aug. 2015.

Smith, Robert E. “Tactical Utility of Tailored Systems.” Military Review (2016).

Smith, Robert E. and Vogt, Brian. “Early Synthetic Prototyping Digital Warfighting For Systems Engineering.” Journal of Cyber Security and Information Systems 5.4 (2017).

59. Fundamental Questions Affecting Army Modernization

[Editor’s Note:  The Operational Environment (OE) is the start point for Army Readiness – now and in the Future. The OE answers the question, “What is the Army ready for?”  Without the OE in training and Leader development, Soldiers and Leaders are “practicing” in a benign condition, without the requisite rigor to forge those things essential for winning in a complex, multi-domain battlefield.  Building the Army’s future capabilities, a critical component of future readiness, requires this same start point.  The assumptions the Army makes about the Future OE are the sine qua non start point for developing battlefield systems — these assumptions must be at the forefront of decision-making for all future investments.]

There are no facts about the future. Leaders interested in building future ready organizations must develop assumptions about possible futures and these assumptions require constant scrutiny. Leaders must also make decisions based on these assumptions to posture organizations to take advantage of opportunities and to mitigate risks. Making these decisions is fundamental to building future readiness.

Source: Evan Jensen, ARL

The TRADOC G-2 has made the following foundational assumptions about the future that can serve as launch points for important questions about capability requirements and capabilities under development. These assumptions are further described in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

1. Contested in all domains (air, land, sea, space, and cyber). Increased lethality, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions, further enabled by autonomy, robotics, and Artificial Intelligence (AI) with an increasing potential for overmatch. Adversaries will restrict us to temporary windows of advantage with periods of physical and electronic isolation.

Source: Army Technology

2. Concealment is difficult on the future battlefield. Hiding from advanced sensors — where practicable — will require dramatic reduction of heat, electromagnetic, and optical signatures. Traditional hider techniques such as camouflage, deception, and concealment will have to extend to “cross-domain obscuration” in the cyber domain and the electromagnetic spectrum. Canny competitors will monitor their own emissions in real-time to understand and mitigate their vulnerabilities in the “battle of signatures.” Alternately, “hiding in the open” within complex terrain clutter and near-constant relocation might be feasible, provided such relocation could outpace future recon / strike targeting cycles.   Adversaries will operate among populations in complex terrain, including dense urban areas.

3. Trans-regional, gray zone, and hybrid strategies with both regular and irregular forces, criminal elements, and terrorists attacking our weaknesses and mitigating our advantages. The ensuing spectrum of competition will range from peaceful, legal activities through violent, mass upheavals and civil wars to traditional state-on-state, unlimited warfare.

Source: Science Photo Library / Van Parys Media

4. Adversaries include states, non-state actors, and super-empowered individuals, with non-state actors and super empowered individuals now having access to Weapons of Mass Effect (WME), cyber, space, and Nuclear/Biological/ Chemical (NBC) capabilities. Their operational reach will range from tactical to global, and the application of their impact from one domain into another will be routine. These advanced engagements will also be interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Source: Northrop Grumman

5. Increased speed of human interaction, events and action with democratized and rapidly proliferating capabilities means constant co-evolution between competitors. Recon / Strike effectiveness is a function of its sensors, shooters, their connections, and the targeting process driving decisions. Therefore, in a contest between peer competitors with comparable capabilities, advantage will fall to the one that is better integrated and makes better and faster decisions.

These assumptions become useful when they translate to potential decision criteria for Leaders to rely on when evaluating systems being developed for the future battlefield. Each of the following questions are fundamental to ensuring the Army is prepared to operate in the future.

Source: Lockheed Martin

1. How will this system operate when disconnected from a network? Units will be disconnected from their networks on future battlefields. Capabilities that require constant timing and precision geo-locational data will be prioritized for disruption by adversaries with capable EW systems.

2. What signature does this system present to an adversary? It is difficult to hide on the future battlefield and temporary windows of advantage will require formations to reduce their battlefield signatures. Capabilities that require constant multi-directional broadcast and units with large mission command centers will quickly be targeted and neutralized.

Image credit: Alexander Kott

3. How does this system operate in dense urban areas? The physical terrain in dense urban areas and megacities creates concrete canyons isolating units electronically and physically. Automated capabilities operating in dense population areas might also increase the rate of false signatures, confusing, rather than improving, Commander decision-making. New capabilities must be able to operate disconnected in this terrain. Weapons systems must be able to slew and elevate rapidly to engage vertical targets. Automated systems and sensors will require significant training sets to reduce the rate of false signatures.

Source: Military Embedded Systems

4. How does this system take advantage of open and modular architectures? The rapid rate of technological innovations will offer great opportunities to militaries capable of rapidly integrating prototypes into formations.  Capabilities developed with open and modular architectures can be upgraded with autonomous and AI enablers as they mature. Early investment in closed-system capabilities will freeze Armies in a period of rapid co-evolution and lead to overmatch.

5. How does this capability help win in competition short of conflict with a near peer competitor? Near peer competitors will seek to achieve limited objectives short of direct conflict with the U.S. Army. Capabilities will need to be effective at operating in the gray zone as well as serving as deterrence. They will need to be capable of strategic employment from CONUS-based installations.

If you enjoyed this post, check out the following items of interest:

    • Join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live 11 June 2018 — click here to learn more!

56. An Appropriate Level of Trust…

The Mad Scientist team participates in many thought exercises, tabletops, and wargames associated with how we will live, work, and fight in the future. A consistent theme in these events is the idea that a major barrier to the integration of robotic systems into Army formations is a lack of trust between humans and machines. This assumption rings true as we hear the media and opinion polls describe how society doesn’t trust some disruptive technologies, like driverless cars or the robots coming for our jobs.

In his recent book, Army of None, Paul Scharre describes an event that nearly led to a nuclear confrontation between the Soviet Union and the United States. On September 26, 1983, LTC Stanislav Petrov, a Soviet Officer serving in a bunker outside Moscow was alerted to a U.S. missile launch by a recently deployed space-based early warning system. The Soviet Officer trusted his “gut” – or experientially informed intuition – that this was a false alarm. His gut was right and the world was saved from an inadvertent nuclear exchange because this officer did not over trust the system. But is this the rule or an exception to how humans interact with technology?

The subject of trust between Soldiers, Soldiers and Leaders, and the Army and society is central to the idea of the Army as a profession. At the most tactical level, trust is seen as essential to combat readiness as Soldiers must trust each other in dangerous situations. Humans naturally learn to trust their peers and subordinates once they have worked with them for a period of time. You learn what someone’s strengths and weaknesses are, what they can handle, and under what conditions they will struggle. This human dynamic does not translate to human-machine interaction and the tendency to anthropomorphize machines could be a huge barrier.

We recommend that the Army explore the possibility that Soldiers and Leaders could over trust AI and robotic systems. Over trust of these systems could blunt human expertise, judgement, and intuition thought to be critical to winning in complex operational environments. Also, over trust might lead to additional adversarial vulnerabilities such as deception and spoofing.

In 2016, a research team at the Georgia Institute of Technology revealed the results of a study entitled “Overtrust of Robots in Emergency Evacuation Scenarios”. The research team put 42 test participants into a fire emergency with a robot responsible for escorting them to an emergency exit. As the robot passed obvious exits and got lost, 37 participants continued to follow the robot and an additional 2 stood with the robot and didn’t move towards either exit. The study’s takeaway was that roboticists must think about programs that will help humans establish an “appropriate level of trust” with robot teammates.

In Future Crimes, Marc Goodman writes of the idea of “In Screen We Trust” and the vulnerabilities this trust builds into our interaction with our automation. His example of the cyber-attack against the Iranian uranium enrichment centrifuges highlights the vulnerability of experts believing or trusting their screens against mounting evidence that something else might be contributing to the failure of centrifuges. These experts over trusted their technology or just did not have an “appropriate level of trust”. What does this have to do with Soldiers on the future battlefield? Well, increasingly we depend on our screens and, in the future, our heads-up displays to translate the world around us. This translation will only become more demanding on the future battlefield with war at machine speed.

So what should our assumptions be about trust and our robotic teammates on the future battlefield?

1) Soldiers and Leaders will react differently to technology integration.

2) Capability developers must account for trust building factors in physical design, natural language processing, and voice communication.

3) Intuition and judgement remain a critical component of human-machine teaming and operating on the future battlefield. Speed becomes a major challenge as humans become the weak link.

4) Building an “appropriate level of trust” will need to be part of Leader Development and training. Mere expertise in a field does not prevent over trust when interacting with our robotic teammates.

5) Lastly, lack of trust is not a barrier to AI and robotic integration on the future battlefield. These capabilities will exist in our formations as well as those of our adversaries. The formation that develops the best concepts for effective human-machine teaming, with trust being a major component, will have the advantage.

Interested in learning more on this topic? Watch Dr. Kimberly Jackson Ryan (Draper Labs).

[Editor’s Note:  A special word of thanks goes out to fellow Mad Scientist Mr. Paul Scharre for sharing his ideas with the Mad Scientist team regarding this topic.]

52. Potential Game Changers

The Mad Scientist Initiative brings together cutting-edge leaders and thinkers from the technology industry, research laboratories, academia, and across the military and Government to explore the impact of potentially disruptive technologies. Much like Johannes Gutenberg’s moveable type (illustrated above), these transformational game changers have the potential to impact how we live, create, think, and prosper. Understanding their individual and convergent impacts is essential to continued battlefield dominance in the Future Operational Environment. In accordance with The Operational Environment and the Changing Character of Future Warfare, we have divided this continuum into two distinct timeframes:

The Era of Accelerated Human Progress (Now through 2035):
The period where our adversaries can take advantage of new technologies, new doctrine, and revised strategic concepts to effectively challenge U.S. military forces across multiple domains. Game changers during this era include:

• Robotics: Forty plus countries develop military robots with some level of autonomy. Impact on society, employment.
Vulnerable: To Cyber/Electromagnetic (EM) disruption, battery life, ethics without man in the loop.
Formats: Unmanned/Autonomous; ground/air vehicles/subsurface/sea systems. Nano-weapons.
Examples: (Air) Hunter/killer Unmanned Aerial Vehicle (UAV) swarms; (Ground) Russian Uran: Recon, ATGMs, SAMs.

• Artificial Intelligence: Human-Agent Teaming, where humans and intelligent systems work together to achieve either a physical or mental task. The human and the intelligent system will trade-off cognitive and physical loads in a collaborative fashion.

• Swarms/Semi Autonomous: Massed, coordinated, fast, collaborative, small, stand-off. Overwhelm target systems. Mass or disaggregate.



• Internet of Things (IoT): Trillions of internet linked items create opportunities and vulnerabilities. Explosive growth in low Size Weight and Power (SWaP) connected devices (Internet of Battlefield Things), especially for sensor applications (situational awareness). Greater than 100 devices per human. Significant end device processing (sensor analytics, sensor to shooter, supply chain management).
Vulnerable: To Cyber/EM/Power disruption. Privacy concerns regarding location and tracking.
Sensor to shooter: Accelerate kill chain, data processing, and decision-making.

• Space: Over 50 nations operate in space, increasingly congested and difficult to monitor, endanger Positioning, Navigation, and Timing (PNT)

GPS Jamming/Spoofing: Increasingly sophisticated, used successfully in Ukraine.
Anti Satellite: China has tested two direct ascent anti-satellite missiles.

The Era of Contested Equality (2035 through 2050):
The period marked by significant breakthroughs in technology and convergences in terms of capabilities, which lead to significant changes in the character of warfare. During this period, traditional aspects of warfare undergo dramatic, almost revolutionary changes which at the end of this timeframe may even challenge the very nature of warfare itself. Game changers during this era include:

• Hyper Velocity Weapons:
Rail Guns (Electrodynamic Kinetic Energy Weapons): Electromagnetic projectile launchers. High velocity/energy and space (Mach 5 or higher). Not powered by explosive.
No Propellant: Easier to store and handle.
Lower Cost Projectiles: Potentially. Extreme G-force requires sturdy payloads.
Limiting factors: Power. Significant IR signature. Materials science.
Hyper Glide Vehicles: Less susceptible to anti-ballistic missile countermeasures.

• Directed Energy Weapons: Signature not visible without technology, must dwell on target. Power requirements currently problematic.
Potential: Tunable, lethal, and non-lethal.
Laser: Directed energy damages intended target. Targets: Counter Aircraft, UAS, Missiles, Projectiles, Sensors, Swarms.
Radio Frequency (RF): Attack targets across the frequency spectrum. Targets: Not just RF; Microwave weapons “cook targets,” people, electronics.

• Synthetic Biology: Engineering / modification of biological entities
Increased Crop Yield: Potential to reduce food scarcity.
Weaponization: Potential for micro-targeting, Seek & destroy microbes that can target DNA. Potentially accessible to super-empowered individuals.
Medical Advances: Enhance soldier survivability.
Genetic Modification: Disease resistant, potentially designer babies and super athletes/soldiers. Synthetic DNA stores digital data. Data can be used for micro-targeting.
CRISPR: Genome editing.

• Information Environment: Use IoT and sensors to harness the flow of information for situational understanding and decision-making advantage.




In envisioning Future Operational Environment possibilities, the Mad Scientist Initiative employs a number of techniques. We have found Crowdsourcing (i.e., the gathering of ideas, thoughts, and concepts from a wide variety of interested individuals assists us in diversifying thoughts and challenging conventional assumptions) to be a particularly effective technique. To that end, we have published our latest, 2-page compendium of Potential Game Changers here — we would like to hear your feedback regarding them. Please let us know your thoughts / observations by posting them in this blog post’s Comment box (found below, in the Leave a Reply section). Alternatively, you can also submit them to us via email at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil. Thank you in advance for your contributions!

50. Four Elements for Future Innovation

(Editor’s Note: Mad Scientist Laboratory is pleased to present a new post by returning guest blogger Dr. Richard Nabors addressing the four key practices of innovation. Dr. Nabors’ previous guest posts discussed how integrated sensor systems will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces, and how Augmented and Mixed Reality are the critical elements required for these integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.)


For the U.S. military to maintain its overmatch capabilities, innovation is an absolute necessity. As noted in The Operational Environment and the Changing Character of Future Warfare, our adversaries will continue to aggressively pursue rapid innovation in key technologies in order to challenge U.S. forces across multiple domains. Because of its vital necessity, U.S. innovation cannot be left solely to the development of serendipitous discoveries.

The Army has successfully generated innovative programs and transitioned them from the research community into military use. In the process, it has identified four key practices that can be used in the future development of innovative programs. These practices – identifying the need, the vision, the expertise, and the resources – are essential in preparing for warfare in the Future Operational Environment. The recently completed Third Generation Forward Looking Infrared (3rd Gen FLIR) program provides us with a contemporary use case regarding how each of these practices are key to the success of future innovations.


1. Identifying the NEED:
To increase speed, precision, and accuracy of a platform lethality, while at the same time increasing mission effectiveness and warfighter safety and survivability.

As the U.S. Army Training and Doctrine Command (TRADOC) noted in its Advanced Engagement Battlespace assessment, future Advanced Engagements will be…
compressed in time, as the speed of weapon delivery and their associated effects accelerate enormously;
extended in space, in many cases to a global extent, via precision long-range strike and interconnectedness, particularly in the information environment;
far more lethal, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions;
routinely interconnected – and contested — across the multiple domains of air, land, sea, space and cyber; and
interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Identifying the NEED within the context of these future Advanced Engagement characteristics is critical to the success of future innovations.

The first-generation FLIR systems gave a limited ability to detect objects on the battlefield at night. They were large, slow, and provided low-resolution, short-range images. The need was for greater speed, precision, and range in the targeting process to unlock the full potential of infrared imaging. Third generation FLIR uses multiband infrared imaging sensors combined with multiple fields of view which are integrated with computer software to automatically enhance images in real-time. Sensors can be used across multiple platforms and missions, allowing optimization of equipment for battlefield conditions, greatly enhancing mission effectiveness and survivability, and providing significant cost savings.


Source: John-Stone-Art
2. Identifying the VISION:
To look beyond the need and what is possible to what could be possible.

As we look forward into the Future Operational Environment, we must address those revolutionary technologies that, when developed and fielded, will provide a decisive edge over adversaries not similarly equipped. These potential Game Changers include:
Laser and Radio Frequency Weapons – Scalable lethal and non-Lethal directed energy weapons can counter Aircraft, UAS, Missiles, Projectiles, Sensors, and Swarms.
Swarms – Leverage autonomy, robotics, and artificial intelligence to generate “global behavior with local rules” for multiple entities – either homogeneous or heterogeneous teams.
• Rail Guns and Enhanced Directed Kinetic Energy Weapons (EDKEW) – Non explosive electromagnetic projectile launchers provide high velocity/high energy weapons.
• Energetics – Provides increased accuracy and muzzle energy.
• Synthetic Biology – Engineering and modification of biological entities has potential weaponization.
• Internet of Things – Linked internet “things” create opportunity and vulnerability. Great potential benefits already found in developing U.S. systems also create a vulnerability.
• Power – Future effectiveness depends on renewable sources and reduced consumption. Small nuclear reactors are potentially a cost-effective source of stable power.

Understanding these Future Operational Environment Game Changers is central to identifying the VISION and looking beyond the need to what could be possible.

The 3rd Gen FLIR program struggled early in its development to identify requirements necessary to sustain a successful program. Without the user community’s understanding of a vision of what could be possible, requirements were based around the perceived limitations of what technology could provide. To overcome this, the research community developed a comprehensive strategy for educational outreach to the Army’s requirement developers, military officers, and industry on the full potential of what 3rd Gen FLIR could achieve. This campaign highlighted not only the recognized need, but also a vision for what was possible, and served as the catalyst to bring the entire community together.


3. Identifying the EXPERTISE:
To gather expertise from all possible sources into a comprehensive solution.

Human creativity is the most transformative force in the world; people compound the rate of innovation and technology development. This expertise is fueling the convergence of technologies that is already leading to revolutionary achievements with respect to sensing, data acquisition and retrieval, and computer processing hardware.

Identifying the EXPERTISE leads to the exponential convergence and innovation that will afford strategic advantage to those who recognize and leverage them.

The expertise required to achieve 3rd Gen FLIR success was from the integration of more than 16 significant research and development projects from multiple organizations: Small Business Innovation Research programs; applied research funding, partnering in-house expertise with external communities; Manufacturing Technology (ManTech) initiatives, working with manufacturers to develop the technology and long-term manufacturing capabilities; and advanced technology development funding with traditional large defense contractors. The talented workforce of the Army research community strategically aligned these individual activities and worked with them to provide a comprehensive, interconnected final solution.


4. Identifying the RESOURCES:
To consistently invest in innovative technology by partnering with others to create multiple funding sources.

The 2017 National Security Strategy introduced the National Security Innovation Base as a critical component of its vision of American security. In order to meet the challenges of the Future Operational Environment, the Department of Defense and other agencies must establish strategic partnerships with U.S. companies to help align private sector Research and Development (R&D) resources to priority national security applications in order to nurture innovation.

The development of 3rd Gen FLIR took many years of appropriate, consistent investments into innovations and technology breakthroughs. Obtaining the support of industry and leveraging their internal R&D investments required the Army to build trust in the overall program. By creating partnerships with others, such as the U.S. Army Communications-Electronics Research, Development and Engineering Center (CERDEC) and ManTech, 3rd Gen FLIR was able to integrate multiple funding sources to ensure a secure resource foundation.




CONCLUSION
The successful 3rd Gen FLIR program is a prototype of the implementation of an innovative program, which transitions good ideas into actual capabilities. It exemplifies how identifying the need, the vision, the expertise and the resources can create an environment where innovation thrives, equipping warriors with the best technology in the world. As the Army looks to increase its exploration of innovative technology development for the future, these examples of past successes can serve as models to build on moving forward.

See our Prototype Warfare post to learn more about other contemporary innovation successes that are helping the U.S. maintain its competitive advantage and win in an increasingly contested Operational Environment.

Dr. Richard Nabors is Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), Night Vision and Electronic Sensors Directorate.

49. “The Queue”

(Editor’s Note: Beginning today, the Mad Science Laboratory will publish a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the previous month. In this anthology, we will address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!)

1. Army of None: Autonomous Weapons and the Future of War, by Paul Scharre, Senior Fellow and Director of the Technology and National Security Program, Center for a New American Security.

One of our favorite Mad Scientists, Paul Scharre, has authored a must read for all military Leaders. This book will help Leaders understand the definitions of robotic and autonomous weapons, how they are proliferating across states, non-states, and super-empowered individuals (his chapter on Garage Bots makes it clear this is not state proliferation analogous), and lastly the ethical considerations that come up at every Mad Scientist Conference. During these Conferences, we have discussed the idea of algorithm vs algorithm warfare and what role human judgement plays in this version of future combat. Paul’s chapters on flash war really challenge our ideas of how a human operates in the loop and his analogies using the financial markets are helpful for developing the questions needed to explore future possibilities and develop policies for dealing with warfare at machine speed.

Source: Rosoboronexport via YouTube
2. “Convergence on retaining human control of weapons systems,” in Campaign to Stop Killer Robots, 13 April 2018.

April 2018 marked the fifth anniversary of the Campaign to Stop Killer Robots. Earlier this month, 82 countries and numerous NGOs also convened at the Convention on Certain Conventional Weapons (CCW) in Geneva, Switzerland, where many stressed the need to retain human control over weapons systems and the use of force. While the majority in attendance proposed moving forward this November to start negotiations towards a legally binding protocol addressing fully autonomous weapons, five key states rejected moving forward in negotiating new international law – France, Israel, Russia, the United Kingdom, and the United States. Mad Scientist notes that the convergence of a number of emerging technologies (synthetic prototyping, additive manufacturing, advanced modeling and simulations, software-defined everything, advanced materials) are advancing both the feasibility and democratization of prototype warfare, enabling and improving the engineering of autonomous weapons by non-state actors and super-empowered individuals alike. The genie is out of the bottle – with the advent of the Hyperactive Battlefield, advanced engagements will collapse the decision-action cycle to mere milliseconds, granting a decisive edge to the side with more autonomous decision-action.

Source: The Stack
3. “China’s Strategic Ambiguity and Shifting Approach to Lethal Autonomous Weapons Systems,” by Elsa Kania, Adjunct Fellow with the Technology and National Security Program, Center for a New American Security, in Lawfare, 17 Apr 18.

Mad Scientist Elsa Kania addresses the People’s Republic of China’s apparent juxtaposition between their diplomatic commitment to limit the use of fully autonomous lethal weapons systems and the PLA’s active pursuit of AI dominance on the battlefield. The PRC’s decision on lethal autonomy and how it defines the role of human judgement in lethal operations will have tactical, operational, and strategic implications. In TRADOC’s Changing Character of Warfare assessment, we addressed the idea of an asymmetry in ethics where the differing ethical choices non-state and state adversaries make on the integration of emerging technologies could have real battlefield overmatch implications. This is a clear pink flamingo where we know the risks but struggle with addressing the threat. It is also an area where technological surprise is likely, as systems could have the ability to move from human in the loop mode to fully autonomous with a flip of a switch.

Source: HBO.com
4. “Maeve’s Dilemma in Westworld: What Does It Mean to be Free?,” by Marco Antonio Azevedo and Ana Azevedo, in Institute of Art and Ideas, 12 Apr 18. [Note: Best viewed on your personal device as access to this site may be limited by Government networks]

While this article focuses primarily on a higher-level philosophical interpretation of human vs. machine (or artificial intelligence, being, etc.), the core arguments and discussion remain relevant to an Army that is looking to increase its reliance on artificial intelligence and robotics. Technological advancements in these areas continue to trend toward modeling humans (both in form and the brain). However, the closer we get to making this a reality, the closer we get to confronting questions about consciousness and artificial humanity. Are we prepared to face these questions earnestly? Do we want an artificial entity that is, essentially, human? What do we do when that breakthrough occurs? Does biological vs. synthetic matter if the being “achieves” personhood? For additional insights on this topic, watch Linda MacDonald Glenn‘s Ethics and Law around the Co-Evolution of Humans and AI presentation from the Mad Scientist Visualizing Multi Domain Battle in 2030-2050 Conference at Georgetown University, 25-26 Jul 17.

5. Do You Trust This Computer?, directed by Chris Paine, Papercut Films, 2018.

The Army, and society as a whole, is continuing to offload certain tasks and receive pieces of information from artificial intelligence sources. Future Army Leaders will be heavily influenced by AI processing and distributing information used for decision making. But how much trust should we put in the information we get? Is it safe to be so reliant? What should the correct ratio be of human/machine contribution to decision-making? Army Leaders need to be prepared to make AI one tool of many, understand its value, and know how to interpret its information, when to question its output, and apply appropriate context. Elon Musk has shown his support for this documentary and tweeted about its importance.

6. Ready Player One, directed by Steven Spielberg, Amblin Entertainment, 2018.

Adapted from the novel of the same name, this film visualizes a future world where most of society is consumed by a massive online virtual reality “game” known as the OASIS. As society transitions from the physical to the virtual (texting, email, skype, MMORPG, Amazon, etc.), large groups of people will become less reliant on the physical world’s governmental and economic systems that have been established for centuries. As virtual money begins to have real value, physical money will begin to lose value. If people can get many of their goods and services through a virtual world, they will become less reliant on the physical world. Correspondingly, physical world social constructs will have less control of the people who still inhabit it, but spend increasing amounts of time interacting in the virtual world. This has huge implications for the future geo-political landscape as many varied and geographically diverse groups of people will begin congregating and forming virtual allegiances across all of the pre-established, but increasingly irrelevant physical world geographic borders. This will dilute the effectiveness, necessity, and control of the nation-state and transfer that power to the company(ies) facilitating the virtual environment.

Source: XO, “SoftEcologies,” suckerPUNCH
7. “US Army could enlist robots inspired by invertebrates,” by Bonnie Burton, in c/net, 22 Apr 18.

As if Boston Dynamic’s SpotMini isn’t creepy enough, the U.S. Army Research Laboratory (ARL) and the University of Minnesota are developing a flexible, soft robot inspired by squid and other invertebrates that Soldiers can create on-demand using 3-D printers on the battlefield. Too often, media visualizations have conditioned us to think of robots in anthropomorphic terms (with corresponding limitations). This and other breakthroughs in “soft,” polymorphic, printable robotics may grant Soldiers in the Future Operational Environment with hitherto unimagined on-demand, tailorable autonomous systems that will assist operations in the tight confines of complex, congested, and non-permissive environments (e.g., dense urban and subterranean). Soft robotics may also prove to be more resilient in arduous conditions. This development changes the paradigm for how robotics are imagined in both design and application.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

For additional insights into the Mad Scientist Initiative and how we continually explore the future through collaborative partnerships and continuous dialogue with academia, industry, and government, check out this Spy Museum’s SPYCAST podcast.

48. Warfare at the Speed of Thought

(Editor’s Note: Mad Scientist Laboratory is pleased to present the second guest blog post by Dr. Richard Nabors, Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), addressing how Augmented and Mixed Reality are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.

Dr. Nabors’ previous guest post addressed how the proliferation of sensors, integrated via the Internet of Battlefield Things [IoBT], will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces.)

Speed has always been and will be a critical component in assuring military dominance. Historically, the military has sought to increase the speed of its jets, ships, tanks, and missiles. However, one of the greatest leaps that has yet to come and is coming is the ability to significantly increase the speed of the decision-making process of the individual at the small unit level.

Source: University of Maryland Institute for Advanced Computer Studies
To maximize individual and small unit initiative to think and act flexibly, Soldiers must receive as much relevant information as possible, as quickly as possible. Integrated sensor technologies can provide situational awareness by collecting and sorting real-time data and sending a fusion of information to the point of need, but that information must be processed quickly in order to be operationally effective. Augmented Reality (AR) and Mixed Reality (MR) are two of the most promising solutions to this challenge facing the military and will eventually make it possible for Soldiers to instantaneously respond to an actively changing environment.

AR and MR function in real-time, bringing the elements of the digital world into a Soldier’s perceived real world, resulting in optimal, timely, and relevant decisions and actions. AR and MR allow for the overlay of information and sensor data into the physical space in a way that is intuitive, serves the point of need, and requires minimal training to interpret. AR and MR will enable the U.S. military to survive in complex environments by decentralizing decision-making from mission command and placing substantial capabilities in Soldiers’ hands in a manner that does not overwhelm them with information.

Source: Tom Rooney III
On a Soldier’s display, AR can render useful battlefield data in the form of camera imaging and virtual maps, aiding a Soldier’s navigation and battlefield perspective. Special indicators can mark people and various objects to warn of potential dangers.
Source: MicroVision
Soldier-borne, palm-size reconnaissance copters with sensors and video can be directed and tasked instantaneously on the battlefield. Information can be gathered by unattended ground sensors and transmitted to a command center, with AR and MR serving as a networked communication system between military leaders and the individual Soldier. Used in this way, AR and MR increase Soldier safety and lethality.

In the near-term, the Army Research and Development (R&D) community is investing in the following areas:


Reliable position tracking devices that self-calibrate for head orientation of head-worn sensors.


• Ultralight, ultrabright, ultra-transparent display eyewear with wide field of view.

Source: CIO Australia

• Three-dimensional viewers with battlefield terrain visualization, incorporating real-time data from unmanned aerial vehicles, etc.




In the mid-term, R&D activities are focusing on:

• Manned vehicles with sensors and processing capabilities for moving autonomously, tasked for Soldier protection.

Robotic assets, tele-operated, semi-autonomous, or autonomous and imbued with intelligence, with limbs that can keep pace with Soldiers and act as teammates.

Source: BAE
• Robotic systems that contain multiple sensors that respond to environmental factors affecting the mission, or have self-deploying camouflage capabilities that stay deployed while executing maneuvers.

• Enhanced reconnaissance through deep-penetration mapping of building layouts, cyber activity, and subterranean infrastructure.

Once AR and MR prototypes and systems have seen widespread use, the far term focus will be on automation that could track and react to a Soldier’s changing situation by tailoring the augmentation the Soldier receives and by coordinating across the unit.

In addition, AR and MR will revolutionize training, empowering Soldiers to train as they fight. Soldiers will be able to use real-time sensor data from unmanned aerial vehicles to visualize battlefield terrain with geographic awareness of roads, buildings, and other structures before conducting their missions. They will be able to rehearse courses of action and analyze them before execution to improve situational awareness. AR and MR are increasingly valuable aids to tactical training in preparation for combat in complex and congested environments.

AR and MR are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments. Solving the challenge of how and where to use AR and MR will enable the military to get full value from its investments in complex integrated sensor systems.

For more information on how the convergence of technologies will enhance Soldiers on future battlefields, see:

– The discussion on advanced decision-making in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

– Dr. James Canton’s presentation from the Mad Scientist Robotics, Artificial Intelligence, & Autonomy Conference at Georgia Tech Research Institute last March.

– Dr. Rob Smith’s Mad Scientist Speaker Series presentation on Operationalizing Big Data, where he addresses the applicability of AR to sports and games training as an analogy to combat training (noting “Serious sport is war minus the shooting” — George Orwell).

Dr. Richard Nabors is Associate Director for Strategic Planning, US Army CERDEC Night Vision and Electronic Sensors Directorate.