120. Autonomous Robotic Systems in the Russian Ground Forces

[Editor’s Note: Mad Scientist Laboratory welcomes back returning guest blogger and proclaimed Mad Scientist Mr. Samuel Bendett with today’s post, addressing Russia’s commitment to mass produce independent ground combat robotic systems. Simon Briggs, professor of interdisciplinary arts at the University of Edinburgh, predicts that “in 2030 AI will be in routine use to fight wars and kill people, far more effectively than humans can currently kill.”  Mr. Bendett’s post below addresses the status of current operationally tested and fielded Russian Unmanned Ground Vehicle (UGV) capabilities, and their pivot to acquire systems able to “independently recognize targets, use weapons, and interact in groups and swarms.” (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

Russian Minister of Defense Sergei Shoigu / Source: Wikimedia Commons

Over the past several years, the Russian military has invested heavily in the design, production, and testing of unmanned combat systems. In March 2018, Russian Defense Minister Sergei Shoigu said that mass production of combat robots for the Russian army could begin as early as that year. Now, the Ministry of Defense (MOD) is moving ahead with creating plans for such systems to act independently on the battlefield.

According to the Russian state media (TASS), Russian military robotic complexes (RBCs) will be able to independently recognize targets, use weapons, and interact in groups and swarms. Such plans were stated in the article by the staff of the 3rd Central Scientific Research Institute of the Russian Federation’s MOD.

Uran-6 Airborne Countermine System with flail / Source: Russian Federation MOD

Russia has already tested several Unmanned Ground Vehicles (UGVs) in combat. Its Uran-6, Scarab, and Sphera demining UGVs were rated well by the Russian engineering forces, and there are plans to start acquisition of such vehicles. However, these systems were designed to have their operators close by. When it came to a UGV that was originally built for operator remoteness in potential combat, things got more complicated.

Uran-9 engaging targets with its 30mm 2A72 autocannon on a test range.  Operational tests in Syria proved less successful.  / Source:  YouTube

Russia’s Uran-9 combat UGV experienced a large number of failures when tested in Syria, among them transportation, communication, firing, and situational awareness. The lessons from Uran-9 tests supposedly prompted the Russian military to consider placing more emphasis on using such UGVs as one-off attack vehicles against adversary hard points and stationary targets.

Russian ground combat forces conducting urban operations in Syria / Source: Wikimedia

Nonetheless, the aforementioned TASS article analyzes the general requirements for unmanned military systems employed by Russian ground forces. Among them is the ability to solve tasks in different combat conditions during day and night, under enemy fire, electronic and informational counteraction, in conditions of radiation, chemical contamination, and electromagnetic attack – as well as requirements such as modularity and multifunctionality. The article also points out “the [systems’] ability to independently perform tasks in conditions of ambiguity” – implying the use of Artificial Intelligence.

To achieve these requirements, the creation of an “intelligent decision-making system” is proposed, which will also supervise the use of weapons. “The way out of this situation is the intensification of research on increasing the autonomy of the RBCs and the introduction of intelligent decision-making systems at the control stages, including group, autonomous movement and use of equipment for its intended purpose, including weapons, into military robotics,” the article says.

An example of the complex, ambiguous environments that will challenge future Russian RBCs:  Russian troops in Aleppo, Syria / Source: Wikimedia Commons via article in the University of Melboune’s Pursuit, “Why is Russia Still Supporting Syria?”

The TASS article states that in the near future, the MOD is planning to initiate work aimed at providing technical support for solving this problem set. This research will include domestic laser scanning devices for geographical positioning, the development of methods and equipment for determining the permeability of the soil on which the UGV operates, the development of methods for controlling the military robot in “unstable communications,” and the development of methods for analyzing combat environments such as recognizing scenes, images, and targets.

Successfully employing UGVs in combat requires complicated systems, something that the aforementioned initiatives will seek to address. This work will probably rely on Russia’s Syrian experience, as well as on the current projects and upgrades to Moscow’s growing fleet of combat UGVs. On 24 January 2018, the Kalashnikov Design Bureau that oversees the completion of Uran-9 work admitted that this UGV has been accepted into military service. Although few details were given, the statement did include the fact that this vehicle will be further “refined” based on lessons learned during its Syria deployment, and that the Uran-9 presents “good scientific and technical groundwork for further products.” The extent of upgrades to that vehicle was not given – however, numerous failures in Syrian trials imply that there is lots of work ahead for this project. The statement also indicates that the Uran-9 may be a test-bed for further UGV development, an interesting fact considering the country’s already diverse collection of combat UGVs

As reported in DefenseOne, Russian Colonel Col. Oleg Pomazuev stated that the Nerekhta UGV “outperformed” manned systems in recent exercises / Source: DefenseOne and Sergey Ptichkin / RG

Today, the Russian military is testing and evaluating several systems, such as Nerekhta and Soratnik. The latter was also supposedly tested in “near-combat” conditions, presumably in Syria or elsewhere. The MOD has been testing smaller Platforma-M and large Vikhr combat UGVs, along with other unmanned vehicles. Yet the defining characteristic for these machines so far has been the fact that they were all remote-operated by soldiers, often in near proximity to the machine itself. Endowing these UGVs with more independent decision–making in the “fog of war” via an intelligent command and control system may exponentially increase their combat effectiveness — assuming that such systems can function as planned.

If you enjoyed this post, please also:

Read Mr. Bendett’s previous post, Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward

… and watch Zvezda Broadcasting‘s video, showing a Vikhr unmanned, tele-operated BMP-3 maneuvering and shooting its 7.62mm MG, 30mm cannon, and automatic grenade launcher on a test range.

Automated lethality is but one of the many Future Operational Environment trends that the U.S. Army’s Mad Scientist Initiative is tracking. Mad Scientist seeks to crowdsource your visions of future combat with our Science Fiction Writing Contest 2019. Our deadline for submission is 1 APRIL 2019, so please review the contest details and associated release form here, get those creative writing juices flowing, and send us your visions of combat in 2030!  Selected submissions may be chosen for publication or a possible future speaking opportunity.

Samuel Bendett is a Researcher at CNA and a Fellow in Russia Studies at the American Foreign Policy Council. He is also a proud Mad Scientist.

114. Mad Scientist Science Fiction Writing Contest 2019

Futuristic tank rendering  / Source: U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC)

[Editor’s Note:  Story Telling is a powerful tool that allows us to envision how innovative technologies could be employed and operationalized in the Future Operational Environment.  Mad Scientist is seeking your visions of future combat with our Science Fiction Writing Contest 2019.  Our deadline for submission is 1 APRIL 2019, so please review the contest details below, get those creative writing juices flowing, and send us your visions of combat in 2030!] 

Still from “The Future of the Soldier” video / Source:  U.S. Army Natick Soldier Research Development and Engineering Center

Background: The U.S. Army finds itself at a historical inflection point, where disparate, yet related elements of an increasingly complex Operational Environment (OE) are converging, creating a situation where fast moving trends are rapidly transforming the nature of all aspects of society and human life – including the character of warfare. It is important to take a creative approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future. In this vein, the U.S. Army Mad Scientist Initiative is seeking your creativity and unique ideas to describe a battlefield that does not yet exist.

Illustration from “Silent Ruin” by Don Hudson & Kinsun Lo / Source:   U.S.  Army Cyber Institute at West Point

Task: Write about the following scenario – On March 17th, 2030, the country of Donovia, after months of strained relations and covert hostilities, invades neighboring country Otso. Donovia is a wealthy nation that is a near-peer competitor to the United States. Like the United States, Donovia has invested heavily in disruptive technologies such as robotics, AI, autonomy, quantum information sciences, bio enhancements and gene editing, space-based weapons and communications, drones, nanotechnology, and directed energy weapons. The United States is a close ally of Otso and is compelled to intervene due to treaty obligations and historical ties. The United States is about to engage Donovia in its first battle with a near-peer competitor in over 80 years…

Three ways to approach:
1) Forecasting – Description of the timeline and events leading up to the battle.
2) Describing – Account of the battle while it’s happening.
3) Backcasting – Retrospective look after the battle has ended (i.e., After Action Review or lessons learned).

Three questions to consider while writing (U.S., adversaries, and others):
1) What will forces and Soldiers look like in 2030?
2) What technologies will enable them or be prevalent on the battlefield?
3) What do Multi-Domain Operations look like in 2030?

Submission Guidelines:
– No more than 5000 words in length
– Provide your submission in .doc or .docx format
– Please use conventional text formatting (e.g., no columns) and have images “in line” with text
– Submissions from Government and DoD employees must be cleared through their respective PAOs prior to submission
MUST include completed release form (on the back of contest flyer)
CANNOT have been previously published

Selected submissions may be chosen for publication or a possible future speaking opportunity.

Contact: Send your submissions to: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil

For additional story telling inspiration, please see the following blog posts:

 

110. Future Jobs and Skillsets

[Editor’s Note:  On 8-9 August 2018, the U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Learning in 2050 Conference with Georgetown University’s Center for Security Studies in Washington, DC.  Leading scientists, innovators, and scholars from academia, industry, and the government gathered to address future learning techniques and technologies that are critical in preparing for Army operations in the mid-21st century against adversaries in rapidly evolving battlespaces.  Today’s post is extracted from this conference’s final report (more of which is addressed at the bottom of this post).]

The U.S. Army currently has more than 150 Military Occupational Specialties (MOSs), each requiring a Soldier to learn unique tasks, skills, and knowledges. The emergence of a number of new technologies – drones, Artificial Intelligence (AI), autonomy, immersive mixed reality, big data storage and analytics, etc. – coupled with the changing character of future warfare means that many of these MOSs will need to change, while others will need to be created. This already has been seen in the wider U.S. and global economy, where the growth of internet services, smartphones, social media, and cloud technology over the last ten years has introduced a host of new occupations that previously did not exist. The future will further define and compel the creation of new jobs and skillsets that have not yet been articulated or even imagined. Today’s hobbies (e.g., drones) and recreational activities (e.g., Minecraft/Fortnite) that potential recruits engage in every day could become MOSs or Additional Skill Identifiers (ASIs) of the future.

Training eighty thousand new Recruits a year on existing MOSs is a colossal undertaking.  A great expansion in the jobs and skillsets needed to field a highly capable future Army, replete with modified or new MOSs, adds a considerable burden to the Army’s learning systems and institutions. These new requirements, however, will almost certainly present an opportunity for the Army to capitalize on intelligent tutors, personalized learning, and immersive learning to lessen costs and save time in Soldier and Leader development.

The recruit of 2050 will be born in 2032 and will be fundamentally different from the generations born before them.  Marc Prensky, educational writer and speaker who coined the term digital native, asserts this “New Human” will stand in stark contrast to the “Old Human” in the ways they learn and approach learning..1 Where humans today are born into a world with ubiquitous internet, hyper-connectivity, and the Internet of Things, each of these elements are generally external to the human.  By 2032, these technologies likely will have converged and will be embedded or integrated into the individual with connectivity literally on the tips of their fingers. 

Some of the newly required skills may be inherent within the next generation(s) of these Recruits. Many of the games, drones, and other everyday technologies that are already or soon to be very common – narrow AI, app development and general programming, and smart devices – will yield a variety of intrinsic skills that Recruits will have prior to entering the Army. Just like we no longer train Soldiers on how to use a computer, games like Fortnite, with no formal relationship with the military, will provide players with militarily-useful skills such as communications, resource management, foraging, force structure management, and fortification and structure building, all while attempting to survive against persistent attack.  Due to these trends, Recruits may come into the Army with fundamental technical skills and baseline military thinking attributes that flatten the learning curve for Initial Entry Training (IET).2

While these new Recruits may have a set of some required skills, there will still be a premium placed on premier skillsets in fields such as AI and machine learning, robotics, big data management, and quantum information sciences. Due to the high demand for these skillsets, the Army will have to compete for talent with private industry, battling them on compensation, benefits, perks, and a less restrictive work environment – limited to no dress code, flexible schedule, and freedom of action. In light of this, the Army may have to consider adjusting or relaxing its current recruitment processes, business practices, and force structuring to ensure it is able to attract and retain expertise. It also may have to reconsider how it adapts and utilizes its civilian workforce to undertake these types of tasks in new and creative ways.

The Recruit of 2050 will need to be engaged much differently than today. Potential Recruits may not want to be contacted by traditional methods3 – phone calls, in person, job fairs – but instead likely will prefer to “meet” digitally first. Recruiters already are seeing this today. In order to improve recruiting efforts, the Army may need to look for Recruits in non-traditional areas such as competitive online gaming. There is an opportunity for the Army to use AI to identify Recruit commonalities and improve its targeted advertisements in the digital realm to entice specific groups who have otherwise been overlooked. The Army is already exploring this avenue of approach through the formation of an eSports team that will engage young potential Recruits and attempt to normalize their view of Soldiers and the Army, making them both more relatable and enticing.4 This presents a broader opportunity to close the chasm that exists between civilians and the military.

The overall dynamic landscape of the future economy, the evolving labor market, and the changing character of future warfare will create an inflection point for the Army to re-evaluate longstanding recruitment strategies, workplace standards, and learning institutions and programs. This will bring about an opportunity for the Army to expand, refine, and realign its collection of skillsets and MOSs, making Soldiers more adapted for future battles, while at the same time challenging the Army to remain prominent in attracting premier talent in a highly competitive environment.

If you enjoyed this extract, please read the comprehensive Learning in 2050 Conference Final Report

… and see our TRADOC 2028 blog post.


1 Prensky, Mark, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

2 Schatz, Sarah, Mad Scientist Conference: Learning in 2050, Georgetown University, 8 August 2018.

3 Davies, Hans, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

4 Garland, Chad, Uncle Sam wants you — to play video games for the US Army, Stars and Stripes, 9 November 2018, https://www.stripes.com/news/uncle-sam-wants-you-to-play-video-games-for-the-us-army-1.555885.

104. Critical Thinking: The Neglected Skill Required to Win Future Conflicts

[Editor’s Note: As addressed in last week’s post, entitled The Human Targeting Solution: An AI Story, the incorporation of Artificial Intelligence (AI) as a warfighting capability has the potential to revolutionize combat, accelerating the future fight to machine speeds.  That said, the advanced algorithms underpinning these AI combat multipliers remain dependent on the accuracy and currency of their data feeds. In the aforementioned post, the protagonist’s challenge in overriding the AI-prescribed optimal (yet flawed) targeting solution illustrates the inherent tension between human critical thinking and the benefits of AI.

Today’s guest blog post, submitted by MAJ Cynthia Dehne, expands upon this theme, addressing human critical thinking as the often neglected, yet essential skill required to successfully integrate and employ emergent technologies while simultaneously understanding their limitations on future battlefields.  Warfare will remain an intrinsically human endeavor, the fusion of deliberate and calculating human intellect with ever more lethal technological advances. ]

The future character of war will be influenced by emerging technologies such as AI, robotics, computing, and synthetic biology. Cutting-edge technologies will become increasingly cheaper and readily available, introducing a wider range of actors on the battlefield. Moreover, nation-state actors are no longer the drivers of cutting-edge technology — militaries are leveraging the private sector who are leading research and development in emergent technologies. Proliferation of these cheap, accessible technologies will allow both peer competitors and non-state actors to wage serious threats in the future operational environment.  Due to the abundance of new players on the battlefield combined with emerging technologies, future conflicts will be won by those who both possess “critical thinking” skills and can integrate technology seamlessly to inform decision-making in war instead of relying on technology to win war. Achieving success in the future eras of accelerated human progress and contested equality will require the U.S. Army to develop Soldiers who are adept at seamlessly employing technology on the battlefield while continuously exercising critical thinking skills.

The Foundation for Critical Thinking defines critical thinking as “the art of analyzing and evaluating thinking with a view to improve it.” 1 Furthermore, they assert that a well cultivated critical thinker can do the following: raise vital questions and problems and formulate them clearly and precisely; gather and assess relevant information, using abstract ideas to interpret it effectively; come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards; think open-mindedly within alternative systems of thought, recognizing and assessing, as needed, their assumptions, implications, and practical consequences; and communicate effectively with others in figuring out solutions to complex problems.2

Many experts in education and psychology argue that critical thinking skills are declining. In 2017, Dr. Stephen Camarata wrote about the emerging crisis in critical thinking and college students’ struggles to tackle real world problem solving. He emphasized the essential need for critical thinking and asserted that “a young adult whose brain has been “wired’ to be innovative, think critically, and problem solve is at a tremendous competitive advantage in today’s increasingly complex and competitive world.”3 Although most government agencies, policy makers, and businesses deem critical thinking important, STEM fields continue to be prioritized. However, if creative thinking skills are not fused with STEM, then there will continue to be a decline in those equipped with well-rounded critical thinking abilities. In 2017, Mark Cuban opined during an interview with Bloomberg TV that the nature of work is changing and the future skill that will be more in-demand will be “creative thinking.” Specifically, he stated “I personally think there’s going to be a greater demand in 10 years for liberal arts majors than there were for programming majors and maybe even engineering.”4 Additionally, Forbes magazine published an article in 2018 declaring that “creativity is the skill of the future.”5

Employing future technologies effectively will be key to winning war, but it is only one aspect. During the Vietnam War, the U.S. relied heavily on technology but were defeated by an enemy who leveraged simple guerilla tactics combined with minimal military technology. Emerging technologies will be vital to inform decision-making, but will not negate battlefield friction. Carl von Clausewitz ascertained that although everything is simple in war, the simplest things become difficult and accumulate and create friction.6 Historically, a lack of information caused friction and uncertainty. However, complexity is a driver of friction in current warfare and will heavily influence future warfare. Complex, high-tech weapon systems will dominate the future battlefield and create added friction. Interdependent systems linking communications and warfighting functions will introduce more friction which will require highly skilled thinkers to navigate.

The newly published U.S. Army in Multi-Domain Operations 2028 concept “describes how Army forces fight across all domains, the electromagnetic spectrum (EMS), and the information environment and at echelon7  to “enable the Joint Force to compete with China and Russia below armed conflict, penetrate and dis-integrate their anti-access and area denial systems and ultimately defeat them in armed conflict and consolidate gains, and then return to competition.” Even with technological advances and intelligence improvement, elements of friction will be present in future wars. Both great armies and asymmetric threats have vulnerabilities, due to small things in terms of friction that morph into larger issues capable of crippling a fighting force. Therefore, success in future war is dependent on military commanders that understand these elements and how to overcome friction. Future technologies must be fused with critical thinking to mitigate friction and achieve strategic success. The U.S. Army must simultaneously emphasize integrating critical thinking in doctrine and exercises when training Soldiers on new technologies.

Soldiers should be creative, innovative thinkers; the Army must foster critically thinking as an essential skill.  The Insight Assessment emphasizes that “weakness in critical thinking skill results in loss of opportunities, of financial resources, of relationships, and even loss of life. There is probably no other attribute more worthy of measure than critical thinking skills.”9 Gaining and maintaining competitive advantage over adversaries in a complex, fluid future operational environment requires Soldiers to be both skilled in technology and experts in critical thinking.

If you enjoyed this post, please also see:

Mr. Chris Taylor’s presentation on Problem Solving in the Wild, from the Mad Scientist Learning in 2050 Conference at Georgetown University, 8-9 August 2018;

and the following Mad Scientist Laboratory blog posts:

TRADOC 2028

Making the Future More Personal: The Oft-Forgotten Human Driver in Future’s Analysis

 MAJ Cynthia Dehne is in the U.S. Army Reserve, assigned to the TRADOC G-2 and has operational experience in Afghanistan, Iraq, Kuwait, and Qatar. She is a graduate of the U.S. Army Command and General Staff College and holds masters degrees in International Relations and in Diplomacy and International Commerce.


1 Paul, Richard, and Elder, Linda. Critical Thinking Concepts and Tools. Dillon Beach, CA: Foundation for Critical Thinking, 2016, p. 2.

2 Paul, R., and Elder, L. Foundation for Critical Thinking. Dillon Beach, CA: Foundation for Critical Thinking, 2016, p. 2.

3 Camarata, Stephen. “The Emerging Crisis in Critical Thinking.” Psychology Today, March 21, 2017. Accessed October 10, 2018, from https://www.psychologytoday.com/us/blog/the-intuitive-parent/201703/the-emerging-crisis-in-critical-thinking.

4 Wile, Rob. “Mark Cuban Says This Will Be the No.1 Job Skill in 10 Years.” Time, February 20, 2017. Accessed October 11, 2018. http://time.com/money/4676298/mark-cuban-best-job-skill/.

5 Powers, Anna. “Creativity Is The Skill Of The Future.” Forbes, April 30, 2018. Accessed October 14, 2018. https://www.forbes.com/sites/annapowers/2018/04/30/creativity-is-the-skill-of-the-future/#3dd533f04fd4.

6 Clausewitz, Carl von, Michael Howard, Peter Paret, and Bernard Brodie. On War. Princeton, N.J.: Princeton University Press, 1984, p. 119.

7 U.S. Army. The U.S. Army in Multi-Domain Operations 2028, Department of the Army. TRADOC Pamphlet 525-3-1, December 6, 2018, p. 5.

8 U.S. Army. The U.S. Army in Multi-Domain Operations 2028, Department of the Army. TRADOC Pamphlet 525-3-1, December 6, 2018, p. 15.

9 Insight Assessment. “Risks Associated with Weak Critical Thinkers.” Insight Assessment, 2018. Accessed October 22, 2018, from https://www.insightassessment.com/Uses/Risks-Associated-with-Weak-Critical-Thinkers.

94. The Wide Range of Competition

[Editor’s Note: Mad Scientist tracks convergence trends that are changing the character of future warfare. The democratization of technologies and the global proliferation of information is one of these trends that has expanded the arena of high-end threat capabilities beyond nation-states to now include non-state actors and super-empowered individuals. Today’s post illustrates how the democratization of one such capability,  biotechnology, affects the Future Operational Environment.]

As discussed during the Mad Scientist Bio Convergence and Soldier 2050 Conference, co-hosted with SRI International at Menlo Park, California last Spring, the broad advancement of biotechnologies will provide wide access to dangerous and powerful bioweapons and human enhancement. The low cost and low expertise entry point into gene editing, human performance enhancement, and bioweapon production has spurred a string of new explorations into this arena by countries with large defense budgets (e.g., China), non-state criminal and terrorist organizations (e.g., ISIS), and even super-empowered individuals willing to subject their bodies to experimental and risky treatments or augmentations.

China has invested billions of dollars into biotechnology – including in several U.S. biotechnology firms – and plans on focusing on their own bio revolution. Gene editing is one of the areas where China has sought to leapfrog the United States through ambitious Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) projects, editing the genes of 86 individuals, while the United States is just now approaching human trials. Additionally, Elsa Kania, an expert on Chinese emerging technology from the Center for the New American Security (CNAS), noted that China is now seeking to build its own innovation base rather than focusing on intellectual property theft and technology transfers.

Listen to Ms. Kania’s discussion addressing technological priorities and how they overlay on the Chinese government’s strategic objectives in the  China’s Quest for Enhanced Military Technology podcast, hosted by our colleagues at Modern War Institute.

Non-state actors – mainly terrorist organizations – have focused more on weaponizing biotechnology. A personal laptop belonging to ISIS that was captured in Syria, was found to contain lessons on making bubonic plague bombs and the employment of various weapons of mass destruction (WMDs). The possession of this dangerous information by the most notorious terrorist organization across the globe is a testament to the worldwide proliferation of information. This challenge of weaponized biotechnology is exacerbated by the relative ease of obtaining material to carry out such attacks.

Watch Dr. Gary Ackerman‘s presentation on Non-State Actors and their Uses of Technology from the Mad Scientist Artificial Intelligence, Robotics, and Autonomy: Visioning Mult-Domain Battle in 2030-2050 Conference at Georgetown University, 7-8 March 2017.

There is a growing community of individual biohackers and “do it yourselfers” (DIYers), super-empowered individuals pushing the boundaries of DNA editing, implants, embedded technologies (embeds), and unapproved chemical and biological injections. One of the most prominent biohackers, Josiah Zayner, a former NASA employee with a biophysics PhD, who livestreamed his self-injection of CRISPR and has even started a company selling DIY CRISPR kits ranging from several hundred to over 1000 dollars, effectively enabling biohackers to cheaply change their physiology, alter their appearance, and go beyond human biological norms. None of these treatments and augmentations are approved by regulatory agencies and DIYers run the serious risk of harming themselves or unleashing destructive and disruptive biological agents upon an unwitting population.

Read our Mad Scientist Laboratory blog post on the Emergent Threat Posed by Super-Empowered Individuals .

Biotechnology is just one example of how potentially game changing capabilities that were once only within the purview of our strategic competitors will be democratized via the global proliferation of information.  In the Future Operational Environment, we can also expect to see artificial intelligence, multi-domain swarming, and space capabilities in the hands of non-state and super-empowered individuals.

92. Ground Warfare in 2050: How It Might Look

[Editor’s Note: Mad Scientist Laboratory is pleased to review proclaimed Mad Scientist Dr. Alexander Kott’s paper, Ground Warfare in 2050: How It Might Look, published by the US Army Research Laboratory in August 2018. This paper offers readers with a technological forecast of autonomous intelligent agents and robots and their potential for employment on future battlefields in the year 2050. In this post, Mad Scientist reviews Dr. Kott’s conclusions and provides links to our previously published posts that support his findings.]

In his paper, Dr. Kott addresses two major trends (currently under way) that will continue to affect combat operations for the foreseeable future. They are:

•  The employment of small aerial drones for Intelligence, Surveillance, and Reconnaissance (ISR) will continue, making concealment difficult and eliminating distance from opposing forces as a means of counter-detection. This will require the development and use of decoy capabilities (also intelligent robotic devices). This counter-reconnaissance fight will feature prominently on future battlefields between autonomous sensors and countermeasures – “a robot-on-robot affair.”

See our related discussions regarding Concealment in the Fundamental Questions Affecting Army Modernization post and Finders vs Hiders in our Timeless Competitions post.

  The continued proliferation of intelligent munitions, operating at greater distances, collaborating in teams to seek out and destroy designated targets, and able to defeat armored and other hardened targets, as well as defiladed and entrenched targets.

See our descriptions of the future recon / strike complex in our Advanced Engagement Battlespace and the “Hyperactive Battlefield” post, and Robotics and Swarms / Semi Autonomous capabilities in our Potential Game Changers post.

These two trends will, in turn, drive the following forecasted developments:

  Increasing reliance on unmanned systems, “with humans becoming a minority within the overall force, being further dispersed across the battlefield.”

See Mr. Jeff Becker’s post on The Multi-Domain “Dragoon” Squad: A Hyper-enabled Combat System, and Mr. Mike Matson’s Demons in the Tall Grass, both of which envision future tactical units employing greater numbers of autonomous combat systems; as well as Mr. Sam Bendett’s post on Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward, addressing the contemporary hurdles that one of our strategic competitors must address in operationalizing Unmanned Ground Vehicles.

•  Intelligent munitions will be neutralized “primarily by missiles and only secondarily by armor and entrenchments. Specialized autonomous protection vehicles will be required that will use their extensive load of antimissiles to defeat the incoming intelligent munitions.”

See our discussion of what warfare at machine-speed looks like in our Advanced Engagement Battlespace and the “Hyperactive Battlefield”.

Source: Fausto De Martini / Kill Command

  Forces will exploit “very complex terrain, such as dense forest and urban environments” for cover and concealment, requiring the development of highly mobile “ground robots with legs and limbs,” able to negotiate this congested landscape.

 

See our Megacities: Future Challenges and Responses and Integrated Sensors: The Critical Element in Future Complex Environment Warfare posts that address future complex operational environments.

Source: www.defenceimages.mod.uk

  The proliferation of autonomous combat systems on the battlefield will generate an additional required capability — “a significant number of specialized robotic vehicles that will serve as mobile power generation plants and charging stations.”

See our discussion of future Power capabilities on our Potential Game Changers handout.

 “To gain protection from intelligent munitions, extended subterranean tunnels and facilities will become important. This in turn will necessitate the tunnel-digging robotic machines, suitably equipped for battlefield mobility.”

See our discussion of Multi-Domain Swarming in our Black Swans and Pink Flamingos post.

  All of these autonomous, yet simultaneously integrated and networked battlefield systems will be vulnerable to Cyber-Electromagnetic Activities (CEMA). Consequently, the battle within the Cyber domain will “be fought largely by various autonomous cyber agents that will attack, defend, and manage the overall network of exceptional complexity and dynamics.”

See MAJ Chris Telley’s post addressing Artificial Intelligence (AI) as an Information Operations tool in his Influence at Machine Speed: The Coming of AI-Powered Propaganda.

 The “high volume and velocity of information produced and demanded by the robot-intensive force” will require an increasingly autonomous Command and Control (C2) system, with humans increasingly being on, rather than in, the loop.

See Mr. Ian Sullivan’s discussion of AI vs. AI and how the decisive edge accrues to the combatant with more autonomous decision-action concurrency in his Lessons Learned in Assessing the Operational Environment post.

If you enjoyed reading this post, please watch Dr. Alexander Kott’s presentation, “The Network is the Robot,” from the Mad Scientist Robotics, Artificial Intelligence, and Autonomy: Visioning Multi-Domain Warfare in 2030-2050 Conference, co-sponsored by the Georgia Tech Research Institute (GTRI), in Atlanta, Georgia, 7-8 March 2017.

Dr. Alexander Kott serves as the ARL’s Chief Scientist. In this role he provides leadership in development of ARL technical strategy, maintaining technical quality of ARL research, and representing ARL to external technical community. He published over 80 technical papers and served as the initiator, co-author and primary editor of over ten books, including most recently Cyber Defense and Situational Awareness (2015) and Cyber Security of SCADA and other Industrial Control Systems (2016), and the forthcoming Cyber Resilience of Systems and Networks (2019).

83. A Primer on Humanity: Iron Man versus Terminator

[Editor’s Note: Mad Scientist Laboratory is pleased to present a post by guest blogger MAJ(P) Kelly McCoy, U.S. Army Training and Doctrine Command (TRADOC), with a theme familiar to anyone who has ever debated super powers in a schoolyard during recess. Yet despite its familiarity, it remains a serious question as we seek to modernize the U.S. Army in light of our pacing threat adversaries. The question of “human-in-the-loop” versus “human-out-of-the-loop” is an extremely timely and cogent question.]

Iron Man versus Terminator — who would win? It is a debate that challenges morality, firepower, ingenuity, and pop culture prowess. But when it comes down to brass tacks, who would really win and what does that say about us?

Mad Scientist maintains that:

  • Today: Mano a mano, Iron Man’s human ingenuity, grit, and irrationality would carry the day; however…
  • In the Future: Facing the entire Skynet distributed neural net, Iron Man’s human-in-the-loop would be overwhelmed by a coordinated, swarming attack of Terminators.
Soldier in Iron Man-like exoskeleton prototype suit

Iron Man is the super-empowered human utilizing Artificial Intelligence (AI) — Just A Rather Very Intelligent System or JARVIS — to augment the synthesizing of data and robotics to increase strength, speed, and lethality. Iron Man utilizes autonomous systems, but maintains a human-in-the- loop for lethality decisions. Conversely, the Terminator is pure machine – with AI at the helm for all decision-making. Terminators are built for specific purposes – and for this case let’s assume these robotic soldiers are designed specifically for urban warfare. Finally, strength, lethality, cyber vulnerabilities, and modularity of capabilities between Iron Man and Terminator are assumed to be relatively equal to each other.

Up front, Iron Man is constrained by individual human bias, retention and application of training, and physical and mental fatigue. Heading into the fight, the human behind a super powered robotic enhancing suit will make decisions based on their own biases. How does one respond to too much information or not enough? How do they react when needing to respond while wrestling with the details of what needs to be remembered at the right time and space? Compounding this is the retention and application of the individual human’s training leading up to this point. Have they successfully undergone enough repetitions to mitigate their biases and arrive at the best solution and response? Finally, our most human vulnerability is physical and mental fatigue. Without adding in psychoactive drugs, how would you respond to taking the Graduate Record Examinations (GRE) while simultaneously winning a combatives match? How long would you last before you are mentally and physically exhausted?

Terminator / Source: http://pngimg.com/download/29789

What the human faces is a Terminator who removes bias and optimizes responses through machine learning, access to a network of knowledge, options, and capabilities, and relentless speed to process information. How much better would a Soldier be with their biases removed and the ability to apply the full library of lessons learned? To process the available information that contextualizes environment without cognitive overload. Arriving at the optimum decision, based on the outcomes of thousands of scenarios.

Iron Man arrives to this fight with irrationality and ingenuity; the ability to quickly adapt to complex problems and environments; tenacity; and morality that is uniquely human. Given this, the Terminator is faced with an adversary who can not only adapt, but also persevere with utter unpredictability. And here the Terminator’s weaknesses come to light. Their algorithms are matched to an environment – but environments can change and render algorithms obsolete. Their energy sources are finite – where humans can run on empty, Terminators power off. Finally, there are always glitches and vulnerabilities. Autonomous systems depend on the environment that it is coded for – if you know how to corrupt the environment, you can corrupt the system.

Ultimately the question of Iron Man versus Terminator is a question of time and human value and worth. In time, it is likely that the Iron Man will fall in the first fight. However, the victor is never determined in the first fight, but the last. If you believe in human ingenuity, grit, irrationality, and consideration, the last fight is the true test of what it means to be human.

Note:  Nothing in this blog is intended as an implied or explicit endorsement of the “Iron Man” or “Terminator” franchises on the part of the Department of Defense, the U.S. Army, or TRADOC.

Kelly McCoy is a U.S. Army strategist officer and a member of the Military Leadership Circle. A blessed husband and proud father, when he has time he is either brewing beer, roasting coffee, or maintaining his blog (Drink Beer; Kill War at: https://medium.com/@DrnkBrKllWr). The views expressed in this article belong to the author alone and do not represent the Department of Defense.

81. “Maddest” Guest Blogger!

[Editor’s Note: Since its inception last November, the Mad Scientist Laboratory has enabled us to expand our reach and engage global innovators from across industry, academia, and the Government regarding emergent disruptive technologies and their individual and convergent impacts on the future of warfare. For perspective, our blog has accrued almost 60K views by over 30K visitors from around the world!

Our Mad Scientist Community of Action continues to grow — in no small part due to the many guest bloggers who have shared their provocative, insightful, and occasionally disturbing visions of the future. Almost half (36 out of 81) of the blog posts published have been submitted by guest bloggers. We challenge you to contribute your ideas!

In particular, we would like to recognize Mad Scientist Mr. Sam Bendett by re-posting his submission entitled “Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward,” originally published on 25 June 2018. This post generated a record number of visits and views during the past six month period. Consequently, we hereby declare Sam to be the Mad Scientist Laboratory’s “Maddest” Guest Blogger! for the latter half of FY18. In recognition of his achievement, Sam will receive much coveted Mad Scientist swag.

While Sam’s post revealed the many challenges Russia has experienced in combat testing the Uran-9 Unmanned Ground Vehicle (UGV) in Syria, it is important to note that Russia has designed, prototyped,  developed, and operationally tested this system in a combat environment, demonstrating a disciplined and proactive approach to innovation.  Russia is learning how to integrate robotic lethal ground combat systems….

Enjoy re-visiting Sam’s informative post below, noting that many of the embedded links are best accessed using non-DoD networks.]

Russia’s Forpost UAV (licensed copy of IAI Searcher II) in Khmeimim, Syria; Source: https://t.co/PcNgJ811O8

Russia, like many other nations, is investing in the development of various unmanned military systems. The Russian defense establishment sees such systems as mission multipliers, highlighting two major advantages: saving soldiers’ lives and making military missions more effective. In this context, Russian developments are similar to those taking place around the world. Various militaries are fielding unmanned systems for surveillance, intelligence, logistics, or attack missions to make their forces or campaigns more effective. In fact, the Russian military has been successfully using Unmanned Aerial Vehicles (UAVs) in training and combat since 2013. It has used them with great effect in Syria, where these UAVs flew more mission hours than manned aircraft in various Intelligence, Surveillance, and Reconnaissance (ISR) roles.

Russia is also busy designing and testing many unmanned maritime and ground vehicles for various missions with diverse payloads. To underscore the significance of this emerging technology for the nation’s armed forces, Russian Defense Minister Sergei Shoigu recently stated that the serial production of ground combat robots for the military “may start already this year.”

Uran-9 combat UGV at Victory Day 2018 Parade in Red Square; Source: independent.co.uk

But before we see swarms of ground combat robots with red stars emblazoned on them, the Russian military will put these weapons through rigorous testing in order to determine if they can correspond to battlefield realities. Russian military manufacturers and contractors are not that different from their American counterparts in sometimes talking up the capabilities of their creations, seeking to create the demand for their newest achievement before there is proof that such technology can stand up to harsh battlefield conditions. It is for this reason that the Russian Ministry of Defense (MOD) finally established several centers such as Main Research and Testing Center of Robotics, tasked with working alongside the defense-industrial sector to create unmanned military technology standards and better communicate warfighters’ needs.  The MOD is also running conferences such as the annual “Robotization of the Armed Forces” that bring together military and industry decision-makers for a better dialogue on the development, growth, and evolution of the nation’s unmanned military systems.

Uran-9 Combat UGV, Source: nationalinterest.org

This brings us to one of the more interesting developments in Russian UGVs. Then Russian Deputy Defense Minister Borisov recently confirmed that the Uran-9 combat UGV was tested in Syria, which would be the first time this much-discussed system was put into combat. This particular UGV is supposed to operate in teams of three or four and is armed with a 30mm cannon and 7.62 mm machine guns, along with a variety of other weapons.

Just as importantly, it was designed to operate at a distance of up to three kilometers (3000 meters or about two miles) from its operator — a range that could be extended up to six kilometers for a team of these UGVs. This range is absolutely crucial for these machines, which must be operated remotely. Russian designers are developing operational electronics capable of rendering the Uran-9 more autonomous, thereby moving the operators to a safer distance from actual combat engagement. The size of a small tank, the Uran-9 impressed the international military community when first unveiled and it was definitely designed to survive battlefield realities….

Uran-9; Source: Defence-Blog.com

However, just as “no plan survives first contact with the enemy,” the Uran-9, though built to withstand punishment, came up short in its first trial run in Syria. In a candid admission, Andrei P. Anisimov, Senior Research Officer at the 3rd Central Research Institute of the Ministry of Defense, reported on the Uran-9’s critical combat deficiencies during the 10th All-Russian Scientific Conference entitled “Actual Problems of Defense and Security,” held in April 2018. In particular, the following issues came to light during testing:

• Instead of its intended range of several kilometers, the Uran-9 could only be operated at distance of “300-500 meters among low-rise buildings,” wiping out up to nine-tenths of its total operational range.

• There were “17 cases of short-term (up to one minute) and two cases of long-term (up to 1.5 hours) loss of Uran-9 control” recorded, which rendered this UGV practically useless on the battlefield.

• The UGV’s running gear had problems – there were issues with supporting and guiding rollers, as well as suspension springs.

• The electro-optic stations allowed for reconnaissance and identification of potential targets at a range of no more than two kilometers.

• The OCH-4 optical system did not allow for adequate detection of adversary’s optical and targeting devices and created multiple interferences in the test range’s ground and airspace.

Uran-9 undergoing testing; Source: YouTube

• Unstable operation of the UGV’s 30mm automatic cannon was recorded, with firing delays and failures. Moreover, the UGV could fire only when stationary, which basically wiped out its very purpose of combat “vehicle.”

• The Uran-9’s combat, ISR, and targeting weapons and mechanisms were also not stabilized.

On one hand, these many failures are a sign that this much–discussed and much-advertised machine is in need of significant upgrades, testing, and perhaps even a redesign before it gets put into another combat situation. The Russian military did say that it tested nearly 200 types of weapons in Syria, so putting the Uran-9 through its combat paces was a logical step in the long development of this particular UGV. If the Syrian trial was the first of its kind for this UGV, such significant technical glitches would not be surprising.

However, the MOD has been testing this Uran-9 for a while now, showing videos of this machine at a testing range, presumably in Russia. The truly unexpected issue arising during operations in Syria had to do with the failure of the Uran-9 to effectively engage targets with its cannon while in motion (along with a number of other issues). Still, perhaps many observers bought into the idea that this vehicle would perform as built – tracks, weapons, and all. A closer examination of the publicly-released testing video probably foretold some of the Syrian glitches – in this particular one, Uran-9 is shown firing its machine guns while moving, but its cannon was fired only when the vehicle was stationary. Another interesting aspect that is significant in hindsight is that the testing range in the video was a relatively open space – a large field with a few obstacles around, not the kind of complex terrain, dense urban environment encountered in Syria. While today’s and future battlefields will range greatly from open spaces to megacities, a vehicle like the Uran-9 would probably be expected to perform in all conditions. Unless, of course, Syrian tests would effectively limit its use in future combat.

Russian Soratnik UGV

On another hand, so many failures at once point to much larger issues with the Russian development of combat UGVs, issues that Anisimov also discussed during his presentation. He highlighted the following technological aspects that are ubiquitous worldwide at this point in the global development of similar unmanned systems:

• Low level of current UGV autonomy;

• Low level of automation of command and control processes of UGV management, including repairs and maintenance;

• Low communication range, and;

• Problems associated with “friend or foe” target identification.

Judging from the Uran-9’s Syrian test, Anisimov made the following key conclusions which point to the potential trajectory of Russian combat UGV development – assuming that other unmanned systems may have similar issues when placed in a simulated (or real) combat environment:

• These types of UGVs are equipped with a variety of cameras and sensors — and since the operator is presumably located a safe distance from combat, he may have problems understanding, processing, and effectively responding to what is taking place with this UGV in real-time.

• For the next 10-15 years, unmanned military systems will be unable to effectively take part in combat, with Russians proposing to use them in storming stationary and well-defended targets (effectively giving such combat UGVs a kamikaze role).

• One-time and preferably stationary use of these UGVs would be more effective, with maintenance and repair crews close by.

• These UGVs should be used with other military formations in order to target and destroy fortified and firing enemy positions — but never on their own, since their breakdown would negatively impact the military mission.

The presentation proposed that some of the above-mentioned problems could be overcome by domestic developments in the following UGV technology and equipment areas:

• Creating secure communication channels;

• Building miniaturized hi-tech navigation systems with a high degree of autonomy, capable of operating with a loss of satellite navigation systems;

• Developing miniaturized and effective ISR components;

• Integrating automated command and control systems, and;

• Better optics, electronics and data processing systems.

According to Anisimov’s report, the overall Russian UGV and unmanned military systems development arch is similar to the one proposed by the United States Army Capabilities Integration Center (ARCIC):  the gradual development of systems capable of more autonomy on the battlefield, leading to “smart” robots capable of forming “mobile networks” and operating in swarm configurations. Such systems should be “multifunctional” and capable of being integrated into existing armed forces formations for various combat missions, as well as operate autonomously when needed. Finally, each military robot should be able to function within existing and future military technology and systems.

Source: rusmilitary.wordpress.com

Such a candid review and critique of the Uran-9 in Syria, if true, may point to the Russian Ministry of Defense’s attitude towards its domestic manufacturers. The potential combat effectiveness of this UGV was advertised for the past two years, but its actual performance fell far short of expectations. It is a sign for developers of other Russian unmanned ground vehicles – like Soratnik, Vihr, and Nerehta — since it displays the full range of deficiencies that take place outside of well-managed testing ranges where such vehicles are currently undergoing evaluation. It also brought to light significant problems with ISR equipment — this type of technology is absolutely crucial to any unmanned system’s successful deployment, and its failures during Uran-9 tests exposed a serious combat weakness.

It is also a useful lesson for many other designers of domestic combat UGVs who are seeking to introduce similar systems into existing order of battle. It appears that the Uran-9’s full effectiveness can only be determined at a much later time if it can perform its mission autonomously in the rapidly-changing and complex battlefield environment. Fully autonomous operation so far eludes its Russian developers, who are nonetheless still working towards achieving such operational goals for their combat UGVs. Moreover, Russian deliberations on using their existing combat UGV platforms in one-time attack mode against fortified adversary positions or firing points, tracking closely with ways that Western military analysts are thinking that such weapons could be used in combat.

Source: Nikolai Novichkov / Orbis Defense

The Uran-9 is still a test bed and much has to take place before it could be successfully integrated into current Russian concept of operations. We could expect more eye-opening “lessons learned” from its and other UGVs potential deployment in combat. Given the rapid proliferation of unmanned and autonomous technology, we are already in the midst of a new arms race. Many states are now designing, building, exporting, or importing various technologies for their military and security forces.

To make matters more interesting, the Russians have been public with both their statements about new technology being tested and evaluated, and with the possible use of such weapons in current and future conflicts. There should be no strategic or tactical surprise when military robotics are finally encountered in future combat.

Source: Block13
by djahal; Diviantart.com

For another perspective on Russian military innovation, please read Mr. Ray Finch’s guest post The Tenth Man” — Russia’s Era Military Innovation Technopark.

Samuel Bendett is a Research Analyst at the CNA Corporation and a Russia Studies Fellow at the American Foreign Policy Council. He is an official Mad Scientist, having presented and been so proclaimed at a previous Mad Scientist Conference.  The views expressed here are his own.

80. “The Queue”

[Editor’s Note:  Mad Scientist Laboratory is pleased to present our August edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the past month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

Gartner Hype Cycle / Source:  Nicole Saraco Loddo, Gartner

1.5 Trends Emerge in the Gartner Hype Cycle for Emerging Technologies,” by Kasey Panetta, Gartner, 16 August 2018.

Gartner’s annual hype cycle highlights many of the technologies and trends explored by the Mad Scientist program over the last two years. This year’s cycle added 17 new technologies and organized them into five emerging trends: 1) Democratized Artificial Intelligence (AI), 2) Digitalized Eco-Systems, 3) Do-It-Yourself Bio-Hacking, 4) Transparently Immersive Experiences, and 5) Ubiquitous Infrastructure. Of note, many of these technologies have a 5–10 year horizon until the Plateau of Productivity. If this time horizon is accurate, we believe these emerging technologies and five trends will have a significant role in defining the Character of Future War in 2035 and should have modernization implications for the Army of 2028. For additional information on the disruptive technologies identified between now and 2035, see the Era of Accelerated Human Progress portion of our Potential Game Changers broadsheet.

[Gartner disclaimer:  Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.]

Artificial Intelligence by GLAS-8 / Source: Flickr

2.Should Evil AI Research Be Published? Five Experts Weigh In,” by Dan Robitzski, Futurism, 27 August 2018.

The following rhetorical (for now) question was posed to the “AI Race and Societal Impacts” panel during last month’s The Joint Multi-Conference on Human-Level Artificial Intelligence in Prague, The Czech Republic:

“Let’s say you’re an AI scientist, and you’ve found the holy grail of your field — you figured out how to build an artificial general intelligence (AGI). That’s a truly intelligent computer that could pass as human in terms of cognitive ability or emotional intelligence. AGI would be creative and find links between disparate ideas — things no computer can do today.

That’s great, right? Except for one big catch: your AGI system is evil or could only be used for malicious purposes.

So, now a conundrum. Do you publish your white paper and tell the world exactly how to create this unrelenting force of evil? Do you file a patent so that no one else (except for you) could bring such an algorithm into existence? Or do you sit on your research, protecting the world from your creation but also passing up on the astronomical paycheck that would surely arrive in the wake of such a discovery?”

The panel’s responses ranged from controlling — “Don’t publish it!” and treat it like a grenade, “one would not hand it to a small child, but maybe a trained soldier could be trusted with it”; to the altruistic — “publish [it]… immediately” and “there is no evil technology, but there are people who would misuse it. If that AGI algorithm was shared with the world, people might be able to find ways to use it for good”; to the entrepreneurial – “sell the evil AGI to [me]. That way, they wouldn’t have to hold onto the ethical burden of such a powerful and scary AI — instead, you could just pass it to [me and I will] take it from there.

While no consensus of opinion was arrived at, the panel discussion served a useful exercise in illustrating how AI differs from previous eras’ game changing technologies. Unlike Nuclear, Biological, and Chemical weapons, no internationally agreed to and implemented control protocols can be applied to AI, as there are no analogous gas centrifuges, fissile materials, or triggering mechanisms; no restricted access pathogens; no proscribed precursor chemicals to control. Rather, when AGI is ultimately achieved, it is likely to be composed of nothing more than diffuse code; a digital will’o wisp that can permeate across the global net to other nations, non-state actors, and super-empowered individuals, with the potential to facilitate unprecedentedly disruptive Information Operation (IO) campaigns and Virtual Warfare, revolutionizing human affairs. The West would be best served in emulating the PRC with its Military-Civil Fusion Centers and integrate the resources of the State with the innovation of industry to achieve their own AGI solutions soonest. The decisive edge will “accrue to the side with more autonomous decision-action concurrency on the Hyperactive Battlefield” — the best defense against a nefarious AGI is a friendly AGI!

Scales Sword Of Justice / Source: https://www.maxpixel.net/

3.Can Justice be blind when it comes to machine learning? Researchers present findings at ICML 2018,” The Alan Turing Institute, 11 July 2018.

Can justice really be blind? The International Conference on Machine Learning (ICML) was held in Stockholm, Sweden, in July 2018. This conference explored the notion of machine learning fairness and proposed new methods to help regulators provide better oversight and practitioners to develop fair and privacy-preserving data analyses. Like ethical discussions taking place within the DoD, there are rising legal concerns that commercial machine learning systems (e.g., those associated with car insurance pricing) might illegally or unfairly discriminate against certain subgroups of the population. Machine learning will play an important role in assisting battlefield decisions (e.g., the targeting cycle and commander’s decisions) – especially lethal decisions. There is a common misperception that machines will make unbiased and fair decisions, divorced from human bias. Yet the issue of machine learning bias is significant because humans, with their host of cognitive biases, code the very programming that will enable machines to learn and make decisions. Making the best, unbiased decisions will become critical in AI-assisted warfighting. We must ensure that machine-based learning outputs are verified and understood to preclude the inadvertent introduction of human biases.  Read the full report here.

Robot PNG / Source: pngimg.com

4.Uptight robots that suddenly beg to stay alive are less likely to be switched off by humans,” by Katyanna Quach, The Register, 3 August 2018.

In a study published by PLOS ONE, researchers found that a robot’s personality affected a human’s decision-making. In the study, participants were asked to dialogue with a robot that was either sociable (chatty) or functional (focused). At the end of the study, the researchers let the participants know that they could switch the robot off if they wanted to. At that moment, the robot would make an impassioned plea to the participant to resist shutting them down. The participants’ actions were then recorded. Unexpectedly, there were  a large number of participants who resisted shutting down the functional robots after they made their plea, as opposed to the sociable ones. This is significant. It shows, beyond the unexpected result, that decision-making is affected by robotic personality. Humans will form an emotional connection to artificial entities despite knowing they are robotic if they mimic and emulate human behavior. If the Army believes its Soldiers will be accompanied and augmented heavily by robots in the near future, it must also understand that human-robot interaction will not be the same as human-computer interaction. The U.S. Army must explore how attain the appropriate level of trust between Soldiers and their robotic teammates on the future battlefield. Robots must be treated more like partners than tools, with trust, cooperation, and even empathy displayed.

IoT / Source: Pixabay

5.Spending on Internet of Things May More Than Double to Over Half a Trillion Dollars,” by Aaron Pressman, Fortune, 8 August 2018.

While the advent of the Internet brought home computing and communication even deeper into global households, the revolution of smart phones brought about the concept of constant personal interconnectivity. Today and into the future, not only are humans being connected to the global commons via their smart devices, but a multitude of devices, vehicles, and various accessories are being integrated into the Internet of Things (IoT). Previously, the IoT was addressed as a game changing technology. The IoT is composed of trillions of internet-linked items, creating opportunities and vulnerabilities. There has been explosive growth in low Size Weight and Power (SWaP) and connected devices (Internet of Battlefield Things), especially for sensor applications (situational awareness).

Large companies are expected to quickly grow their spending on Internet-connected devices (i.e., appliances, home devices [such as Google Home, Alexa, etc.], various sensors) to approximately $520 billion. This is a massive investment into what will likely become the Internet of Everything (IoE). While growth is focused on known devices, it is likely that it will expand to embedded and wearable sensors – think clothing, accessories, and even sensors and communication devices embedded within the human body. This has two major implications for the Future Operational Environment (FOE):

– The U.S. military is already struggling with the balance between collecting, organizing, and using critical data, allowing service members to use personal devices, and maintaining operations and network security and integrity (see banning of personal fitness trackers recently). A segment of the IoT sensors and devices may be necessary or critical to the function and operation of many U.S. Armed Forces platforms and weapons systems, inciting some critical questions about supply chain security, system vulnerabilities, and reliance on micro sensors and microelectronics

– The U.S. Army of the future will likely have to operate in and around dense urban environments, where IoT devices and sensors will be abundant, degrading blue force’s ability to sense the battlefield and “see” the enemy, thereby creating a veritable needle in a stack of needles.

6.Battlefield Internet: A Plan for Securing Cyberspace,” by Michèle Flournoy and Michael Sulmeyer, Foreign Affairs, September/October 2018. Review submitted by Ms. Marie Murphy.

With the possibility of a “cyber Pearl Harbor” becoming increasingly imminent, intelligence officials warn of the rising danger of cyber attacks. Effects of these attacks have already been felt around the world. They have the power to break the trust people have in institutions, companies, and governments as they act in the undefined gray zone between peace and all-out war. The military implications are quite clear: cyber attacks can cripple the military’s ability to function from a command and control aspect to intelligence communications and materiel and personnel networks. Besides the military and government, private companies’ use of the internet must be accounted for when discussing cyber security. Some companies have felt the effects of cyber attacks, while others are reluctant to invest in cyber protection measures. In this way, civilians become affected by acts of cyber warfare, and attacks on a country may not be directed at the opposing military, but the civilian population of a state, as in the case of power and utility outages seen in eastern Europe. Any actor with access to the internet can inflict damage, and anyone connected to the internet is vulnerable to attack, so public-private cooperation is necessary to most effectively combat cyber threats.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at:  usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

79. Character vs. Nature of Warfare: What We Can Learn (Again) from Clausewitz

[Editor’s Note: Mad Scientist Laboratory is pleased to present the following post by guest blogger LTC Rob Taber, U.S. Army Training and Doctrine Command (TRADOC) G-2 Futures Directorate, clarifying the often confused character and nature of warfare, and addressing their respective mutability.]

No one is arguing that warfare is not changing. Where people disagree, however, is whether the nature of warfare, the character of warfare, or both are changing.

Source:  Office of the Director of National Intelligence

Take, for example, the National Intelligence Council’s assertion in “Global Trends: Paradox of Progress.” They state, “The nature of conflict is changing. The risk of conflict will increase due to diverging interests among major powers, an expanding terror threat, continued instability in weak states, and the spread of lethal, disruptive technologies. Disrupting societies will become more common, with long-range precision weapons, cyber, and robotic systems to target infrastructure from afar, and more accessible technology to create weapons of mass destruction.”[I]

Additionally, Brad D. Williams, in an introduction to an interview he conducted with Amir Husain, asserts, “Generals and military theorists have sought to characterize the nature of war for millennia, and for long periods of time, warfare doesn’t dramatically change. But, occasionally, new methods for conducting war cause a fundamental reconsideration of its very nature and implications.”[II] Williams then cites “cavalry, the rifled musket and Blitzkrieg as three historical examples”[III] from Husain and General John R. Allen’s (ret.) article, “On Hyperwar.”

Unfortunately, the NIC and Mr. Williams miss the reality that the nature of war is not changing, and it is unlikely to ever change. While these authors may have simply interchanged “nature” when they meant “character,” it is important to be clear on the difference between the two and the implications for the military. To put it more succinctly, words have meaning.

The nature of something is the basic make up of that thing. It is, at core, what that “thing” is. The character of something is the combination of all the different parts and pieces that make up that thing. In the context of warfare, it is useful to ask every doctrine writer’s personal hero, Carl Von Clausewitz, what his views are on the matter.

Source: Tetsell’s Blog. https://tetsell.wordpress.com/2014/10/13/clausewitz/

He argues that war is “subjective,”[IV]an act of policy,”[V] and “a pulsation of violence.”[VI] Put another way, the nature of war is chaotic, inherently political, and violent. Clausewitz then states that despite war’s “colorful resemblance to a game of chance, all the vicissitudes of its passion, courage, imagination, and enthusiasm it includes are merely its special characteristics.”[VII] In other words, all changes in warfare are those smaller pieces that evolve and interact to make up the character of war.

The argument that artificial intelligence (AI) and other technologies will enable military commanders to have “a qualitatively unsurpassed level of situational awareness and understanding heretofore unavailable to strategic commander[s][VIII] is a grand claim, but one that has been made many times in the past, and remains unfulfilled. The chaos of war, its fog, friction, and chance will likely never be deciphered, regardless of what technology we throw at it. While it is certain that AI-enabled technologies will be able to gather, assess, and deliver heretofore unimaginable amounts of data, these technologies will remain vulnerable to age-old practices of denial, deception, and camouflage.

 

The enemy gets a vote, and in this case, the enemy also gets to play with their AI-enabled technologies that are doing their best to provide decision advantage over us. The information sphere in war will be more cluttered and more confusing than ever.

Regardless of the tools of warfare, be they robotic, autonomous, and/or AI-enabled, they remain tools. And while they will be the primary tools of the warfighter, the decision to enable the warfighter to employ those tools will, more often than not, come from political leaders bent on achieving a certain goal with military force.

Drone Wars are Coming / Source: USNI Proceedings, July 2017, Vol. 143 / 7 /  1,373

Finally, the violence of warfare will not change. Certainly robotics and autonomy will enable machines that can think and operate without humans in the loop. Imagine the future in which the unmanned bomber gets blown out of the sky by the AI-enabled directed energy integrated air defense network. That’s still violence. There are still explosions and kinetic energy with the potential for collateral damage to humans, both combatants and civilians.

Source: Lockheed Martin

Not to mention the bomber carried a payload meant to destroy something in the first place. A military force, at its core, will always carry the mission to kill things and break stuff. What will be different is what tools they use to execute that mission.

To learn more about the changing character of warfare:

– Read the TRADOC G-2’s The Operational Environment and the Changing Character of Warfare paper.

– Watch The Changing Character of Future Warfare video.

Additionally, please note that the content from the Mad Scientist Learning in 2050 Conference at Georgetown University, 8-9 August 2018, is now posted and available for your review:

– Read the Top Ten” Takeaways from the Learning in 2050 Conference.

– Watch videos of each of the conference presentations on the TRADOC G-2 Operational Environment (OE) Enterprise YouTube Channel here.

– Review the conference presentation slides (with links to the associated videos) on the Mad Scientist All Partners Access Network (APAN) site here.

LTC Rob Taber is currently the Deputy Director of the Futures Directorate within the TRADOC G-2. He is an Army Strategic Intelligence Officer and holds a Master of Science of Strategic Intelligence from the National Intelligence University. His operational assignments include 1st Infantry Division, United States European Command, and the Defense Intelligence Agency.

Note:  The featured graphic at the top of this post captures U.S. cavalrymen on General John J. Pershing’s Punitive Expedition into Mexico in 1916.  Less than two years later, the United States would find itself fully engaged in Europe in a mechanized First World War.  (Source:  Tom Laemlein / Armor Plate Press, courtesy of Neil Grant, The Lewis Gun, Osprey Publishing, 2014, page 19)

_______________________________________________________

[I] National Intelligence Council, “Global Trends: Paradox of Progress,” January 2017, https://www.dni.gov/files/documents/nic/GT-Full-Report.pdf, p. 6.
[II] Brad D. Williams, “Emerging ‘Hyperwar’ Signals ‘AI-Fueled, machine waged’ Future of Conflict,” Fifth Domain, August 7, 2017, https://www.fifthdomain.com/dod/2017/08/07/emerging-hyperwar-signals-ai-fueled-machine-waged-future-of-conflict/.
[III] Ibid.
[VI] Carl Von Clausewitz, On War, ed. Michael Howard and Peter Paret (Princeton: Princeton University Press, 1976), 85.
[V] Ibid, 87.
[VI] Ibid.
[VII] Ibid, 86.
[VIII] John Allen, Amir Hussain, “On Hyper-War,” Fortuna’s Corner, July 10, 2017, https://fortunascorner.com/2017/07/10/on-hyper-war-by-gen-ret-john-allenusmc-amir-hussain/.