137. What’s in a Touch? Lessons from the Edge of Electronic Interface

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s guest blog post by Dr. Brian Holmes, exploring the threats associated with adaptive technologies and how nefarious actors can morph benign technological innovations into new, more sinister applications.  The three technological trends of democratization, convergence, and asymmetrical ethics portend a plethora of dystopian scenarios for the Future Operational Environment.  Dr. Holmes imagines how advances in prosthetic R&D could be manipulated to augment advances in artificial intelligence and robotics, providing a sense of touch to realize more lifelike lethal autonomous weapons systems — Enjoy!]

Somewhere in a near parallel, fictional universe –

Parallel Universes / Source:  Max Pixel

Dr. Sandy Votel is an Associate Professor and researcher at a military defense school in the U.S.  She has a diverse career that includes experience in defense and private laboratories researching bleeding edge biological science. For eight years, she served as an intelligence officer in the military reserves. Ten years ago she decided to join a defense school as a graduate research professor.

Dr. Mark Smith is a new Assistant Professor at her School. He just graduated with his Ph.D. before accepting his academic position. Sandy, Mark’s mentor, is explaining the finer details of her team’s research during Mark’s first week on the job.

Sandy began by explaining to Mark what her post-doc was investigating –

He’s researching the fundamental materials required for electronic skin,” she said.

“Cyborg” / Source: R.E. Barber Photography via Flickr

After a pause, Sandy followed up by posing this hackneyed question, “Is it wrong that I am helping to create one small slice of a yet to be made front line cyborg, or, a bioengineered replicant spy of the kind played out in popular Hollywood movies?” Her smirk quickly followed. Westerners were practically conditioned to make comments like that.

 

The Modular Prosthetic Limb (MPL) / Source: U.S. Navy via Flickr

Her colleague Mark immediately replied, “It’s more likely this kind of technology could someday help battlefield soldiers or civilians who have lost fingers, toes, or limbs. They might be able to touch or feel again in some new manner through the interface. The material could be embedded into some sort of artificial prosthetic, and electronically connected to receptors feeding the information to and from your brain. Imagine the possibilities! Any interest in collaborating? We should push the boundaries here!

Sandy knew that the early stage research was intended for the most benevolent of reasons – personalized health care and disposable electronic sensors to name a few – but the creative futurist in her, heavily influenced by years evaluating the more disturbing side of humanity as an intelligence officer, suddenly made her pause. After all, she saw the realized threat from adaptive technologies daily when she logged into her computer system each drill weekend.

A drawing of the character Deckard by Canosard, from the film Blade Runner (Warner Bros., 1982) / Source: DeviantArt

She’d also seen wildly creative science fiction writers’ draft ideas into reality. Sandy loved reading science fiction novels and watched every movie or show that resulted. As a child, she was amazed when Rick Deckard, from the movie Blade Runner, inserted a photograph into a machine that scanned it and allowed him to enhance the resolution enough to observe finite details embedded in thousands of pixels. Like most of the general public, she used to think that was impossible! Oh, how times have changed.

Sandy walked back into her office, scanned her email and focused on an article her department chair had sent to the entire workforce to evaluate. She suddenly stood back in shock, and immediately connected the disturbing news with elements she recalled from history.

Dr. Josef Mengele / Source:  Wikimedia Commons

Decades before Blade Runner came out in the cinema, the modern boundaries of science and human subject experimentation were torn asunder by the likes of Dr. Josef Mengele in the 1940’s. The “Angel of Death” was a German anthropologist and medical doctor who researched genetics in school and conducted horrific experiments on humans in Auschwitz as an SS officer.

Dr. He Jiankui / Source:  Wikimedia Commons

According to the article she just read, China’s Dr. He Jiankui, a biophysicist educated in China and the United States, shocked the world by pushing the limits of ethical genetic research by editing the genes of human embryos.

In each case, conflict or culture induced them to perform world changing science, resulting in not only global condemnation, but also the re-birth of knowledge with dual purpose. Sandy knew that history dictates a repetition of bad activities like these, performed in unpredictable scenarios set in a deep, dark, dystopian future.

Sandy’s realization hastened further reflection.

Cyborgs / Source: Pixabay

A significant number of studies have documented the emotional and physical benefits derived from touch. The research suggests that touch is fundamental to human communication, health, and bonding. If this is true, not only will advanced levels of artificial intelligence, or “AI”, require coding enabling learning and empathy, but the bioengineered system the AI is directing will necessitate a sense of touch to mimic a more lifelike cyborg. Passive sensors are only as good as physics allows them to be, or as great as the signal to noise levels dictate in a dirty environment. Touch, however, conveys something different… something far more real.

AI mimicking human visage / Source: Max Pixel

Sandy knew that most futuristic battlefield articles now center on today’s technology du jour, artificial intelligence. There’s no question that AI will serve as the brain center for individual or centralized networks of future machines; but to make them more human and adaptable to the battlefield of tomorrow as indistinguishable soldiers or undetectable HUMINT assets — subtler pieces are required to complete the puzzle.

Imagine hundreds or thousands of manufactured assets programmed for clandestine military operations, or covert activities that look, act, and feel like us?” she thought.

Weapons can be embedded into robotic systems, coding and software improved to the point of winning challenging board games, but it’s the bioengineers with duplicitous purposes and far too much imagination that hold the real key to the soldier of the future; specifically, the soldiers that replace, infiltrate, or battle us.

Nefarious actors adapting benign technological innovations into new, more sinister applications…

It’s happened before, and it will happen again!” she said out loud, accidentally.

Mark, who happened to be walking past her door, asked if everything was alright. Sandy nodded, but finished this thought as soon as he left her view.

Unfortunately, the key that unlocks the occurrence of these secrets exists in a faraway place, under duress, and without rules. If the military is worried about the Deep Future, we should be analyzing the scenarios that enable these kinds of creative paradigms.”

After all, it’s all in a touch. 

If you enjoyed this post, please:

– Read the Mad Scientist Bio Convergence and Soldier 2050 Conference Final Report.

Review the following blog posts:

Ethical Dilemmas of Future Warfare, and

Envisioning Future Operational Environment Possibilities through Story Telling.

– See our compendium of 23 submissions from the 2017 Mad Scientist Science Fiction Contest at Science Fiction: Visioning the Future of Warfare 2030-2050.

Crank up I Am Robot by The Phenomenauts (who?!?)

Dr. Brian Holmes is the Dean of the Anthony G. Oettinger School of Science and Technology Intelligence at the National Intelligence University in Bethesda, MD.

Disclaimer: The views expressed in this article are Dr. Holmes’ alone and do not imply endorsement by the U.S. Army Training and Doctrine Command, the U.S. Army, the Defense Intelligence Agency, the Department of Defense, its component organizations, or the U.S. Government.  This piece is meant to be thought-provoking and does not reflect the current position of the U.S. Army.

 

128. Disruption and the Future Operational Environment

Mad Scientist Laboratory is pleased to announce that Headquarters, U.S. Army Training and Doctrine Command (TRADOC) is co-sponsoring the Mad Scientist Disruption and the Future Operational Environment Conference with the Cockrell School of Engineering at The University of Texas at Austin on 24-25 April 2019 in Austin, Texas.

Plan on joining us virtually as we explore the individual and convergent impacts of technological innovations on Multi-Domain Operations and the Future Operational Environment, from today through 2050.

Disruptors addressed include robotics, artificial intelligence and autonomy, the future of space, planetary habitability, and the legal and ethical dilemmas surrounding how they will impact the future of warfare, specifically in the land and space domains.

Acknowledged global experts presenting include renowned futurist Dr. James Canton, author and CEO and Chairman of the Institute for Global Futures; former Deputy Secretary of Defense Robert Work, Senior Counselor for Defense and Distinguished Senior Fellow for Defense and National Security, Center for a New American Security (CNAS); Robonaut Julia Badger, Project Manager for the NASA’s Autonomous Spacecraft Management Projects; and former NASA spacecraft navigator Dr. Moriba K. Jah, Associate Professor of Aerospace Engineering and Engineering Mechanics at UT Austin; as well as speakers from DARPA, Sandia National Labs, and Army senior leaders.

Get ready…

– Review the conference agenda’s list of presentations here.

– Read our following blog posts:  Making the Future More Personal: The Oft-Forgotten Human Driver in Future’s Analysis, An Appropriate Level of Trust…, War Laid Bare, and Star Wars 2050.

– Subscribe to the Mad Scientist Laboratory to stay abreast of this conference and all things Mad Scientist — go to the subscribe function found on the right hand side of this screen.

We look forward to your participation on-line in six weeks!

 

127. “Maddest” Guest Blogger!

[Editor’s Note: Since its inception in November 2017, the Mad Scientist Laboratory has enabled us to expand our reach and engage global innovators from across industry, academia, and the Government regarding emergent disruptive technologies and their individual and convergent impacts on the future of warfare. For perspective, our blog has accrued 106K views by over 57K visitors from around the world!

Our Mad Scientist Community of Action continues to grow — in no small part due to the many guest bloggers who have shared their provocative, insightful, and occasionally disturbing visions of the future. To date, 53% of the blog posts published have been submitted by guest bloggers! We challenge you all to contribute your ideas about warfare and the Future Operational Environment!

In particular, we would like to recognize proclaimed Mad Scientist Dr. Alexander Kott by re-posting our review of his paper, Ground Warfare in 2050: How It Might Look, original published by the US Army Research Laboratory in August 2018.  This paper provides a technological forecast of autonomous intelligent agents and robots and their potential for employment on future battlefields in the year 2050.

Our review of Dr. Kott’s paper generated a record number of visits and views during the past six month period. Consequently, we hereby declare Dr. Kott to be the Mad Scientist Laboratory’s “Maddest” Guest Blogger! for the first and second quarters of FY19. In recognition of this achievement, Dr. Kott will receive much coveted Mad Scientist swag!

Enjoy today’s post as we revisit Dr. Kott’s conclusions with links to our previously published posts supporting his findings.]

Ground Warfare in 2050:  How It Might Look

In his paper, Dr. Kott addresses two major trends (currently under way) that will continue to affect combat operations for the foreseeable future. They are:

The employment of small aerial drones for Intelligence, Surveillance, and Reconnaissance (ISR) will continue, making concealment difficult and eliminating distance from opposing forces as a means of counter-detection. This will require the development and use of decoy capabilities (also intelligent robotic devices). This counter-reconnaissance fight will feature prominently on future battlefields between autonomous sensors and countermeasures – “a robot-on-robot affair.”

See our related discussions regarding Concealment in the Fundamental Questions Affecting Army Modernization post and Finders vs Hiders in our Timeless Competitions post.

The continued proliferation of intelligent munitions, operating at greater distances, collaborating in teams to seek out and destroy designated targets, and able to defeat armored and other hardened targets, as well as defiladed and entrenched targets.

See our descriptions of the future recon / strike complex in our Advanced Engagement Battlespace and the “Hyperactive Battlefield” post, and Robotics and Swarms / Semi Autonomous capabilities in our Potential Game Changers post.

These two trends will, in turn, drive the following forecasted developments:

Increasing reliance on unmanned systems, “with humans becoming a minority within the overall force, being further dispersed across the battlefield.”

See Mr. Jeff Becker’s post on The Multi-Domain “Dragoon” Squad: A Hyper-enabled Combat System, and Mr. Mike Matson’s Demons in the Tall Grass, both of which envision future tactical units employing greater numbers of autonomous combat systems; as well as Mr. Sam Bendett’s post on Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward, addressing the contemporary hurdles that one of our strategic competitors must address in operationalizing Unmanned Ground Vehicles.

Intelligent munitions will be neutralized “primarily by missiles and only secondarily by armor and entrenchments. Specialized autonomous protection vehicles will be required that will use their extensive load of antimissiles to defeat the incoming intelligent munitions.”

See our discussion of what warfare at machine-speed looks like in our Advanced Engagement Battlespace and the “Hyperactive Battlefield”.

Source: Fausto De Martini / Kill Command

Forces will exploit “very complex terrain, such as dense forest and urban environments” for cover and concealment, requiring the development of highly mobile “ground robots with legs and limbs,” able to negotiate this congested landscape.

 

See our Megacities: Future Challenges and Responses and Integrated Sensors: The Critical Element in Future Complex Environment Warfare posts that address future complex operational environments.

Source: www.defenceimages.mod.uk

The proliferation of autonomous combat systems on the battlefield will generate an additional required capability — “a significant number of specialized robotic vehicles that will serve as mobile power generation plants and charging stations.”

See our discussion of future Power capabilities on our Potential Game Changers handout.

“To gain protection from intelligent munitions, extended subterranean tunnels and facilities will become important. This in turn will necessitate the tunnel-digging robotic machines, suitably equipped for battlefield mobility.”

See our discussion of Multi-Domain Swarming in our Black Swans and Pink Flamingos post.

All of these autonomous, yet simultaneously integrated and networked battlefield systems will be vulnerable to Cyber-Electromagnetic Activities (CEMA). Consequently, the battle within the Cyber domain will “be fought largely by various autonomous cyber agents that will attack, defend, and manage the overall network of exceptional complexity and dynamics.”

See MAJ Chris Telley’s post addressing Artificial Intelligence (AI) as an Information Operations tool in his Influence at Machine Speed: The Coming of AI-Powered Propaganda.

The “high volume and velocity of information produced and demanded by the robot-intensive force” will require an increasingly autonomous Command and Control (C2) system, with humans increasingly being on, rather than in, the loop.

See Mr. Ian Sullivan’s discussion of AI vs. AI and how the decisive edge accrues to the combatant with more autonomous decision-action concurrency in his Lessons Learned in Assessing the Operational Environment post.

If you enjoyed reading this post, please watch Dr. Alexander Kott’s presentation, “The Network is the Robot,” from the Mad Scientist Robotics, Artificial Intelligence, and Autonomy: Visioning Multi-Domain Warfare in 2030-2050 Conference, co-sponsored by the Georgia Tech Research Institute (GTRI), in Atlanta, Georgia, 7-8 March 2017.

… and crank up Mr. Roboto by Styx!

Dr. Alexander Kott serves as the ARL’s Chief Scientist. In this role he provides leadership in development of ARL technical strategy, maintaining technical quality of ARL research, and representing ARL to external technical community. He published over 80 technical papers and served as the initiator, co-author and primary editor of over ten books, including most recently Cyber Defense and Situational Awareness (2015) and Cyber Security of SCADA and other Industrial Control Systems (2016), and the forthcoming Cyber Resilience of Systems and Networks (2019).

 

124. Mad Scientist Science Fiction Writing Contest 2019

[Editor’s Note:  Just a quick reminder that Mad Scientist is seeking your visions of future combat with our Science Fiction Writing Contest 2019.  Our deadline for submission is now one month out     — 1 APRIL 2019 so please review the contest details below, get those creative writing juices flowing, and send us your visions of combat in 2030!]

Background: The U.S. Army finds itself at a historical inflection point, where disparate, yet related elements of an increasingly complex Operational Environment (OE) are converging, creating a situation where fast-moving trends are rapidly transforming the nature of all aspects of society and human life – including the character of warfare. It is important to take a creative approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future. In this vein, the U.S. Army Mad Scientist Initiative is seeking your creativity and unique ideas to describe a battlefield that does not yet exist.

Task: Write about the following scenario – On March 17th, 2030, the country of Donovia, after months of strained relations and covert hostilities, invades neighboring country Otso. Donovia is a wealthy nation that is a near-peer competitor to the United States. Like the United States, Donovia has invested heavily in disruptive technologies such as robotics, AI, autonomy, quantum information sciences, bio enhancements and gene editing, space-based weapons and communications, drones, nanotechnology, and directed energy weapons. The United States is a close ally of Otso and is compelled to intervene due to treaty obligations and historical ties. The United States is about to engage Donovia in its first battle with a near-peer competitor in over 80 years…

Three ways to approach:
1) Forecasting – Description of the timeline and events leading up to the battle.
2) Describing – Account of the battle while it’s happening.
3) Backcasting – Retrospective look after the battle has ended (i.e., After Action Review or lessons learned).

Three questions to consider while writing (U.S., adversaries, and others):
1) What will forces and Soldiers look like in 2030?
2) What technologies will enable them or be prevalent on the battlefield?
3) What do Multi-Domain Operations look like in 2030?

Submission Guidelines:
– No more than 5000 words in length
– Provide your submission in .doc or .docx format
– Please use conventional text formatting (e.g., no columns) and have images “in line” with text
– Submissions from Government and DoD employees must be cleared through their respective PAOs prior to submission
MUST include completed release form (on the back of contest flyer)
CANNOT have been previously published

Selected submissions may be chosen for publication or a possible future speaking opportunity.

Contact: Send your submissions to: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil

For additional story telling inspiration, please see the following blog posts:

… and Dr. Lydia Kostopoulos‘ short story entitled The Most Eventful Night in the White House Situation Room: Year 2051, published by our colleagues at Small Wars Journal.

 

120. Autonomous Robotic Systems in the Russian Ground Forces

[Editor’s Note: Mad Scientist Laboratory welcomes back returning guest blogger and proclaimed Mad Scientist Mr. Samuel Bendett with today’s post, addressing Russia’s commitment to mass produce independent ground combat robotic systems. Simon Briggs, professor of interdisciplinary arts at the University of Edinburgh, predicts that “in 2030 AI will be in routine use to fight wars and kill people, far more effectively than humans can currently kill.”  Mr. Bendett’s post below addresses the status of current operationally tested and fielded Russian Unmanned Ground Vehicle (UGV) capabilities, and their pivot to acquire systems able to “independently recognize targets, use weapons, and interact in groups and swarms.” (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

Russian Minister of Defense Sergei Shoigu / Source: Wikimedia Commons

Over the past several years, the Russian military has invested heavily in the design, production, and testing of unmanned combat systems. In March 2018, Russian Defense Minister Sergei Shoigu said that mass production of combat robots for the Russian army could begin as early as that year. Now, the Ministry of Defense (MOD) is moving ahead with creating plans for such systems to act independently on the battlefield.

According to the Russian state media (TASS), Russian military robotic complexes (RBCs) will be able to independently recognize targets, use weapons, and interact in groups and swarms. Such plans were stated in the article by the staff of the 3rd Central Scientific Research Institute of the Russian Federation’s MOD.

Uran-6 Airborne Countermine System with flail / Source: Russian Federation MOD

Russia has already tested several Unmanned Ground Vehicles (UGVs) in combat. Its Uran-6, Scarab, and Sphera demining UGVs were rated well by the Russian engineering forces, and there are plans to start acquisition of such vehicles. However, these systems were designed to have their operators close by. When it came to a UGV that was originally built for operator remoteness in potential combat, things got more complicated.

Uran-9 engaging targets with its 30mm 2A72 autocannon on a test range.  Operational tests in Syria proved less successful.  / Source:  YouTube

Russia’s Uran-9 combat UGV experienced a large number of failures when tested in Syria, among them transportation, communication, firing, and situational awareness. The lessons from Uran-9 tests supposedly prompted the Russian military to consider placing more emphasis on using such UGVs as one-off attack vehicles against adversary hard points and stationary targets.

Russian ground combat forces conducting urban operations in Syria / Source: Wikimedia

Nonetheless, the aforementioned TASS article analyzes the general requirements for unmanned military systems employed by Russian ground forces. Among them is the ability to solve tasks in different combat conditions during day and night, under enemy fire, electronic and informational counteraction, in conditions of radiation, chemical contamination, and electromagnetic attack – as well as requirements such as modularity and multifunctionality. The article also points out “the [systems’] ability to independently perform tasks in conditions of ambiguity” – implying the use of Artificial Intelligence.

To achieve these requirements, the creation of an “intelligent decision-making system” is proposed, which will also supervise the use of weapons. “The way out of this situation is the intensification of research on increasing the autonomy of the RBCs and the introduction of intelligent decision-making systems at the control stages, including group, autonomous movement and use of equipment for its intended purpose, including weapons, into military robotics,” the article says.

An example of the complex, ambiguous environments that will challenge future Russian RBCs:  Russian troops in Aleppo, Syria / Source: Wikimedia Commons via article in the University of Melboune’s Pursuit, “Why is Russia Still Supporting Syria?”

The TASS article states that in the near future, the MOD is planning to initiate work aimed at providing technical support for solving this problem set. This research will include domestic laser scanning devices for geographical positioning, the development of methods and equipment for determining the permeability of the soil on which the UGV operates, the development of methods for controlling the military robot in “unstable communications,” and the development of methods for analyzing combat environments such as recognizing scenes, images, and targets.

Successfully employing UGVs in combat requires complicated systems, something that the aforementioned initiatives will seek to address. This work will probably rely on Russia’s Syrian experience, as well as on the current projects and upgrades to Moscow’s growing fleet of combat UGVs. On 24 January 2018, the Kalashnikov Design Bureau that oversees the completion of Uran-9 work admitted that this UGV has been accepted into military service. Although few details were given, the statement did include the fact that this vehicle will be further “refined” based on lessons learned during its Syria deployment, and that the Uran-9 presents “good scientific and technical groundwork for further products.” The extent of upgrades to that vehicle was not given – however, numerous failures in Syrian trials imply that there is lots of work ahead for this project. The statement also indicates that the Uran-9 may be a test-bed for further UGV development, an interesting fact considering the country’s already diverse collection of combat UGVs

As reported in DefenseOne, Russian Colonel Col. Oleg Pomazuev stated that the Nerekhta UGV “outperformed” manned systems in recent exercises / Source: DefenseOne and Sergey Ptichkin / RG

Today, the Russian military is testing and evaluating several systems, such as Nerekhta and Soratnik. The latter was also supposedly tested in “near-combat” conditions, presumably in Syria or elsewhere. The MOD has been testing smaller Platforma-M and large Vikhr combat UGVs, along with other unmanned vehicles. Yet the defining characteristic for these machines so far has been the fact that they were all remote-operated by soldiers, often in near proximity to the machine itself. Endowing these UGVs with more independent decision–making in the “fog of war” via an intelligent command and control system may exponentially increase their combat effectiveness — assuming that such systems can function as planned.

If you enjoyed this post, please also:

Read Mr. Bendett’s previous post, Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward

… and watch Zvezda Broadcasting‘s video, showing a Vikhr unmanned, tele-operated BMP-3 maneuvering and shooting its 7.62mm MG, 30mm cannon, and automatic grenade launcher on a test range.

Automated lethality is but one of the many Future Operational Environment trends that the U.S. Army’s Mad Scientist Initiative is tracking. Mad Scientist seeks to crowdsource your visions of future combat with our Science Fiction Writing Contest 2019. Our deadline for submission is 1 APRIL 2019, so please review the contest details and associated release form here, get those creative writing juices flowing, and send us your visions of combat in 2030!  Selected submissions may be chosen for publication or a possible future speaking opportunity.

Samuel Bendett is a Researcher at CNA and a Fellow in Russia Studies at the American Foreign Policy Council. He is also a proud Mad Scientist.

114. Mad Scientist Science Fiction Writing Contest 2019

Futuristic tank rendering  / Source: U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC)

[Editor’s Note:  Story Telling is a powerful tool that allows us to envision how innovative technologies could be employed and operationalized in the Future Operational Environment.  Mad Scientist is seeking your visions of future combat with our Science Fiction Writing Contest 2019.  Our deadline for submission is 1 APRIL 2019, so please review the contest details below, get those creative writing juices flowing, and send us your visions of combat in 2030!] 

Still from “The Future of the Soldier” video / Source:  U.S. Army Natick Soldier Research Development and Engineering Center

Background: The U.S. Army finds itself at a historical inflection point, where disparate, yet related elements of an increasingly complex Operational Environment (OE) are converging, creating a situation where fast moving trends are rapidly transforming the nature of all aspects of society and human life – including the character of warfare. It is important to take a creative approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future. In this vein, the U.S. Army Mad Scientist Initiative is seeking your creativity and unique ideas to describe a battlefield that does not yet exist.

Illustration from “Silent Ruin” by Don Hudson & Kinsun Lo / Source:   U.S.  Army Cyber Institute at West Point

Task: Write about the following scenario – On March 17th, 2030, the country of Donovia, after months of strained relations and covert hostilities, invades neighboring country Otso. Donovia is a wealthy nation that is a near-peer competitor to the United States. Like the United States, Donovia has invested heavily in disruptive technologies such as robotics, AI, autonomy, quantum information sciences, bio enhancements and gene editing, space-based weapons and communications, drones, nanotechnology, and directed energy weapons. The United States is a close ally of Otso and is compelled to intervene due to treaty obligations and historical ties. The United States is about to engage Donovia in its first battle with a near-peer competitor in over 80 years…

Three ways to approach:
1) Forecasting – Description of the timeline and events leading up to the battle.
2) Describing – Account of the battle while it’s happening.
3) Backcasting – Retrospective look after the battle has ended (i.e., After Action Review or lessons learned).

Three questions to consider while writing (U.S., adversaries, and others):
1) What will forces and Soldiers look like in 2030?
2) What technologies will enable them or be prevalent on the battlefield?
3) What do Multi-Domain Operations look like in 2030?

Submission Guidelines:
– No more than 5000 words in length
– Provide your submission in .doc or .docx format
– Please use conventional text formatting (e.g., no columns) and have images “in line” with text
– Submissions from Government and DoD employees must be cleared through their respective PAOs prior to submission
MUST include completed release form (on the back of contest flyer)
CANNOT have been previously published

Selected submissions may be chosen for publication or a possible future speaking opportunity.

Contact: Send your submissions to: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil

For additional story telling inspiration, please see the following blog posts:

 

110. Future Jobs and Skillsets

[Editor’s Note:  On 8-9 August 2018, the U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Learning in 2050 Conference with Georgetown University’s Center for Security Studies in Washington, DC.  Leading scientists, innovators, and scholars from academia, industry, and the government gathered to address future learning techniques and technologies that are critical in preparing for Army operations in the mid-21st century against adversaries in rapidly evolving battlespaces.  Today’s post is extracted from this conference’s final report (more of which is addressed at the bottom of this post).]

The U.S. Army currently has more than 150 Military Occupational Specialties (MOSs), each requiring a Soldier to learn unique tasks, skills, and knowledges. The emergence of a number of new technologies – drones, Artificial Intelligence (AI), autonomy, immersive mixed reality, big data storage and analytics, etc. – coupled with the changing character of future warfare means that many of these MOSs will need to change, while others will need to be created. This already has been seen in the wider U.S. and global economy, where the growth of internet services, smartphones, social media, and cloud technology over the last ten years has introduced a host of new occupations that previously did not exist. The future will further define and compel the creation of new jobs and skillsets that have not yet been articulated or even imagined. Today’s hobbies (e.g., drones) and recreational activities (e.g., Minecraft/Fortnite) that potential recruits engage in every day could become MOSs or Additional Skill Identifiers (ASIs) of the future.

Training eighty thousand new Recruits a year on existing MOSs is a colossal undertaking.  A great expansion in the jobs and skillsets needed to field a highly capable future Army, replete with modified or new MOSs, adds a considerable burden to the Army’s learning systems and institutions. These new requirements, however, will almost certainly present an opportunity for the Army to capitalize on intelligent tutors, personalized learning, and immersive learning to lessen costs and save time in Soldier and Leader development.

The recruit of 2050 will be born in 2032 and will be fundamentally different from the generations born before them.  Marc Prensky, educational writer and speaker who coined the term digital native, asserts this “New Human” will stand in stark contrast to the “Old Human” in the ways they learn and approach learning..1 Where humans today are born into a world with ubiquitous internet, hyper-connectivity, and the Internet of Things, each of these elements are generally external to the human.  By 2032, these technologies likely will have converged and will be embedded or integrated into the individual with connectivity literally on the tips of their fingers. 

Some of the newly required skills may be inherent within the next generation(s) of these Recruits. Many of the games, drones, and other everyday technologies that are already or soon to be very common – narrow AI, app development and general programming, and smart devices – will yield a variety of intrinsic skills that Recruits will have prior to entering the Army. Just like we no longer train Soldiers on how to use a computer, games like Fortnite, with no formal relationship with the military, will provide players with militarily-useful skills such as communications, resource management, foraging, force structure management, and fortification and structure building, all while attempting to survive against persistent attack.  Due to these trends, Recruits may come into the Army with fundamental technical skills and baseline military thinking attributes that flatten the learning curve for Initial Entry Training (IET).2

While these new Recruits may have a set of some required skills, there will still be a premium placed on premier skillsets in fields such as AI and machine learning, robotics, big data management, and quantum information sciences. Due to the high demand for these skillsets, the Army will have to compete for talent with private industry, battling them on compensation, benefits, perks, and a less restrictive work environment – limited to no dress code, flexible schedule, and freedom of action. In light of this, the Army may have to consider adjusting or relaxing its current recruitment processes, business practices, and force structuring to ensure it is able to attract and retain expertise. It also may have to reconsider how it adapts and utilizes its civilian workforce to undertake these types of tasks in new and creative ways.

The Recruit of 2050 will need to be engaged much differently than today. Potential Recruits may not want to be contacted by traditional methods3 – phone calls, in person, job fairs – but instead likely will prefer to “meet” digitally first. Recruiters already are seeing this today. In order to improve recruiting efforts, the Army may need to look for Recruits in non-traditional areas such as competitive online gaming. There is an opportunity for the Army to use AI to identify Recruit commonalities and improve its targeted advertisements in the digital realm to entice specific groups who have otherwise been overlooked. The Army is already exploring this avenue of approach through the formation of an eSports team that will engage young potential Recruits and attempt to normalize their view of Soldiers and the Army, making them both more relatable and enticing.4 This presents a broader opportunity to close the chasm that exists between civilians and the military.

The overall dynamic landscape of the future economy, the evolving labor market, and the changing character of future warfare will create an inflection point for the Army to re-evaluate longstanding recruitment strategies, workplace standards, and learning institutions and programs. This will bring about an opportunity for the Army to expand, refine, and realign its collection of skillsets and MOSs, making Soldiers more adapted for future battles, while at the same time challenging the Army to remain prominent in attracting premier talent in a highly competitive environment.

If you enjoyed this extract, please read the comprehensive Learning in 2050 Conference Final Report

… and see our TRADOC 2028 blog post.


1 Prensky, Mark, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

2 Schatz, Sarah, Mad Scientist Conference: Learning in 2050, Georgetown University, 8 August 2018.

3 Davies, Hans, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

4 Garland, Chad, Uncle Sam wants you — to play video games for the US Army, Stars and Stripes, 9 November 2018, https://www.stripes.com/news/uncle-sam-wants-you-to-play-video-games-for-the-us-army-1.555885.

104. Critical Thinking: The Neglected Skill Required to Win Future Conflicts

[Editor’s Note: As addressed in last week’s post, entitled The Human Targeting Solution: An AI Story, the incorporation of Artificial Intelligence (AI) as a warfighting capability has the potential to revolutionize combat, accelerating the future fight to machine speeds.  That said, the advanced algorithms underpinning these AI combat multipliers remain dependent on the accuracy and currency of their data feeds. In the aforementioned post, the protagonist’s challenge in overriding the AI-prescribed optimal (yet flawed) targeting solution illustrates the inherent tension between human critical thinking and the benefits of AI.

Today’s guest blog post, submitted by MAJ Cynthia Dehne, expands upon this theme, addressing human critical thinking as the often neglected, yet essential skill required to successfully integrate and employ emergent technologies while simultaneously understanding their limitations on future battlefields.  Warfare will remain an intrinsically human endeavor, the fusion of deliberate and calculating human intellect with ever more lethal technological advances. ]

The future character of war will be influenced by emerging technologies such as AI, robotics, computing, and synthetic biology. Cutting-edge technologies will become increasingly cheaper and readily available, introducing a wider range of actors on the battlefield. Moreover, nation-state actors are no longer the drivers of cutting-edge technology — militaries are leveraging the private sector who are leading research and development in emergent technologies. Proliferation of these cheap, accessible technologies will allow both peer competitors and non-state actors to wage serious threats in the future operational environment.  Due to the abundance of new players on the battlefield combined with emerging technologies, future conflicts will be won by those who both possess “critical thinking” skills and can integrate technology seamlessly to inform decision-making in war instead of relying on technology to win war. Achieving success in the future eras of accelerated human progress and contested equality will require the U.S. Army to develop Soldiers who are adept at seamlessly employing technology on the battlefield while continuously exercising critical thinking skills.

The Foundation for Critical Thinking defines critical thinking as “the art of analyzing and evaluating thinking with a view to improve it.” 1 Furthermore, they assert that a well cultivated critical thinker can do the following: raise vital questions and problems and formulate them clearly and precisely; gather and assess relevant information, using abstract ideas to interpret it effectively; come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards; think open-mindedly within alternative systems of thought, recognizing and assessing, as needed, their assumptions, implications, and practical consequences; and communicate effectively with others in figuring out solutions to complex problems.2

Many experts in education and psychology argue that critical thinking skills are declining. In 2017, Dr. Stephen Camarata wrote about the emerging crisis in critical thinking and college students’ struggles to tackle real world problem solving. He emphasized the essential need for critical thinking and asserted that “a young adult whose brain has been “wired’ to be innovative, think critically, and problem solve is at a tremendous competitive advantage in today’s increasingly complex and competitive world.”3 Although most government agencies, policy makers, and businesses deem critical thinking important, STEM fields continue to be prioritized. However, if creative thinking skills are not fused with STEM, then there will continue to be a decline in those equipped with well-rounded critical thinking abilities. In 2017, Mark Cuban opined during an interview with Bloomberg TV that the nature of work is changing and the future skill that will be more in-demand will be “creative thinking.” Specifically, he stated “I personally think there’s going to be a greater demand in 10 years for liberal arts majors than there were for programming majors and maybe even engineering.”4 Additionally, Forbes magazine published an article in 2018 declaring that “creativity is the skill of the future.”5

Employing future technologies effectively will be key to winning war, but it is only one aspect. During the Vietnam War, the U.S. relied heavily on technology but were defeated by an enemy who leveraged simple guerilla tactics combined with minimal military technology. Emerging technologies will be vital to inform decision-making, but will not negate battlefield friction. Carl von Clausewitz ascertained that although everything is simple in war, the simplest things become difficult and accumulate and create friction.6 Historically, a lack of information caused friction and uncertainty. However, complexity is a driver of friction in current warfare and will heavily influence future warfare. Complex, high-tech weapon systems will dominate the future battlefield and create added friction. Interdependent systems linking communications and warfighting functions will introduce more friction which will require highly skilled thinkers to navigate.

The newly published U.S. Army in Multi-Domain Operations 2028 concept “describes how Army forces fight across all domains, the electromagnetic spectrum (EMS), and the information environment and at echelon7  to “enable the Joint Force to compete with China and Russia below armed conflict, penetrate and dis-integrate their anti-access and area denial systems and ultimately defeat them in armed conflict and consolidate gains, and then return to competition.” Even with technological advances and intelligence improvement, elements of friction will be present in future wars. Both great armies and asymmetric threats have vulnerabilities, due to small things in terms of friction that morph into larger issues capable of crippling a fighting force. Therefore, success in future war is dependent on military commanders that understand these elements and how to overcome friction. Future technologies must be fused with critical thinking to mitigate friction and achieve strategic success. The U.S. Army must simultaneously emphasize integrating critical thinking in doctrine and exercises when training Soldiers on new technologies.

Soldiers should be creative, innovative thinkers; the Army must foster critically thinking as an essential skill.  The Insight Assessment emphasizes that “weakness in critical thinking skill results in loss of opportunities, of financial resources, of relationships, and even loss of life. There is probably no other attribute more worthy of measure than critical thinking skills.”9 Gaining and maintaining competitive advantage over adversaries in a complex, fluid future operational environment requires Soldiers to be both skilled in technology and experts in critical thinking.

If you enjoyed this post, please also see:

Mr. Chris Taylor’s presentation on Problem Solving in the Wild, from the Mad Scientist Learning in 2050 Conference at Georgetown University, 8-9 August 2018;

and the following Mad Scientist Laboratory blog posts:

TRADOC 2028

Making the Future More Personal: The Oft-Forgotten Human Driver in Future’s Analysis

 MAJ Cynthia Dehne is in the U.S. Army Reserve, assigned to the TRADOC G-2 and has operational experience in Afghanistan, Iraq, Kuwait, and Qatar. She is a graduate of the U.S. Army Command and General Staff College and holds masters degrees in International Relations and in Diplomacy and International Commerce.


1 Paul, Richard, and Elder, Linda. Critical Thinking Concepts and Tools. Dillon Beach, CA: Foundation for Critical Thinking, 2016, p. 2.

2 Paul, R., and Elder, L. Foundation for Critical Thinking. Dillon Beach, CA: Foundation for Critical Thinking, 2016, p. 2.

3 Camarata, Stephen. “The Emerging Crisis in Critical Thinking.” Psychology Today, March 21, 2017. Accessed October 10, 2018, from https://www.psychologytoday.com/us/blog/the-intuitive-parent/201703/the-emerging-crisis-in-critical-thinking.

4 Wile, Rob. “Mark Cuban Says This Will Be the No.1 Job Skill in 10 Years.” Time, February 20, 2017. Accessed October 11, 2018. http://time.com/money/4676298/mark-cuban-best-job-skill/.

5 Powers, Anna. “Creativity Is The Skill Of The Future.” Forbes, April 30, 2018. Accessed October 14, 2018. https://www.forbes.com/sites/annapowers/2018/04/30/creativity-is-the-skill-of-the-future/#3dd533f04fd4.

6 Clausewitz, Carl von, Michael Howard, Peter Paret, and Bernard Brodie. On War. Princeton, N.J.: Princeton University Press, 1984, p. 119.

7 U.S. Army. The U.S. Army in Multi-Domain Operations 2028, Department of the Army. TRADOC Pamphlet 525-3-1, December 6, 2018, p. 5.

8 U.S. Army. The U.S. Army in Multi-Domain Operations 2028, Department of the Army. TRADOC Pamphlet 525-3-1, December 6, 2018, p. 15.

9 Insight Assessment. “Risks Associated with Weak Critical Thinkers.” Insight Assessment, 2018. Accessed October 22, 2018, from https://www.insightassessment.com/Uses/Risks-Associated-with-Weak-Critical-Thinkers.

94. The Wide Range of Competition

[Editor’s Note: Mad Scientist tracks convergence trends that are changing the character of future warfare. The democratization of technologies and the global proliferation of information is one of these trends that has expanded the arena of high-end threat capabilities beyond nation-states to now include non-state actors and super-empowered individuals. Today’s post illustrates how the democratization of one such capability,  biotechnology, affects the Future Operational Environment.]

As discussed during the Mad Scientist Bio Convergence and Soldier 2050 Conference, co-hosted with SRI International at Menlo Park, California last Spring, the broad advancement of biotechnologies will provide wide access to dangerous and powerful bioweapons and human enhancement. The low cost and low expertise entry point into gene editing, human performance enhancement, and bioweapon production has spurred a string of new explorations into this arena by countries with large defense budgets (e.g., China), non-state criminal and terrorist organizations (e.g., ISIS), and even super-empowered individuals willing to subject their bodies to experimental and risky treatments or augmentations.

China has invested billions of dollars into biotechnology – including in several U.S. biotechnology firms – and plans on focusing on their own bio revolution. Gene editing is one of the areas where China has sought to leapfrog the United States through ambitious Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) projects, editing the genes of 86 individuals, while the United States is just now approaching human trials. Additionally, Elsa Kania, an expert on Chinese emerging technology from the Center for the New American Security (CNAS), noted that China is now seeking to build its own innovation base rather than focusing on intellectual property theft and technology transfers.

Listen to Ms. Kania’s discussion addressing technological priorities and how they overlay on the Chinese government’s strategic objectives in the  China’s Quest for Enhanced Military Technology podcast, hosted by our colleagues at Modern War Institute.

Non-state actors – mainly terrorist organizations – have focused more on weaponizing biotechnology. A personal laptop belonging to ISIS that was captured in Syria, was found to contain lessons on making bubonic plague bombs and the employment of various weapons of mass destruction (WMDs). The possession of this dangerous information by the most notorious terrorist organization across the globe is a testament to the worldwide proliferation of information. This challenge of weaponized biotechnology is exacerbated by the relative ease of obtaining material to carry out such attacks.

Watch Dr. Gary Ackerman‘s presentation on Non-State Actors and their Uses of Technology from the Mad Scientist Artificial Intelligence, Robotics, and Autonomy: Visioning Mult-Domain Battle in 2030-2050 Conference at Georgetown University, 7-8 March 2017.

There is a growing community of individual biohackers and “do it yourselfers” (DIYers), super-empowered individuals pushing the boundaries of DNA editing, implants, embedded technologies (embeds), and unapproved chemical and biological injections. One of the most prominent biohackers, Josiah Zayner, a former NASA employee with a biophysics PhD, who livestreamed his self-injection of CRISPR and has even started a company selling DIY CRISPR kits ranging from several hundred to over 1000 dollars, effectively enabling biohackers to cheaply change their physiology, alter their appearance, and go beyond human biological norms. None of these treatments and augmentations are approved by regulatory agencies and DIYers run the serious risk of harming themselves or unleashing destructive and disruptive biological agents upon an unwitting population.

Read our Mad Scientist Laboratory blog post on the Emergent Threat Posed by Super-Empowered Individuals .

Biotechnology is just one example of how potentially game changing capabilities that were once only within the purview of our strategic competitors will be democratized via the global proliferation of information.  In the Future Operational Environment, we can also expect to see artificial intelligence, multi-domain swarming, and space capabilities in the hands of non-state and super-empowered individuals.

92. Ground Warfare in 2050: How It Might Look

[Editor’s Note: Mad Scientist Laboratory is pleased to review proclaimed Mad Scientist Dr. Alexander Kott’s paper, Ground Warfare in 2050: How It Might Look, published by the US Army Research Laboratory in August 2018. This paper offers readers with a technological forecast of autonomous intelligent agents and robots and their potential for employment on future battlefields in the year 2050. In this post, Mad Scientist reviews Dr. Kott’s conclusions and provides links to our previously published posts that support his findings.]

In his paper, Dr. Kott addresses two major trends (currently under way) that will continue to affect combat operations for the foreseeable future. They are:

•  The employment of small aerial drones for Intelligence, Surveillance, and Reconnaissance (ISR) will continue, making concealment difficult and eliminating distance from opposing forces as a means of counter-detection. This will require the development and use of decoy capabilities (also intelligent robotic devices). This counter-reconnaissance fight will feature prominently on future battlefields between autonomous sensors and countermeasures – “a robot-on-robot affair.”

See our related discussions regarding Concealment in the Fundamental Questions Affecting Army Modernization post and Finders vs Hiders in our Timeless Competitions post.

  The continued proliferation of intelligent munitions, operating at greater distances, collaborating in teams to seek out and destroy designated targets, and able to defeat armored and other hardened targets, as well as defiladed and entrenched targets.

See our descriptions of the future recon / strike complex in our Advanced Engagement Battlespace and the “Hyperactive Battlefield” post, and Robotics and Swarms / Semi Autonomous capabilities in our Potential Game Changers post.

These two trends will, in turn, drive the following forecasted developments:

  Increasing reliance on unmanned systems, “with humans becoming a minority within the overall force, being further dispersed across the battlefield.”

See Mr. Jeff Becker’s post on The Multi-Domain “Dragoon” Squad: A Hyper-enabled Combat System, and Mr. Mike Matson’s Demons in the Tall Grass, both of which envision future tactical units employing greater numbers of autonomous combat systems; as well as Mr. Sam Bendett’s post on Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward, addressing the contemporary hurdles that one of our strategic competitors must address in operationalizing Unmanned Ground Vehicles.

•  Intelligent munitions will be neutralized “primarily by missiles and only secondarily by armor and entrenchments. Specialized autonomous protection vehicles will be required that will use their extensive load of antimissiles to defeat the incoming intelligent munitions.”

See our discussion of what warfare at machine-speed looks like in our Advanced Engagement Battlespace and the “Hyperactive Battlefield”.

Source: Fausto De Martini / Kill Command

  Forces will exploit “very complex terrain, such as dense forest and urban environments” for cover and concealment, requiring the development of highly mobile “ground robots with legs and limbs,” able to negotiate this congested landscape.

 

See our Megacities: Future Challenges and Responses and Integrated Sensors: The Critical Element in Future Complex Environment Warfare posts that address future complex operational environments.

Source: www.defenceimages.mod.uk

  The proliferation of autonomous combat systems on the battlefield will generate an additional required capability — “a significant number of specialized robotic vehicles that will serve as mobile power generation plants and charging stations.”

See our discussion of future Power capabilities on our Potential Game Changers handout.

 “To gain protection from intelligent munitions, extended subterranean tunnels and facilities will become important. This in turn will necessitate the tunnel-digging robotic machines, suitably equipped for battlefield mobility.”

See our discussion of Multi-Domain Swarming in our Black Swans and Pink Flamingos post.

  All of these autonomous, yet simultaneously integrated and networked battlefield systems will be vulnerable to Cyber-Electromagnetic Activities (CEMA). Consequently, the battle within the Cyber domain will “be fought largely by various autonomous cyber agents that will attack, defend, and manage the overall network of exceptional complexity and dynamics.”

See MAJ Chris Telley’s post addressing Artificial Intelligence (AI) as an Information Operations tool in his Influence at Machine Speed: The Coming of AI-Powered Propaganda.

 The “high volume and velocity of information produced and demanded by the robot-intensive force” will require an increasingly autonomous Command and Control (C2) system, with humans increasingly being on, rather than in, the loop.

See Mr. Ian Sullivan’s discussion of AI vs. AI and how the decisive edge accrues to the combatant with more autonomous decision-action concurrency in his Lessons Learned in Assessing the Operational Environment post.

If you enjoyed reading this post, please watch Dr. Alexander Kott’s presentation, “The Network is the Robot,” from the Mad Scientist Robotics, Artificial Intelligence, and Autonomy: Visioning Multi-Domain Warfare in 2030-2050 Conference, co-sponsored by the Georgia Tech Research Institute (GTRI), in Atlanta, Georgia, 7-8 March 2017.

Dr. Alexander Kott serves as the ARL’s Chief Scientist. In this role he provides leadership in development of ARL technical strategy, maintaining technical quality of ARL research, and representing ARL to external technical community. He published over 80 technical papers and served as the initiator, co-author and primary editor of over ten books, including most recently Cyber Defense and Situational Awareness (2015) and Cyber Security of SCADA and other Industrial Control Systems (2016), and the forthcoming Cyber Resilience of Systems and Networks (2019).