209. Takeaways from the Mad Scientist Global Perspectives in the Operational Environment Virtual Conference

[Editor’s Note: Mad Scientist would like to thank everyone who participated in the Mad Scientist Global Perspectives in the Operational Environment Virtual Conference on 29 January 2020 — from our co-hosts at the Army Futures Command (AFC) and the U.S. Army Training and Doctrine Command (TRADOC) International Army Programs Directorate (IAPD); to TRADOC’s Foreign Liaison Officer community and the U.S. Army liaison officers overseas who helped us identify and coordinate with international subject matter experts; to each of the briefers who presented their respective nations’ insightful perspectives on a diverse array of topics affecting the Operational Environment (OE); to our audience who attended virtually via the TRADOC Watch page’s interactive chat room and asked penetrating questions that significantly helped broaden our aperture on the OE and the changing character of warfare. Today’s post documents the key takeaways Mad Scientist captured from the conference — Enjoy!]

Our first Mad Scientist Virtual Conference focused on global perspectives of the operational environment. While our presenters represented only a small part of the globe, these countries do account for a significant percentage of global defense expenditures and have international defense related engagements and responsibilities.

As expected, we heard many similarities between the Operational Environment described by the United States Army and the presenters from France, the Netherlands, Germany, the UK, Canada, and our NATO Panel. We also identified some interesting nuances in how potential challenges and threats are described and which ones are emphasized.

Here are a few takeaways from the conference — if they pique your interest, check out this conference’s Mad Scientist APAN (All Partners Access Network) page for the associated slides and video presentations (to be posted)!

1) Interoperability is key but increasingly difficult with uneven modernization and different policies for emerging technologies. Each country emphasized the future of coalition operations, but they also described interoperability in different ways. This ranged from the classic definition of interoperability of radios, firing data, and common operating pictures to tactical integration with a country’s units inside another country’s formations. Emerging technologies like Artificial Intelligence (AI) add another level of difficulty to interoperability. Each country will develop their own AI policies outlining legal levels of autonomy and coding standards for identifying biases and ensuring transparency. How these different AI capabilities will interact in fast pace machine-to-machine collaboration is not clear.

2) Asymmetry of Ethics is a Pink Flamingo (known challenge without program to address it) Each country mentioned the developing and differing standards for AI. It was commonly understood that competition and conflict is speeding up but there is no clear consensus on what the tactical and operational advantages could be for an adversary that chooses to integrate AI in a more permissive manner than accepted by western armed forces. Also, lagging policy, regulations, and laws in the West create a possibility for overmatch by these potential adversaries. This is an area where experimentation with differing AI policies and approaches might identify the risks of strategic and technological surprise.

3) Weaponization of information to attack societies and their armed forces is the #1 described threat and it wasn’t even close. This is understandable as our European allies are closer geographically to the persistent Russian competition activities. The emphasis of this threat differs from the United States Army where we have focused and experimented around the idea of a return to high intensity conflict with a near–peer competitor. While each presenter discussed ongoing organizational, doctrinal, and capability changes to address the information environment, it was widely understood that this is a military problem without a military solution.

4) Climate change and mass migration are the conflict drivers of most concern. Human migration as a consequence of climate change will create new security concerns for impacted countries as well as neighboring regions and, due to European geography, seemed to be of greater concern than our focus on great power conflict.

5) Virtual training is increasingly important for Armies with decreasing defense budgets and the demand to improve training proficiencies. As realistic synthetic training becomes a reality, we can more readily transition troops trained for a host of contingencies in the virtual world to the rigors of diverse operations in the physical world. This Synthetic Training Environment may also facilitate Joint and inter-coalition training of geographically-disparate assets and formations, with the concomitant issue of interoperability to conduct combined training events in the future.

6) As society evolves and changes, so does warfare. Our presenters described several pressures on their societies that are not part of or are only tangentially mentioned in the U.S. Army’s operational narrative:

    • Declining demographics in western nations pose potential recruitment and reconstitution challenges.
    • Nationalism is rising and could result in an erosion of rules-based international order. If these systems break down, smaller nations will be challenged.
    • Authoritarian systems are rising and exporting technology to support other authoritarian governments. At the same time democratic systems are weakening.
    • Aging populations and slow growth economies are seeing a global shift of economic strength from the West to the East.

In the future, we will host another global perspectives conference that will include presenters from Asia and South America to further broaden our perspectives and identify potential blind spots from these regions. For now, we encourage the international community to continue to share their ideas by taking our Global Perspectives Survey. Preliminary findings were presented at this conference. Stay tuned to the Mad Scientist Laboratory as we will publish the results of this survey in a series of assessments, starting in March…

… don’t forget to enter The Operational Environment in 2035 Mad Scientist Writing Contest and share your unique insights on the future of warfighting — click here to learn more (deadline for submission is 1 March 2020!)…

… and a quick reminder that the U.S. Army Mission Command Battle Lab Futures Branch is also conducting its Command Post of the Future – 2040-2050 Writing Contest. Click here to learn more about suggested contest writing prompts, rules, and how to submit your entry — deadline for their writing contest is also 1 March 2020!

203. “The Convergence” – An Army Mad Scientist Podcast

[Editor’s Note:  Mad Scientist Laboratory is pleased to announce the premier episode of “The Convergence” podcast.  Please note that this podcast and several of the embedded links below are best accessed via a non-DoD network — Enjoy!]

The Army Mad Scientist Initiative is launching our very own podcast — “The Convergence.” After several years of successfully partnering on podcasts with West Point’s Modern War Institute, we were inspired to found our own with a distinct focus on divergent viewpoints, a challenging of assumptions, and insights from thought leaders and subject matter experts.

This podcast is another component of our wider effort to reach out to diverse groups and really open the aperture of our analysis and understanding of the operational environment. The purpose of “The Convergence” is to explore technological, economic, and societal trends that disrupt the operational environment and to get a diversity of opinions on the character of warfare. Like the Mad Scientist Laboratory and our conferences, the podcast will feature disruptive thinkers and world-class experts to expand the thinking and analysis of our Community of Action.

Dr. Sean McFate / Source: HarperCollins Publishers, photo by Will O’Leary

Our first episode features Dr. Sean McFate, foreign policy expert, author, and novelist. He is a Senior Fellow at the Atlantic Council, a Washington DC think tank, and a professor of strategy at the National Defense University and Georgetown University’s School of Foreign Service. Additionally, he serves as an Advisor to Oxford University’s Centre for Technology and Global Affairs.

Source: HarperCollins Publishers

Dr. McFate’s newest book is The New Rules of War: Victory in the Age of Durable Disorder, which was picked by The Economist as one of their best books of 2019. It has been called “The Freakonomics of modern warfare.” In our podcast, Dr. McFate provides his opinions on the changing character of warfare, the rise of private military contractors, information warfare, and the effects these trends will have on the operational environment.

Dr. McFate’s career began as a paratrooper and officer in the U.S. Army’s 82nd Airborne Division, where he graduated from elite training programs such as the Jungle Warfare School in Panama and was also a Jump Master. He then became a private military contractor where, among his many experiences, he dealt with warlords in the jungle, raised armies for U.S. interests, rode with armed groups in the Sahara, conducted strategic reconnaissance for the extractive industry, transacted arms deals in Eastern Europe, and helped prevent an impending genocide in east Africa.

Dr. McFate holds a BA from Brown University, MPP from the Harvard Kennedy School of Government, and a Ph.D. in international relations from the London School of Economics and Political Science (LSE). He lives in Washington, DC. For more information, see www.seanmcfate.com.

Click here to listen to Dr. McFate in our premier podcast episode of “The Convergence,”…

… stay tuned to the Mad Scientist Laboratory as we will be releasing a new podcast every other week with exciting and impactful guests,…

… listen to the following MWI podcasts with these Mad Scientists:

… and don’t forget to take a few minutes to complete our short, on-line Global Perspectives Conference Survey. Stay tuned to the Mad Scientist Laboratory to learn what insights we glean from this survey regarding potential OE trends, challenges, technologies, and disruptors.

 

201. Brains and Brews

The U.S. Army’s Mad Scientist Initiative recently partnered with the Defense Entrepreneurs Forum (DEF) – Hampton Roads Agora (i.e., Greek for “a gathering place or assembly” and “the center of city life”) to have our first ever “Brains and Brews” event. This was a fantastic opportunity to meet with local entrepreneurs in the Defense Community at a local craft brewery in Norfolk, Virginia, to network and crowdsource thoughts on the Operational Environment (OE). Crowdsourcing is one of the ways the Mad Scientist Initiative envisions the future and this exercise let us connect with a diverse array of innovative individuals as well! Participants ranged from business developers, researchers, veterans, active-duty military, milspouses, students, and entrepreneurs.

This exercise was part of the Mad Scientist Initiative’s ongoing efforts to reach out to different communities to broaden our perspectives on the OE. This month we will host our first ever Global Perspectives of the Operational Environment event where we will have speakers from partner nations presenting their views on the OE. In November, we launched another crowdsourcing writing contest to obtain your insights on the future OE. Additionally, we’ll be engaging with The College of William & Mary in Virginia‘s fellows from the Project on International Peace and Security (PIPS) Program.

Amongst the fine libations quaffed and many engaging social interactions, we posed the following three questions with overlapping relevance to both the Mad Scientist Initiative and the Defense Entrepreneurs Forum. Here’s what our local brains had to say!

1) What technologies have the potential to revolutionize warfare in the Future Operational Environment (FOE)?

– Internet of Things – Your fridge will give you and your location away.

– Unmanned Systems – This gets discussed frequently inside the Army and in the Department of Defense as a whole, but it’s a hot button issue in the civilian sector as well.

– Artificial Intelligence (Prediction) – There are a myriad of machinations where AI and prediction can come into play for the military and commercial sector.

– Non-flammable Lithium Ion Batteries – How much does this change energy storage and distribution on the battlefield?

– Hypersonics – A game changer on the battlefield; perhaps in personal travel as well.

Automated operators – Automation or autonomy? In what functions? This is a thread worth pulling.

– Culture Change – The participant here notated that technology means very little without the culture changing to adapt to or in spite of it.

– 3-D Printing – Incredible implications for sustainment and logistics – including ammo and weaponry parts.

– Graphene – Consistently mentioned as a critical component in future tech and manufacturing.

– Alternative Power Sources – This can range from solar to ultra-high capacity batteries to mobile nuclear power.

– Cubesats and Commercial Sensing – Potential game changer regarding the democratization of space (in both presence and utility).

– Gravity Wave Sensors – With the proliferation of orbital sensors, the only place left to hide is beneath the sea, right? Not so – gravity wave sensors have the potential to expose assets beneath the sea, too!

– Bio Sensing – More specifically mentioned was the ability to measure and improve soldier performance and health.

– AR/VR – Augmented Reality and Virtual Reality have application to information sharing, training, communication, force design, and more.

– Service Member Resiliency – There are a multitude of technologies involved here (e.g., AR/VR, AI, real-time diagnostics) with the potential for psychological applications.

– Nanotech Advancements – Miniaturized everything!

– Quantum Computing/Sensing – Enormous amounts of capital and effort being poured into this technology area right now, globally.

– Lightsabers and Sharks with laser beams attached to their heads – Clearly the most groundbreaking technology brought up and totally doable! (We called an Uber for this individual!)

2) How can businesses and venture keep pace with rapid technological advancement?

More streamlined processes like SOFWERX. Rapid system integration that approves and gets data out to the warfighter quickly.

– More Small Business Innovation Research (SBIR) / Other Transaction Authority (OTA) with Spiral Development (usually Government is Outpaced by Business).

– Target private sector and adapt to Government rather than seeking Government customer first.

– Be willing to pay industry bigger money for industry quality.

– Listen to what the customer is saying.

– More tech transfer to encourage innovation.

– Acquisition reform.

– Look to completely different industries for ideas.

– More of these events!

3) How can the Army enable businesses (start-ups, established, larger, smaller, etc.) to help us (the Army)?

– In the field testing/inventing.

– Easier transition from tech development to programs-of-record.

– Change flag officer incentive structure from one that incentivizes adherence to schedules to one that incentivizes operational readiness.

– Pair with Air Force to capitalize on AFWERX initiatives.

– Embrace non-traditional contracts that provide flexibility (i.e., SBIR Phase III, OTA, XTechSearch, etc.). Know your target – marketing!!

– Provide clear requirements.

– Learn from AFWERX’s mistakes/missteps to do it bigger/better.

– Leverage venture capital funding (outside capital).

– Kill the bureaucracy.

– The Department of Defense needs to sell their mission; is this “Cold War II” or not?

– Use excess ceiling on existing IT contracts for innovation and trials.

Some of the responses we received were helpful in confirming that we were thinking along the same lines as folks involved in designing, developing, and using these technologies and utilizing various contract vehicles, while other insights helped us challenge our assumptions and thinking.

This first ever “Brains and Brews” event was a fantastic success and the Mad Scientist Initiative is incredibly grateful to our partners for this event at the DEF and to all the insightful individuals who came out to share brains and brews with us. Be on the lookout for one of these events coming to your city when MadSci hits the road this year!

What are your takeaways from our questions and responses? What do you have to add? Did these add to your own thinking and planning on these issues?

If you enjoyed this post, please see:

… and take a few minutes to complete our short, on-line Global Perspectives Conference Survey. Stay tuned to the Mad Scientist Laboratory to learn what insights we glean from this survey regarding potential OE trends, challenges, technologies, and disruptors.

200. Broadening our Aperture on the Operational Environment

[Editor’s Note: Like many of our readers, Mad Scientist Laboratory is starting off the new year with a bit of introspection…. As we continue to focus on the Operational Environment (OE) and the changing character of warfare, we find ourselves wondering if we aren’t getting a little too comfortable and complacent with what we think we know and understand. Are we falling victim to our own confirmation biases, risking total surprise by something lurking just over the horizon, beyond our line of sight? To mitigate this, Mad Scientist has resolved to broaden our aperture on the OE this year. Today’s post describes several near term initiatives that will help expand our understanding of the full extent of OE possibilities to preclude our being sucker-punched. Help Mad Scientist by participating — share your ideas, pass on these opportunities to your colleagues, and actively engage in these events and activities! Happy 2020!]

Global Perspectives in the Operational Environment
The U.S. Army’s Mad Scientist Initiative will co-host our first conference this year with the Army Futures Command (AFC) and the U.S. Army Training and Doctrine Command (TRADOC) International Army Programs Directorate (IAPD) on 29 January 2020. Leveraging TRADOC’s Foreign Liaison Officer community to coordinate presentations by subject matter experts from their respective nations, this virtual, on-line conference will provide international perspectives on a diverse array of topics affecting the OE. Mark your calendar now to livestream this conference at www.tradoc.army.mil/watch, starting at 0830 EST (note that this link is not live until the conference).

Global Perspectives Conference Survey
In conjunction with the aforementioned conference, Mad Scientist is conducting an on-line survey querying your thoughts about the OE. We want your input, so take ~5 minutes to complete our short survey here. We will brief back our interim findings during the conference, then publish a blog post documenting the comprehensive survey results in February.  Stay tuned to the Mad Scientist Laboratory to learn what insights we will have gleaned from the international community regarding potential OE trends, challenges, technologies, and disruptors.

Project on International Peace and Security (PIPS)
Seeking insights into a younger demographic’s perspectives on the OE, Mad Scientist will livestream presentations by fellows from The College of William and Mary in Virginia‘s PIPS Program on 21 February 2020. This program is designed to bridge the gap between the academic and foreign policy communities in the area of undergraduate education. PIPS research fellows identify emerging international security issues and develop original policy recommendations to address those challenges. Undergraduate fellows have the chance to work with practitioners in the military and intelligence communities, and present their work to policy officials and scholars at a year-end symposium in Washington, DC. Topic areas presented at the Mad Scientist livestream event will include weaponized information, artificial intelligence, and bio convergence — representing a year’s worth of research by each of the fellows.

The Operational Environment in 2035 Mad Scientist Writing Contest Crowdsourcing is an effective tool for harvesting ideas, thoughts, and concepts from a wide variety of interested individuals, helping to diversify thought and challenge conventional assumptions. Mad Scientist’s latest writing contest seeks to harness diverse intellects to mine new knowledge and imagine the possibilities of the OE in 2035.  This contest is open to everyone around the globe. We are seeking submissions of no more than 2000 words in length — nonfiction only, please!  Topics of interest include:

    • What new skills and talent management techniques will be required by the Army in 2035?
    • What does the information landscape look like in 2035? Infrastructure? Computing? Communication? Media?
    • What can we anticipate in the Competition phase (below armed Conflict) and how do we prepare future Soldiers and Leaders for these challenges?
    • What does strategic, operational, and tactical (relative) surprise look like in 2035?
    • What does Multi-Domain Command and Control look like on the battlefield in 2035?
    • How do we prepare for the second move in a future conflict?
    • Which past battle or conflict best represents the challenges we face in the future and why?
    • What technology or convergence of technologies could provide a U.S. advantage by 2050?

For additional information on this writing contest, click here. Deadline for submission is 1 March 2020, so start outlining your entry today!

By participating in each of these events, you will enhance the Mad Scientist Initiative’s understanding of the OE and help the U.S. Army prepare for an extended array of future possibilities.

 

197. The Arctic: An Emergent Zone of Great Power Competition

[Editor’s Note: Mad Scientist Laboratory is pleased to present in today’s post two articles excerpted from last month’s OE Watch addressing BNU-1, China’s first observation satellite providing coverage of the Arctic and Antarctic regions, and their high latitude (i.e., polar) equipment. Our near-peer competitors — China and Russia — understand the geo-strategic ramifications of global climate change and are positioning themselves for the coming race to tap the vast (and as of yet relatively unexploited) energy and mineral wealth of the Arctic. Similar signals, like Russia’s mini-subs planting a Russian flag on the seabed beneath the North Pole and deploying their first floating nuclear power plant to the Arctic coast are harbingers that the Arctic is an emergent zone of great power competition in the Operational Environment’s (OE’s) Era of Accelerated Human Progress.]

China continues to show interest and invest time, funding, and research in the polar regions. According to the following passage from Xinhuanet, China has her first polar satellite. The article reports that the BNU-1 has successfully obtained data on the polar regions and is conducting full-coverage observation of the Antarctic and the Arctic every day. Developed by the Beijing Normal University and Shenzhen Aerospace Dongfanghong Development Ltd., the satellite will promote research of the Earth’s polar regions and support China’s upcoming 36th Antarctic expedition by enhancing its navigation capability in the polar ice zone.

Note that the Soviet Union/Russia launched a series of Molniya military communications satellites over the polar regions from 1965 to 2004. They used a high elliptical orbit to attain a long dwell time over these high latitude areas. These orbits are suited for Arctic and Antarctic communications similar to the geostationary satellites used over the equator. Russia now uses the updated Meridian satellite series over the polar regions. (Les Grau, OE Watch analyst note)

China’s first polar observation satellite supports polar research,” Xinhua, 9 October 2019.

China’s first polar observation satellite, the BNU-1, has successfully obtained data on polar regions, according to the satellite’s chief scientist.

After nearly one month of in-orbit testing, the satellite is working normally and conducting full-coverage observation of the Antarctic and the Arctic every day, Cheng Xiao, the chief scientist, said at the China Symposium on Polar Science 2019. Cheng said the satellite data connection system allows scientists around the world to obtain polar observation data acquired by the satellite. Registered users can also propose new observation requirements.

The satellite continuously monitored a gigantic iceberg breaking away from the Amery Ice Shelf in east Antarctica in September, helping limit its impact on submerged buoys and investigation ships in the surrounding area. Cheng said the satellite will help reduce China’s reliance on foreign satellites for polar observation data. “The satellite’s spatial resolution reaches 75 meters, which offers more detailed information on the ice cover and the sea ice…”

The satellite will also support China’s upcoming 36th Antarctic expedition by enhancing its navigation capability in the polar ice zone. Developed by the Beijing Normal University and Shenzhen Aerospace Dongfanghong Development Ltd., the satellite weighs 16 kg and is equipped with two cameras and one receiver. It has great significance in promoting the research of Polar Regions and global climate change.

China’s first ice breaker, Xue Long [Snow Dragon] doubles as a polar research vessel and has spent most of her time in the Arctic and Antarctic including over 20 annual Chinese Antarctic expeditions. The vessel was built in Soviet Ukraine shipyards in 1993. As the accompanying passage below from Xinhuanet discusses, Xue Long 2, built in China, will probably make the Antarctic voyage this year. China maintains the Taishan Station in Antarctica. As discussed in the following passage from Xinhuanet, the development of the Nanji 2 all-terrain amphibious polar vehicle will support the station and other polar research. (Les Grau, OE Watch analyst note)

China’s New All-Terrain Vehicle to Join 36th Antarctic Expedition, Xinhuanet.com, 9 October 2019.

China’s self-developed all-terrain vehicle will set off to the South Pole, contributing to the country’s upcoming 36th Antarctic expedition.

The vehicle Nanji 2 (Antarctica No. 2), painted in red and yellow, was manufactured by Guizhou Jonyang Kinetics Co., Ltd. It was recently delivered to the Polar Research Institute of China in Shanghai.

Compared to previous generations, the new amphibious vehicle is equipped with an upgraded running system. It also applies new material and technologies to improve low-temperature performance and wear resistance, allowing it to work at minus 41 degrees Celsius. In addition, the vehicle has increased comfort for researchers with air conditioning and ventilation systems.

Its control system and other core components were all developed in China, said Lyu Qian, general manager of the manufacturer. The vehicle is multifunctional with strong transport capacity and good adaptability to complex terrain. It can undertake various missions, including personnel and materials transportation, sea, ice and land explorations, as well as search and rescue operations.

China is continuing to develop capabilities and acquire experience operating in the polar regions, making them formidable competitors in this space.

If you enjoyed this post, please also see:

Our Arctic—The World’s Pink Flamingo and Black Swan Bird Sanctuary, by Mr. Frank Prautzsch.

Climate Change Laid Bare: Why We Need To Act Now by Ms. Sage Miller, as well as her “The Implications of Climate Change for the U.S. Military” Strategic Multilayer Assessment (SMA) Speaker Session presentation

The OE Watch, November issue, by the TRADOC G-2’s Foreign Military Studies Office (FMSO), featuring these two stories, in addition to “China Expands Gaofen Earth Observing Satellite Constellation” and other articles of interest.

 

195. The Operational Environment in 2035: Mad Scientist Writing Contest

[Editor’s Note: Crowdsourcing is an effective tool for harvesting ideas, thoughts, and concepts from a wide variety of interested individuals, helping to diversify thought and challenge conventional assumptions. Mad Scientist is pleased to announce the first of our FY20 writing contests — Read on!]

The Army’s Mad Scientist Initiative wants to harness your diverse intellects to mine new knowledge and imagine the possibilities of the Operational Environment in 2035.

Deadline for submission is 1 March 2020.

GUIDELINES

Nonfiction only.

• Submissions must be unclassified, unpublished, and cleared by your public affairs office and operations security managers (USG & as applicable).

• Maximum 2000 words/12 point font.

• Team or individual entries welcome.

TOPICS OF INTEREST

• What new skills and talent management techniques will be required by the Army in 2035?

• What does the information landscape look like in 2035? Infrastructure? Computing? Communication? Media?

• What can we anticipate in the Competition phase (below armed Conflict) and how do we prepare future Soldiers and Leaders for these challenges?

• What does strategic, operational, and tactical (relative) surprise look like in 2035?

• What does Multi-Domain Command and Control look like on the battlefield in 2035?

• How do we prepare for the second move in a future conflict?

• Which past battle or conflict best represents the challenges we face in the future and why?

• What technology or convergence of technologies could provide a U.S. advantage by 2050?

The author of the winning submission will be invited to present at a Mad Scientist event in 2020. Select semi-finalists will be published on the Mad Scientist Laboratory blog site or on one of our partner sites.

NOTE: NO Department of Defense affiliation is required for submission. This Community is open to EVERYONEHelp shape the Army’s view of future Multi-Domain Operations and perspectives on the future OE.

Looking for ideas? Start here at the Mad Scientist Laboratory using the SEARCH function (found on the right hand side of this screen, or down below this post if viewing it on your PED). Enter a keyword, then review the associated blog posts for inspiration.

Send your submissions and questions to:
usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil

194. CRISPR Convergence

[Editor’s Note: In today’s post, returning guest blogger and proclaimed Mad Scientist Howard R. Simkin addresses the ramifications of democratized genomic engineering in the Operational Environment (OE). Comparing the genetic engineering tool Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to the internet in terms of its revolutionary potential, Mr. Simkin examines three scenarios where this capability could be harnessed for nefarious purposes. (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

The Future is already here. It’s just not very evenly distributed.” – William Gibson, science fiction author who coined the word cyberspace in 1984.1

Purpose:

This paper briefly examines the convergence of trends in technology as they affect CRISPR2 technology through the lens of three possible users of the technology – the Democratic People’s Republic of Korea (DPRK), a future Aum Shinrikyo3 -like entity, and a Unabomber-like4 super-empowered individual.

What does the Future Operating Environment (FOE) tell us?

Figure 1. Exponential Convergence – Five converging technologies that will drive the exponential development of increasingly capable Artificial Intelligence (AI).

A survey of the two most commonly available, authoritative sources on the FOE points to an ever-increasing rate of technological change, the growth of mega-cities, and the diffusion of cutting-edge technology into the hands of both state and non-state actors as well as super-empowered individuals.5 Over the next ten to twenty years, the world will experience dramatic changes in technology. Governments and businesses are investing billions of dollars into research programs and tech startups associated with all five of the technological fields shown in Figure 1.6

The convergence of these technologies, impelled by increasingly capable Artificial Intelligence (AI) will drive change that will approximate that of Moore’s Law – doubling in power while halving in cost every two years. Our adversaries – states, non-state actors, and super-empowered individuals – will undoubtedly seek to harness these trends to accomplish their ends. To examine the many implications of these changes is beyond the scope of this paper. Instead, this post will concentrate on one specific technology – CRISPR.

Background

CRISPR may be the next Internet – in terms of the impact it will have on society. CRISPR only became approved for use on humans in 2015. However, its applications to gene editing have already become significant.7 As the web magazine Futurism observed, “As the accuracy, efficiency, and cost-effectiveness of the system became more and more apparent, researchers and pharmaceutical companies jumped on the technique, modifying it, improving it, and testing it on different genetic issues.”8 This tool could lead to gene editing techniques that could strengthen disease resistance and improve strength and mental abilities. It could also lead to designer diseases for humans, plants, and animals.

What was formerly only available at the cost of billions of dollars and years of research can now be achieved by a single individual at a nominal cost. The original human genome project took ten years, employed a large research team with state-of-the-art laboratories, and cost a billion dollars. Now, you can get your complete genome sequenced for about $10,000 in about six weeks. If you just want specific information, the cost is as little as $100.

To the point, in 2017 Canadian researchers at the University of Alberta revived an extinct horsepox virus using synthetic DNA strands ordered for about $100,000. While not a trivial effort, the research lead Dr. David Evans admitted that he undertook the project to prove that it could be done. And to prove that it wouldn’t necessarily require a lot of time, money, and even biomedical skill or knowledge. His effort opened up new possibilities for researchers looking to make better vaccines, but also those looking to use these viruses as bioweapons9 including smallpox.10

Questions

This causes a number of questions to spring to mind. What sort of enemy would use CRISPR to resurrect or design biological weapons against humans, animals, or crops? Can we prevent its use? How do we recover once it is used?

What sort of enemy would use CRISPR to resurrect or design biological weapons against humans, animals, or crops?

The sort of enemy who would employ CRISPR to design bioweapons fits one of three profiles, each of which has their own present day or historical example. The first is a nation state – the Democratic People’s Republic of Korea (DPRK). The second is an Aum Shinrikyo-like non-state actor. The third is a Unabomber-like super-empowered individual. The DPRK is a clear and present danger. The other two historical examples are not evident yet, but the potential for them to spring to life is there.

The DPRK is extremely xenophobic. Their culture views North Koreans as the pinnacle of human development. All other cultures and races are, by definition inferior. In that sense, they are culturally akin to pre-World War II Japan or Germany. They are also materialists, in the sense that they ascribe a spiritual dimension to human affairs. With such underlying beliefs, the end justifies the means when dealing with inferiors.11 It doesn’t take much imagination to see that the DPRK would have no moral or ethical problems with creating an asymptomatic, race-specific, highly contagious and deadly disease.

Kasumigaseki Station, one of the many stations affected during the Tokyo subway sarin attack by Aum Shinrikyo / Source: Wikimedia Commons

The emergence of an Aum Shinrikyo-like organization in the near future is not beyond the realm of the possible. The original organization employed Sarin in the Tokyo subway in 1995 but it also conducted extensive research and testing into bioweapons to include anthrax, botulinum toxin, and the Ebola virus in 1992 – 1995.12 This was possible because the Aum had recruited a number of highly capable scientists. At its inception, Aum had been indistinguishable from a number of contemporary – and harmless – cults in Asia. However, it morphed into a violent doomsday cult without the Japanese authorities detecting the change. While such a failure in 1995 led to a few dozen deaths, the increasing availability of CRISPR technology could make such a failure a catastrophic event.

The final threat – the super-empowered individual – may not emerge until the latter part of the timeframe covered by this paper. Theoretically, enabled by AI and quantum computing, it will be possible to create a bioweapon that would target only specific genomic types. It is not beyond the realm of probability to envision a hate-filled racist developing and using such a highly specific bioweapon.

Can we prevent its use?

Jennifer Doudna, a University of California biochemist who helped invent CRISPR technology in 2012, calls for the “appropriate regulation” of human germline editing in her recent editorial entitled CRISPR’s unwanted anniversary in the journal Science:  “Consequences for defying established restrictions should include, at a minimum, loss of funding and publication privileges. Ensuring responsible use of genome editing will enable CRISPR technology to improve the well-being of millions of people and fulfill its revolutionary potential.”

However, prevention is highly problematic when a technology is cheap, widely available, and relatively easy to use. CRISPR meets both of the first two criteria. Although inexpensive CRISPR kits are available online, the knowledge necessary to employ to create malignant products resides at the PhD level. In all probability, it would require a team of PhDs to produce a bioweapon. However, if current trends of open-source knowledge dissemination13 continue, the knowledge threshold for employment may lower significantly. The future may require the power of AI, data science, big data, and quantum computers to identify and track potential threats.

Cuiker and Mayer-Schoenberg observe that, “Using big data will sometimes mean forgoing the quest for why in return for knowing what.”14 In other words, it involves a shift from understanding causation to seeking a correlation derived from big data to provide a proxy for what you are trying to understand. A correlation is simply a relationship between two data values. As such, it can serve to focus attention on a previously unsuspected connection and lead to discovery of causation. It can also provide warning when the strength of a correlation reaches a predetermined level requiring executive attention.

To illustrate, in 2009 the Center for Disease Control (CDC) approached Google with a problem on catching flu outbreaks as early as possible. The new H1N1 strain had been identified and CDC was concerned the outbreak might be as severe as that of the 1918 Spanish Influenza. As things stood, CDC only received warning of a flu outbreak an average of one to two weeks after its onset. The reason was simple – the data the CDC used to determine an outbreak were hospital admissions and emergency room data. Although they understood flu had broken out, they were in a constant catchup mode – not the desired mode for a possible H1N1 pandemic.

Google agreed to try to solve the puzzle. They used the “n = all” approach, querying their entire search database for the last (2007-2008) flu outbreak. Google ran over 50 million search terms through 450 million algorithms before arriving at a list of 45 search terms that – if entered with a certain frequency in any geographic area – strongly correlated with a flu outbreak. Using this approach, Google was able to detect warning signs within one or two days of an outbreak, pinpoint the geographic area, and even estimate the percentage of the population affected. They deployed this capability in time to assist the CDC in coping with the 2009 H1N1 outbreak.15,16

How do we recover once it is used?

While these three threats are possible, their solution will arise from the same technological forces that created them. Some components of the solution – like a robust public health system – are already in place in the U.S. The future public health system will rapidly identify the bioweapon and begin to develop treatments. The government will enforce such measures as social distance, allowing virulent strains to ‘burn out.’ In the future, the scientific community will use AI and quantum computing to run simulations that come up with novel approaches to mitigating the effects of any bioweapon. CRISPR and Nanotechnology will allow for the employment of payloads that counter the bioweapon. It will still be a classic game of move and countermove.

Conclusion.

The advent of easily accessible CRISPR technology poses a real and present danger to the world. In the hands of a rogue nation, a terrorist organization, or a super-empowered individual, it could unleash old diseases such as smallpox or new diseases with no known treatment. With the right knowledge, the entry threshold is less than a quarter or a million dollars. We must possess the means to identify, track, and counter these threats – preferably before they are employed at scale.

If you enjoyed this post, please also see:

Howard R. Simkin is a Senior Concept Developer in the DCS, G-9 Concepts, Experimentation and Analysis Directorate, U.S. Army Special Operations Command. He has over 40 years of combined military, law enforcement, defense contractor, and government experience. He is a retired Special Forces officer with a wide variety of special operations experience. Within the G9 he analyzes and defines the future operating environment and required capabilities Army Special Operations Forces (ARSOF) in support of future concepts development. His subject matter expertise includes analyzing and evaluating historical, current and emerging technology as well as Combined, Joint, Multi-Service, Army and ARSOF organizational initiatives, trends, and concepts to determine the implications for ARSOF units. Mr. Simkin holds a Masters of Administrative Science from the Johns Hopkins University. He is a proclaimed TRADOC Mad Scientist as well as a certified Project Management Professional. He has written several articles that have recently been published in Naval History, Small Wars Journal, or on the TRADOC Mad Scientist Blog.

Disclaimer: The views expressed in this blog post are those of the author, and do not necessarily reflect those of the Department of Defense, Department of the Army, U.S. Army Special Operations Command (USASOC), Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).


1 https://en.wikiquote.org/wiki/William_Gibson (Accessed 18 April 2017).

2 CRISPR is a gene editing technique. CRISPR stands for clustered regularly-interspaced short palindromic repeats; it is DNA used in the immune systems of prokaryotes. The system relies on the Cas9 enzyme and guide RNA’s to find specific, problematic segments of a gene and cut them out. In 2015, researchers discovered that this technique could be applied to humans.

3 Aum Shinrikyo was an apocalyptic Japanese cult that carried out a Sarin gas attack in the Tokyo Subway on 20 March 1995. See Kaplan, David E., and Andrew Marshall. The Cult at the End of the World: The Terrifying Story of the Aum Doomsday Cult, from the Subways of Tokyo to the Nuclear Arsenals of Russia. New York: Crown Publishers, Inc., 1996.

4 Theodore “Ted” Kaczynski was the Unabomber. He carried out a series of bombings from 1978 to 1995 to protest the growing influence of technology in society. See https://en.wikipedia.org/wiki/Ted_Kaczynski (Accessed 06 October 2017).

5 The FOE depicted in this paper is a synthesis of the National Intelligence Council Global Trends (2035) Paradox of Progress, National Intelligence Council, Washington DC, January 2017, see: https://www.dni.gov/index.php/global-trends-home, and the Chairman, Joint Chief of Staff, Joint Operating Environment 2035, The Joint Force in a Contested and Disordered World, Joint Staff J7, Washington, DC, 14 July 2016.

6 Taken from a PowerPoint presentation entitled “AI Futures” given by fellow Proclaimed Mad Scientist Dr. James Canton at the USASOC Futures Forum, 8 August 2017.

7 11 Incredible Things CRISPR Has Helped Us Achieve in 2017 https://futurism.com/11-incredible-things-crispr-has-helped-us-achieve-in-2017/ (Accessed 06 October 2017).

8 CRISPR Is Rapidly Ushering in a New Era in Science. https://futurism.com/crispr-is-rapidly-ushering-in-a-new-era-in-science/ (Accessed 16 August 2017)

9 Researchers Brought Back a Pox Virus Using Mail-Order DNA and it Only Cost $100,000. https://futurism.com/researchers-brought-back-a-pox-virus-using-mail-order-dna-and-it-only-cost-100000/ (Accessed 10 October 2017).

10 People Could Make Smallpox from Scratch in a Lab, Scientists Warn. https://www.livescience.com/59809-horsepox-virus-recreated.html (Accessed 10 October 2017), and Scientists synthesize smallpox cousin in ominous breakthrough. https://www.washingtonpost.com/news/speaking-of-science/wp/2017/07/07/scientists-synthesize-smallpox-cousin-in-ominous-breakthrough/?utm_term=.2c1b343dd4ec (Accessed 10 October 2017).

11 USSOCOM JISOC, Irregular Threat Analysis Branch, Socio — Cultural Awareness Section. North Korea Population Engagement Study (Unclassified). Tampa, FL: United States Special Operations Command, 2013, 15 – 16.

12 Kaplan, David E., and Andrew Marshall. The Cult at the End of the World: The Terrifying Story of the Aum Doomsday Cult, from the Subways of Tokyo to the Nuclear Arsenals of Russia. New York: Crown Publishers, Inc., 1996, 51 – 57; 96 – 7; 94 – 6.

13 The Canadian researchers mentioned earlier in this paper published an open source paper which details how they resurrected horsepox.

14 Cuiker, Kenneth and Mayer-Schoenberger, Viktor, “The Rise of Big Data: How it’s Changing the Way We Think About The World,” Foreign Affairs 92, no. 3 (May/June 2013): p. 36.

15 Cuiker, Kenneth and Mayer-Schoenberger, Viktor, “The Rise of Big Data: How it’s Changing the Way We Think About The World,” Foreign Affairs 92, no. 3 (May/June 2013): p. 29.

16 Mayer Schoenberger, Viktor and Cukier, Kenneth: Big Data, A Revolution That Will Transform How We Live, Work, And Think. Boston, New York: Mariner Books, Houghton Mifflin Harcourt, 2014, pp. 1-3. Twitter was also used to mine “flu”, and correlate results on a map. This allowed CDC to watch flu bloom on a map in near real time.

References

Cuiker, Kenneth, and Victor Mayer-Schoenberg. “The Rise of Big Data: How it’s Changing the Way We Think About The World.” Foreign Affairs 92, no. 3, May/June 2013.

Department of Defense. DOD Dictionary of Military and Associated Terms. Washington, DC: The Joint Staff, J7, As of March 2017.

Futurism.com. CRISPR Is Rapidly Ushering in a New Era in Science. March 13, 2017. https://futurism.com/crispr-is-rapidly-ushering-in-a-new-era-in-science/ (accessed July 2017, 2017).

Kaplan, David E., and Andrew Marshall. The Cult at the End of the World: The Terrifying Story of the Aum Doomsday Cult, from the Subways of Tokyo to the Nuclear Arsenals of Russia. New York: Crown Publishers, Inc., 1996.

Mayer-Schoenberg, Victor, and Kenneth Cuiker. Big Data, A Revolution That Will Transform How We Live, Work, And Think. Boston, New York: Mariner Books, Houghton Mifflin Harcourt, 2014.

National Intelligence Council. Global Trends, Paradox of Progress. Washington, DC: National Intelligence Council, January 2017.

The Joint Staff. Joint Operating Environment 2035, The Joint Force in a Contested and Disordered World. Washington, DC: Joint Staff J7, 14 July 2016.

USSOCOM JISOC, Irregular Threat Analysis Branch, Socio — Cultural Awareness Section. North Korea Population Engagement Study (Unclassified). Tampa, FL: United States Special Operations Command, 2013.

192. New Skills Required to Compete & Win in the Future Operational Environment

[Editor’s Note: The U.S. Army Training and Doctrine Command (TRADOC) recruits, trains, educates, develops, and builds the Army, driving constant improvement and change to ensure that the Army can successfully compete and deter, fight, and decisively win on any battlefield. The pace of change, however, is accelerating with the convergence of new and emergent technologies that are driving the changing character of warfare in the future Operational Environment (OE).  Preparing to compete and win in this future OE is one of the toughest challenges facing the Army. TRADOC must identify the requisite new Knowledge, Skills, and Behaviors (KSBs) that our Soldiers and leaders will need to compete and win, and then program and implement the associated policy changes, improvements to training facilities, development of leader programs, and the integration of required equipment into the Multi-Domain force.]

The future OE will compel a change in the character of warfare driven by the diffusion of power, economic disparity, and the democratization and convergence of technology. There are no longer defined transitions from peace to war, or from competition to conflict. “Steady State” now consists of continuous, dynamic, and simultaneous competition and conflict that is not necessarily cyclical. Russia and China, our near-peer competitors, confront us globally, converging capabilities with hybrid strategies to expand the battlefield across all domains and create hemispheric threats challenging us from home stations to the Close Area. They seek to achieve national objectives through competition short of conflict and synthesize emerging technologies with military doctrine and operations to deploy capabilities that create multiple layers of multi-domain stand-off. Additionally, regional competitors and non-state actors such as Iran, North Korea, and regional and transnational terrorist organizations, will effectively compete and fight in similar ways shaped to their strategic situations, but with lesser scope and scale in terms of capabilities.

The convergence and availability of cutting-edge technologies will act as enablers and force multipliers for our adversaries. Artificial intelligence (AI), quantum information sciences, and the Internet of Things will flatten decision making structures and increase speed on the battlefield, while weaponized information will empower potential foes, enabling them to achieve effects at a fraction of the cost of conventional weapons, without risking armed conflict. Space will become a contested domain, as our adversaries will enhance their ability to operate in that domain while working to deny us what was once a key area of advantage.

Preparing for this new era is one of the toughest challenges the Army will face in the next 25 years. A key component of this preparation is identifying the skills and attributes required for the Soldiers and Leaders operating in our multi-domain formations.

The U.S. Army currently has more than 150 Military Occupational Specialties (MOSs), each requiring a Soldier to learn unique tasks, skills, and knowledge. The emergence of a number of new technologies – drones, AI autonomy, immersive mixed reality, big data storage and analytics, etc. – coupled with the changing character of warfare means that many of these MOSs will need to change, while new ones will need to be created. This already has been seen in the wider U.S. and global economy, where the growth of internet services, smartphones, social media, and cloud technology over the last ten years has introduced a host of new occupations that previously did not exist.

Acquiring and developing the talent pool and skills for a new MOS requires policy changes, improvements to training facilities, development of leader programs, and the integration of required equipment into current and planned formations. The Army’s recent experience building a cyber MOS offers many lessons learned. The Army needed to change policies for direct entry into the force, developed cyber training infrastructure at Fort Gordon, incorporated cyber operations into live training exercises at home station and the Combat Training Centers, built the Army Cyber Institute at West Point, and developed concepts and equipment baselines for cyber protection teams. This effort required action from Department of the Army and each of the subordinate Army commands. Identifying, programming, and implementing new knowledge, skills, and attributes is a multi-year effort that requires synchronizing the delivery of Soldiers possessing the requisite skills with the fielding of a Multi-Domain Operations (MDO)-capable force in 2028 and the MDO-ready force in 2035.

The Army’s MDO concept offers a clear glimpse of the types of new skills that will be required to win on the future battlefield. A force with all warfighting functions enabled by big data and AI will require Soldiers with data science expertise and some basic coding experience to improve AI integration and to maintain proper transparency and biases supporting leader decision making. The Internet of Battle things connecting Soldiers and systems will require Soldiers with technical integration skills and cyber security experience. The increased numbers of air and land robots and associated additive manufacturing systems to support production and maintenance means a new series of maintenance skills now only found in manufacturing centers, Amazon warehouses, and universities. There are many more emerging skill requirements. Not all of these will require a new MOS, but in some cases, the introduction of new skill identifiers and functional areas may be required.

Some of the needed skills may be inherent within the next generation(s) of recruits. Many of the games, drones, and other everyday technologies that already are, or soon will be very common – narrow AI, app development and general programming, and smart devices – will yield a variety of intrinsic skills that recruits will have prior to entering the Army. Just like we no longer train Soldiers on how to use a computer, games like Fortnite©, with no formal relationship with the military, will provide players with militarily-useful skills such as communications, problem solving, and creative thinking, all while attempting to survive against persistent attack. Due to these trends, recruits may come into the Army with fundamental technical skills and baseline military thinking attributes that flatten the learning curve for Initial Entry Training (IET).

While these new recruits may have a set of some required skills, there will still be a premium placed on premier skillsets in fields such as AI and machine learning, robotics, big data management, and quantum information sciences. Due to the high demand for these skillsets, the Army will have to compete for talent with private industry, battling them on compensation, benefits, perks, and a less restrictive work environment. In light of this, the Army may have to consider adjusting or relaxing its current recruitment processes, business practices, and force structuring to ensure it is able to attract and retain expertise. It also may have to reconsider how it adapts and utilizes its civilian workforce to undertake these types of tasks in new and creative ways.

If you enjoyed reading this, please see the following MadSci blog posts:

… and the Mad Scientist Learning in 2050 Conference Final Report.

184. Blurring Lines Between Competition and Conflict

[Editor’s Note: The United States Army faces multiple, complex challenges in tomorrow’s Operational Environment (OE), confronting strategic competitors in an increasingly contested space across every domain (land, air, maritime, space, and cyberspace). The Mad Scientist Initiative, the U.S. Army Training and Doctrine Command (TRADOC) G-2 Futures, and Army Futures Command (AFC) Future Operational Environment Cell have collaborated with representatives from industry, academia, and the Intelligence Community to explore the blurring lines between competition and conflict, and the character of great power warfare in the future. Today’s post captures our key findings regarding the OE and what will be required to successfully compete, fight, and win in it — Enjoy!].

Alternative Views of Warfare: The U.S. Army’s view of the possible return to Large Scale Combat Operations (LSCO) and capital systems warfare might not be the future of warfare. Near-peer competitors will seek to achieve national objectives through competition short of conflict, and regional competitors and non-state actors will effectively compete and fight with smaller, cheaper, and greater numbers of systems against our smaller number of exquisite systems. However, preparation for LSCO and great state warfare may actually contribute to its prevention.

Competition and Conflict are Blurring: The dichotomy of war and peace is no longer a useful construct for thinking about national security or the development of land force capabilities. There are no longer defined transitions from peace to war and competition to conflict. This state of simultaneous competition and conflict is continuous and dynamic, but not necessarily cyclical. Potential adversaries will seek to achieve their national interest short of conflict and will use a range of actions from cyber to kinetic against unmanned systems walking up to the line of a short or protracted armed conflict. Authoritarian regimes are able to more easily ensure unity of effort and whole-of-government over Western democracies and work to exploit fractures and gaps in decision-making, governance, and policy.

The globalization of the world – in communications, commerce, and belligerence (short of war) – as well as the fragmentation of societies and splintering of identities has created new factions and “tribes,” and opened the aperture on who has offensive capabilities that were previously limited to state actors. Additionally, the concept of competition itself has broadened as social media, digital finance, smart technology, and online essential services add to a growing target area.

Adversaries seek to shape public opinion and influence decisions through targeted information operations campaigns, often relying on weaponized social media. Competitors invest heavily in research and development in burgeoning technology fields Artificial Intelligence (Al), quantum sciences, and biotech – and engage in technology theft to weaken U.S. technological superiority. Cyber attacks and probing are used to undermine confidence in financial institutions and critical government and public functions – Supervisory Control and Data Acquisition (SCADA), voting, banking, and governance. Competition and conflict are occurring in all instruments of power throughout the entirety of the Diplomatic, Information, Military and Economic (DIME) model.

Cyber actions raise the question of what is the threshold to be considered an act of war. If an adversary launches a cyber ­attack against a critical financial institution and an economic crisis results – is it an act of war? There is a similar concern regarding unmanned assets. While the kinetic destruction of an unmanned system may cost millions, no lives are lost. How much damage without human loss of life is acceptable?

Nuclear Deterrence limits Great Power Warfare: Multi-Domain Operations (MDO) is predicated on a return to Great Power warfare. However, nuclear deterrence could make that eventuality less likely. The U.S. may be competing more often below the threshold of conventional war and the decisive battles of the 20th Century (e.g., Midway and Operation Overlord). The two most threatening adversaries – Russia and China – have substantial nuclear arsenals, as does the United States, which will continue to make Great Power conventional warfare a high risk / high cost endeavor. The availability of non-nuclear capabilities that can deliver regional and global effects is a new attribute of the OE. This further complicates the deterrence value of militaries and the escalation theory behind flexible deterrent options. The inherent implications of cyber effects in the real world – especially in economies, government functions, and essential services – further exacerbates the blurring between competition and conflict.

Hemispheric Competition and Conflict: Over the last twenty years, Russia and China have been viewed as regional competitors in Eurasia or South-East Asia. These competitors will seek to undermine and fracture traditional Western institutions, democracies, and alliances. Both are transitioning to a hemispheric threat with a primary focus on challenging the U.S. Army all the way from its home station installations (i.e., the Strategic Support Area) to the Close Area fight. We can expect cyber attacks against critical infrastructure, the use of advanced information warfare such as deep fakes targeting units and families, and the possibility of small scale kinetic attacks during what were once uncontested administrative actions of deployment. There is no institutional memory for this threat and adding time and required speed for deployment is not enough to exercise MDO.

Disposable versus Exquisite: Current thinking espouses technologically advanced and expensive weapons platforms over disposable ones, which brings with it an aversion to employ these exquisite platforms in contested domains and an inability to rapidly reconstitute them once they are committed and subsequently attrited. In LSCO with a near-peer competitor, the ability to reconstitute will be imperative. The Army (and larger DoD) may need to shift away from large and expensive systems to cheap, scalable, and potentially even disposable unmanned systems (UxS). Additionally, the increases in miniaturized computing power in cheaper systems, coupled with advances in machine learning could lead to massed precision rather than sacrificing precision for mass and vice versa.

This challenge is exacerbated by the ability for this new form of mass to quickly aggregate/disaggregate, adapt, self­-organize, self-heal, and reconstitute, making it largely unpredictable and dynamic. Adopting these capabilities could provide the U.S. Army and allied forces with an opportunity to use mass precision to disrupt enemy Observe, Orient, Decide, and Act (OODA) loops, confuse kill chains/webs, overwhelm limited adversary formations, and exploit vulnerabilities in extended logistics tails and advanced but immature communication networks.

Human-Starts-the-Loop: There have been numerous discussions and debate over whether armed forces will continue to have a “man-in-the-loop” regarding Lethal Autonomous Weapons Systems (LAWS). Lethal autonomy in future warfare may instead be “human-starts-the-loop,” meaning that humans will be involved in the development of weapons/targeting systems – establishing rules and scripts – and will initiate the process, but will then allow the system to operate autonomously. It has been stated that it would be ethically disingenuous to remain constrained by “human-on-the-loop” or “human-in-the-­loop” constructs when our adversaries are unlikely to similarly restrict their own autonomous warfighting capabilities. Further, the employment of this approach could impact the Army’s MDO strategy. The effects of “human-starts-the-loop” on the kill chain – shortening, flattening, or otherwise dispersing – would necessitate changes in force structuring that could maximize resource allocation in personnel, platforms, and materiel. This scenario presents the Army with an opportunity to execute MDO successfully with increased cost savings, by: 1) Conducting independent maneuver – more agile and streamlined units moving rapidly; 2) Employing cross-domain fires – efficiency and speed in targeting and execution; 3) Maximizing human potential – putting capable Warfighters in optimal positions; and 4) Fielding in echelons above brigade – flattening command structures and increasing efficiency.

Emulation and the Accumulation of Advantages: China and Russia are emulating many U.S. Department of Defense modernization and training initiatives. China now has Combat Training Centers. Russia has programs that mirror the Army’s Cross Functional Team initiatives and the Artificial Intelligence (AI) Task Force. China and Russia are undergoing their own versions of force modernization to better professionalize the ranks and improve operational reach. Within these different technical spaces, both China and Russia are accumulating advantages that they envision will blunt traditional U.S. combat advantages and the tenets described in MDO. However, both nations remain vulnerable and dependent on U.S. innovations in microelectronics, as well as the challenges of incorporating these technologies into their own doctrine, training, and cultures.

If you enjoyed this post, please also see:

Jomini’s Revenge: Mass Strikes Back! by Zachery Tyson Brown.

Our “Tenth Man” – Challenging our Assumptions about the Operational Environment and Warfare posts, where Part 1 discusses whether the future fight will necessarily even involve LSCO and Part 2 addresses the implications of a changed or changing nature of war.

The Death of Authenticity:  New Era Information Warfare.