124. Mad Scientist Science Fiction Writing Contest 2019

[Editor’s Note:  Just a quick reminder that Mad Scientist is seeking your visions of future combat with our Science Fiction Writing Contest 2019.  Our deadline for submission is now one month out     — 1 APRIL 2019 so please review the contest details below, get those creative writing juices flowing, and send us your visions of combat in 2030!]

Background: The U.S. Army finds itself at a historical inflection point, where disparate, yet related elements of an increasingly complex Operational Environment (OE) are converging, creating a situation where fast-moving trends are rapidly transforming the nature of all aspects of society and human life – including the character of warfare. It is important to take a creative approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future. In this vein, the U.S. Army Mad Scientist Initiative is seeking your creativity and unique ideas to describe a battlefield that does not yet exist.

Task: Write about the following scenario – On March 17th, 2030, the country of Donovia, after months of strained relations and covert hostilities, invades neighboring country Otso. Donovia is a wealthy nation that is a near-peer competitor to the United States. Like the United States, Donovia has invested heavily in disruptive technologies such as robotics, AI, autonomy, quantum information sciences, bio enhancements and gene editing, space-based weapons and communications, drones, nanotechnology, and directed energy weapons. The United States is a close ally of Otso and is compelled to intervene due to treaty obligations and historical ties. The United States is about to engage Donovia in its first battle with a near-peer competitor in over 80 years…

Three ways to approach:
1) Forecasting – Description of the timeline and events leading up to the battle.
2) Describing – Account of the battle while it’s happening.
3) Backcasting – Retrospective look after the battle has ended (i.e., After Action Review or lessons learned).

Three questions to consider while writing (U.S., adversaries, and others):
1) What will forces and Soldiers look like in 2030?
2) What technologies will enable them or be prevalent on the battlefield?
3) What do Multi-Domain Operations look like in 2030?

Submission Guidelines:
– No more than 5000 words in length
– Provide your submission in .doc or .docx format
– Please use conventional text formatting (e.g., no columns) and have images “in line” with text
– Submissions from Government and DoD employees must be cleared through their respective PAOs prior to submission
MUST include completed release form (on the back of contest flyer)
CANNOT have been previously published

Selected submissions may be chosen for publication or a possible future speaking opportunity.

Contact: Send your submissions to: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil

For additional story telling inspiration, please see the following blog posts:

… and Dr. Lydia Kostopoulos‘ short story entitled The Most Eventful Night in the White House Situation Room: Year 2051, published by our colleagues at Small Wars Journal.

 

114. Mad Scientist Science Fiction Writing Contest 2019

Futuristic tank rendering  / Source: U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC)

[Editor’s Note:  Story Telling is a powerful tool that allows us to envision how innovative technologies could be employed and operationalized in the Future Operational Environment.  Mad Scientist is seeking your visions of future combat with our Science Fiction Writing Contest 2019.  Our deadline for submission is 1 APRIL 2019, so please review the contest details below, get those creative writing juices flowing, and send us your visions of combat in 2030!] 

Still from “The Future of the Soldier” video / Source:  U.S. Army Natick Soldier Research Development and Engineering Center

Background: The U.S. Army finds itself at a historical inflection point, where disparate, yet related elements of an increasingly complex Operational Environment (OE) are converging, creating a situation where fast moving trends are rapidly transforming the nature of all aspects of society and human life – including the character of warfare. It is important to take a creative approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future. In this vein, the U.S. Army Mad Scientist Initiative is seeking your creativity and unique ideas to describe a battlefield that does not yet exist.

Illustration from “Silent Ruin” by Don Hudson & Kinsun Lo / Source:   U.S.  Army Cyber Institute at West Point

Task: Write about the following scenario – On March 17th, 2030, the country of Donovia, after months of strained relations and covert hostilities, invades neighboring country Otso. Donovia is a wealthy nation that is a near-peer competitor to the United States. Like the United States, Donovia has invested heavily in disruptive technologies such as robotics, AI, autonomy, quantum information sciences, bio enhancements and gene editing, space-based weapons and communications, drones, nanotechnology, and directed energy weapons. The United States is a close ally of Otso and is compelled to intervene due to treaty obligations and historical ties. The United States is about to engage Donovia in its first battle with a near-peer competitor in over 80 years…

Three ways to approach:
1) Forecasting – Description of the timeline and events leading up to the battle.
2) Describing – Account of the battle while it’s happening.
3) Backcasting – Retrospective look after the battle has ended (i.e., After Action Review or lessons learned).

Three questions to consider while writing (U.S., adversaries, and others):
1) What will forces and Soldiers look like in 2030?
2) What technologies will enable them or be prevalent on the battlefield?
3) What do Multi-Domain Operations look like in 2030?

Submission Guidelines:
– No more than 5000 words in length
– Provide your submission in .doc or .docx format
– Please use conventional text formatting (e.g., no columns) and have images “in line” with text
– Submissions from Government and DoD employees must be cleared through their respective PAOs prior to submission
MUST include completed release form (on the back of contest flyer)
CANNOT have been previously published

Selected submissions may be chosen for publication or a possible future speaking opportunity.

Contact: Send your submissions to: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil

For additional story telling inspiration, please see the following blog posts:

 

110. Future Jobs and Skillsets

[Editor’s Note:  On 8-9 August 2018, the U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Learning in 2050 Conference with Georgetown University’s Center for Security Studies in Washington, DC.  Leading scientists, innovators, and scholars from academia, industry, and the government gathered to address future learning techniques and technologies that are critical in preparing for Army operations in the mid-21st century against adversaries in rapidly evolving battlespaces.  Today’s post is extracted from this conference’s final report (more of which is addressed at the bottom of this post).]

The U.S. Army currently has more than 150 Military Occupational Specialties (MOSs), each requiring a Soldier to learn unique tasks, skills, and knowledges. The emergence of a number of new technologies – drones, Artificial Intelligence (AI), autonomy, immersive mixed reality, big data storage and analytics, etc. – coupled with the changing character of future warfare means that many of these MOSs will need to change, while others will need to be created. This already has been seen in the wider U.S. and global economy, where the growth of internet services, smartphones, social media, and cloud technology over the last ten years has introduced a host of new occupations that previously did not exist. The future will further define and compel the creation of new jobs and skillsets that have not yet been articulated or even imagined. Today’s hobbies (e.g., drones) and recreational activities (e.g., Minecraft/Fortnite) that potential recruits engage in every day could become MOSs or Additional Skill Identifiers (ASIs) of the future.

Training eighty thousand new Recruits a year on existing MOSs is a colossal undertaking.  A great expansion in the jobs and skillsets needed to field a highly capable future Army, replete with modified or new MOSs, adds a considerable burden to the Army’s learning systems and institutions. These new requirements, however, will almost certainly present an opportunity for the Army to capitalize on intelligent tutors, personalized learning, and immersive learning to lessen costs and save time in Soldier and Leader development.

The recruit of 2050 will be born in 2032 and will be fundamentally different from the generations born before them.  Marc Prensky, educational writer and speaker who coined the term digital native, asserts this “New Human” will stand in stark contrast to the “Old Human” in the ways they learn and approach learning..1 Where humans today are born into a world with ubiquitous internet, hyper-connectivity, and the Internet of Things, each of these elements are generally external to the human.  By 2032, these technologies likely will have converged and will be embedded or integrated into the individual with connectivity literally on the tips of their fingers. 

Some of the newly required skills may be inherent within the next generation(s) of these Recruits. Many of the games, drones, and other everyday technologies that are already or soon to be very common – narrow AI, app development and general programming, and smart devices – will yield a variety of intrinsic skills that Recruits will have prior to entering the Army. Just like we no longer train Soldiers on how to use a computer, games like Fortnite, with no formal relationship with the military, will provide players with militarily-useful skills such as communications, resource management, foraging, force structure management, and fortification and structure building, all while attempting to survive against persistent attack.  Due to these trends, Recruits may come into the Army with fundamental technical skills and baseline military thinking attributes that flatten the learning curve for Initial Entry Training (IET).2

While these new Recruits may have a set of some required skills, there will still be a premium placed on premier skillsets in fields such as AI and machine learning, robotics, big data management, and quantum information sciences. Due to the high demand for these skillsets, the Army will have to compete for talent with private industry, battling them on compensation, benefits, perks, and a less restrictive work environment – limited to no dress code, flexible schedule, and freedom of action. In light of this, the Army may have to consider adjusting or relaxing its current recruitment processes, business practices, and force structuring to ensure it is able to attract and retain expertise. It also may have to reconsider how it adapts and utilizes its civilian workforce to undertake these types of tasks in new and creative ways.

The Recruit of 2050 will need to be engaged much differently than today. Potential Recruits may not want to be contacted by traditional methods3 – phone calls, in person, job fairs – but instead likely will prefer to “meet” digitally first. Recruiters already are seeing this today. In order to improve recruiting efforts, the Army may need to look for Recruits in non-traditional areas such as competitive online gaming. There is an opportunity for the Army to use AI to identify Recruit commonalities and improve its targeted advertisements in the digital realm to entice specific groups who have otherwise been overlooked. The Army is already exploring this avenue of approach through the formation of an eSports team that will engage young potential Recruits and attempt to normalize their view of Soldiers and the Army, making them both more relatable and enticing.4 This presents a broader opportunity to close the chasm that exists between civilians and the military.

The overall dynamic landscape of the future economy, the evolving labor market, and the changing character of future warfare will create an inflection point for the Army to re-evaluate longstanding recruitment strategies, workplace standards, and learning institutions and programs. This will bring about an opportunity for the Army to expand, refine, and realign its collection of skillsets and MOSs, making Soldiers more adapted for future battles, while at the same time challenging the Army to remain prominent in attracting premier talent in a highly competitive environment.

If you enjoyed this extract, please read the comprehensive Learning in 2050 Conference Final Report

… and see our TRADOC 2028 blog post.


1 Prensky, Mark, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

2 Schatz, Sarah, Mad Scientist Conference: Learning in 2050, Georgetown University, 8 August 2018.

3 Davies, Hans, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

4 Garland, Chad, Uncle Sam wants you — to play video games for the US Army, Stars and Stripes, 9 November 2018, https://www.stripes.com/news/uncle-sam-wants-you-to-play-video-games-for-the-us-army-1.555885.

70. Star Wars 2050

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s guest post by returning blogger Ms. Marie Murphy, addressing the implication of space drones and swarms on space-based services critical to the U.S. Army.  Ms. Murphy’s previous post addressed Virtual Nations: An Emerging Supranational Cyber Trend.]

Drone technology continues to proliferate in militaries and industries around the world.  In the deep future, drones and drone swarms may extend physical conflict into the space domain.  As space becomes ever more critical to military operations, states will seek technologies to counter their adversaries’ capabilities.   Drones and swarms can blend in with space debris in order to provide a tactical advantage against vulnerable and expensive assets at a lower cost.

Source: AutoEvolution

Space was recently identified as a battlespace domain in recognition of threats increasing at an unexpected rate and, in 2013, the Army Space Training Strategy was released. The functions of the Army almost entirely depend on space systems for daily and specialized operations, particularly C4ISR and GPS capabilities. “Well over 2,500 pieces of equipment… rely on a space-based capability” in any given combat brigade, so an Army contingency plan for the loss of satellite communication is critical.[I]  It is essential for the Army, in conjunction with other branches of the military and government agencies, to best shield military assets in space and continue to develop technologies, such as outer space drones and swarms, to remain competitive and secure throughout this domain in the future.

Source: CCTV China

Drone swarms in particular are an attractive military option due to their relative inexpensiveness, autonomy, and durability as a whole. The U.S., China, and Russia are the trifecta of advanced drone and drone swarm technology and also pose the greatest threats in space. In May 2018, Chinese Company CETC launched 200 autonomous drones,[II] beating China’s own record of 119 from 2017.[III] The U.S. has also branched out into swarm technology with the testing of Perdix drones, although the U.S. is most known for its use of the high-tech Predator drone.[IV]

Source: thedrive.com

Non-state actors also possess rudimentary drone capabilities. In January 2018, Syrian rebels attacked a Russian installation with 13 drones in an attempt to overwhelm Russian defenses. The Russian military was able to neutralize the attack by shooting down seven and bringing the remaining six down with electronic countermeasures.[V] While this attack was quelled, it proves that drones are being used by less powerful or economically resourceful actors, making them capable of rendering many traditional defense systems ineffective. It is not a far leap to incorporate autonomous communication between vehicles, capitalizing on the advantages of a fully interactive and cooperative drone swarm.

NASA Homemade Drone; Source: NASA Swamp Works

The same logic applies when considering drones and drone swarms in space. However, these vehicles will need to be technologically adapted for space conditions. Potentially most similar to future space drones, the company Swarm Technology launched four nanosats called “SpaceBees” with the intention of using them to create a constellation supporting Internet of Things (IoT) networks; however, they did so from India without FCC authorization.[VI] Using nanosats as examples of small, survivable space vehicles, the issues of power and propulsion are the most dominant technological roadblocks. Batteries must be small and are subject to failure in extreme environmental conditions and temperatures.[VII] Standard drone propulsion mechanisms are not viable in space, where drones will have to rely on cold-gas jets to maneuver.[VIII] Drones and drone swarms can idle in orbit (potentially for weeks or months) until activated, but they may still need hours of power to reach their target. The power systems must also have the ability to direct flight in a specific direction, requiring more energy than simply maintaining orbit.

Source: University of Southampton

There is a distinct advantage for drones operating in space: the ability to hide in plain sight among the scattered debris in orbit. Drones can be sent into space on a private or government launch hidden within a larger, benign payload.[IX] Once in space, these drones could be released into orbit, where they would blend in with the hundreds of thousands of other small pieces of material. When activated, they would lock onto a target or targets, and swarms would converge autonomously and communicate to avoid obstacles. Threat detection and avoidance systems may not recognize an approaching threat or swarm pattern until it is too late to move an asset out of their path (it takes a few hours for a shuttle and up to 30 hours for the ISS to conduct object avoidance maneuvers). In the deep future, it is likely that there will be a higher number of larger space assets as well as a greater number of nanosats and CubeSats, creating more objects for the Space Surveillance Network to track, and more places for drones and swarms to hide.[X]

For outer space drones and drone swarms, the issue of space junk is a double-edged sword. While it camouflages the vehicles, drone and swarm attacks also produce more space junk due to their kinetic nature. One directed “kamikaze” or armed drone can severely damage or destroy a satellite, while swarm technology can be harnessed for use against larger, defended assets or in a coordinated attack. However, projecting shrapnel can hit other military or commercial assets, creating a Kessler Syndrome effect of cascading damage.[XI] Once a specific space junk removal program is established by the international community, the resultant debris effects from drone and swarm attacks can be mitigated to preclude collateral damage.  However, this reduction of space junk will also result in less concealment, limiting drones’ and swarms’ ability to loiter in orbit covertly.

Utilizing drone swarms in space may also present legal challenges.  The original governing document regarding space activities is the Outer Space Treaty of 1967. This treaty specifically prohibits WMDs in space and the militarization of the moon and other celestial bodies, but is not explicit regarding other forms of militarization, except to emphasize that space activities are to be carried out for the benefit of all countries. So far, military space activities have been limited to deploying military satellites and combatting cyber-attacks. Launching a kinetic attack in space would carry serious global implications and repercussions.

Such drastic and potentially destructive action would most likely stem from intense conflict on Earth. Norms about the usage of space would have to change. The Army must consider how widely experimented with and implemented drone and swarm technologies can be applied to targeting critical and expensive assets in orbit. Our adversaries do not have the same moral and ethical compunctions regarding space applications that the U.S. has as the world’s leading democracy. Therefore, the U.S. Army must prepare for such an eventuality.  Additionally, the Army must research and develop a more robust alternative to our current space-based GPS capability.  For now, the only war in space is the one conducted electronically, but kinetic operations in outer space are a realistic possibility in the deep future.

Marie Murphy is a rising junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative.

______________________________________________________

[I] Houck, Caroline, “The Army’s Space Force Has Doubled in Six Years, and Demand Is Still Going Up,” Defense One, 23 August 2017.

[II]China’s Drone Swarms,” OE Watch, Vol. 8.7, July 2018.

[III]China Launches Drone Swarm of 119 Fixed-Wing Unmanned Aerial Vehicles,” Business Standard, 11 June 2017.

[IV] Atherton, Kelsey D., “The Pentagon’s New Drone Swarm Heralds a Future of Autonomous War Machines,” Popular Science, 17 January 2017.

[V] Hruska, Joel, “Think One Military Drone is Bad? Drone Swarms Are Terrifyingly Difficult to Stop,” Extreme Tech, 8 March 2018.

[VI] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[VII] Chow, Eugene K., “America Is No Match for China’s New Space Drones,” The National Interest, 4 November 2017.

[VIII] Murphy, Mike, “NASA Is Working on Drones That Can Fly In Space,” Quartz, 31 July 2015.

[IX] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[X]Space Debris and Human Spacecraft,” NASA, 26 September 2013.

[XI] Scoles, Sarah, “The Space Junk Problem Is About to Get a Whole Lot Gnarlier,” WIRED, July 31, 2017.

 

 

 

 

 

 

 

 

 

61. Base in a Box

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the following guest blog post by Mr. Lewis Jones. Originally a “Letter Home” submission to the Call for Ideas associated with the Mad Scientist Installations of the Future Conference (see more information about this event at the end of this post), we hope that you will enjoy Mr. Jones’ vision of a mid-Twenty First Century forward deployed base.]

Hey Dad, guess who got new PCS orders!  From March 2042 I’ll be assigned to Joint Base Harris in Japan.  You spent your early career in Japan, right?  I’ll never forget your stories about Camp Zama, a sprawling installation housing hundreds of soldiers and civilians. I  used to love hearing about the 2020s, when enemy sensors, drones, and artificial intelligence first wreaked havoc on operations there.

Source: John Lamb/The Image Bank/Getty Images

Remember the Garrison commander whose face was 3D-scanned by a rigged vending machine near the gate? The enemy released that humiliating video right before a major bilateral operation. By the time we proved it was fake, our partners had already withdrawn.




What about the incident at the intel battalion’s favorite TDY hotel with a pool-side storage safe? Soldiers went swimming and tossed their wallets into the safe, unaware that an embedded scanner would clone their SIPR tokens. To make matters worse, the soldiers secured the safe with a four digit code… using the same numbers as their token PIN.

Source: CNN
Oh, and remember the Prankenstein A.I. attack? It scanned social media to identify Army personnel living off-base, then called local law enforcement with fake complaints. The computer-generated voice was very convincing, even giving physical descriptions based on soldier’s actual photos. You said that one soured host-nation relations for years!

Or the drones that hovered over Camp Zama, broadcasting fake Wi-Fi hotspots. The enemy scooped up so much intelligence and — ah, you get the picture. Overseas bases were so vulnerable back then.


Well, the S1 sent me a virtual tour and the new base is completely different. When U.S. Forces Japan rebuilt its installations, those wide open bases were replaced by miniature, self-contained fortresses. Joint Base Harris, for example, was built inside a refurbished shopping mall: an entire installation, compressed into a single building!

Source: The Cinephile Gardener

Here’s what I saw on my virtual tour:

  • Source: Gizmodo UK

      The roof has solar panels and battery banks for independent power. There’s also an enormous greenhouse, launch pads for drones and helos, and a running trail.

 

  The ground level contains a water plant that extracts and purifies groundwater, along with indoor hydroponic farms. Special filtration units scrub the air; they’re even rated against CBRN threats.

  • Source: tandemnsi.com

      What was once a multi-floor parking garage is now a motor pool, firing range, and fitness complex. The gym walls are smart-screens, so you can work out in a different environment every day.

 

  Communications are encrypted and routed through a satellite uplink. The base even has its own cellphone tower. Special mesh in the walls prevent anybody outside from eavesdropping on emissions— the entire base is a SCIF.

Source: fortune.com

  The mall’s shops and food court were replaced by all the features and functions of a normal base: nearly 2,000 Army, Air and Cyber Force troops living, working, and training inside. They even have a kitchen-bot in the chow hall that can produce seven custom meals per minute!

 

  Supposedly, the base extends several floors underground, but the tour didn’t show that. I guess that’s where the really secret stuff happens.

Source: Gizmodo Australia

By the way, don’t worry about me feeling cooped up:  Soldiers are assigned top-notch VR specs during in-processing.  During the duty day, they’re only for training simulations. Once you’re off, personal use is authorized. I’ll be able to play virtual games, take virtual tours… MWR even lets you link with telepresence robots to “visit” family back home.

The sealed, self-contained footprint of this new base is far easier to defend in today’s high-tech threat environment. Some guys complain about being stuck inside, but you know what I think? If Navy sailors can spend months at sea in self-contained bases, then there’s no reason the Army can’t do the same on land!

Love,
Your Daughter

 

If you were intrigued by this vision of a future Army installation, please plan on joining us virtually at the Mad Scientist Installations of the Future Conference, co-sponsored by the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)); Georgia Tech Research Institute (GTRI); and Headquarters, U.S. Army Training and Doctrine Command (TRADOC),  at GTRI in Atlanta, Georgia, on 19-20 June 2018.  Click here to learn more about the conference and then participate in the live-streamed proceedings, starting at 0830 EDT on 19 June 2018.

Lewis Jones is an Army civilian with nearly 15 years of experience in the Indo-Pacific region. In addition to his Japanese and Chinese language studies, he has earned a Masters in Diplomacy and International Conflict Management from Norwich University. He has worked as a headhunter for multinational investment banks in Tokyo, as a business intelligence analyst for a DOD contractor, and has supported the Army with cybersecurity program management and contract administration. Lewis writes about geopolitics, international relations, U.S. national security, and the effects of rapid advances in technology.