182. “Tenth Man” – Challenging our Assumptions about the Operational Environment and Warfare (Part 2)

[Editor’s Note: Mad Scientist Laboratory is pleased to publish our latest “Tenth Man” post. This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging. The Mad Scientist Laboratory offers it as a platform for the contrarians in our network to share their alternative perspectives and analyses regarding the Operational Environment (OE). We continue our series of “Tenth Man” posts examining the foundational assumptions of The Operational Environment and the Changing Character of Future Warfare, challenging them, reviewing the associated implications, and identifying potential signals and/or indicators of change. Enjoy!]

Assumption:  The character of warfare will change but the nature of war will remain human-centric.

The character of warfare will change in the future OE as it inexorably has since the advent of flint hand axes; iron blades; stirrups; longbows; gunpowder; breech loading, rifled, and automatic guns; mechanized armor; precision-guided munitions; and the Internet of Things. Speed, automation, extended ranges, broad and narrow weapons effects, and increasingly integrated multi-domain conduct, in addition to the complexity of the terrain and social structures in which it occurs, will make mid Twenty-first Century warfare both familiar and utterly alien.

The nature of warfare, however, is assumed to remain human-centric in the future. While humans will increasingly be removed from processes, cycles, and perhaps even decision-making, nearly all content regarding the future OE assumes that humans will remain central to the rationale for war and its most essential elements of execution. The nature of war has remained relatively constant from Thucydides through Clausewitz, and forward to the present. War is still waged because of fear, honor, and interest, and remains an expression of politics by other means. While machines are becoming ever more prevalent across the battlefield – C5ISR, maneuver, and logistics – we cling to the belief that parties will still go to war over human interests; that war will be decided, executed, and controlled by humans.

Implications:  If these assumptions prove false, then the Army’s fundamental understanding of war in the future may be inherently flawed, calling into question established strategies, force structuring, and decision-making models. A changed or changing nature of war brings about a number of implications:

– Humans may not be aware of the outset of war. As algorithmic warfare evolves, might wars be fought unintentionally, with humans not recognizing what has occurred until effects are felt?

– Wars may be fought due to AI-calculated opportunities or threats – economic, political, or even ideological – that are largely imperceptible to human judgement. Imagine that a machine recognizes a strategic opportunity or impetus to engage a nation-state actor that is conventionally (read that humanly) viewed as weak or in a presumed disadvantaged state. The machine launches offensive operations to achieve a favorable outcome or objective that it deemed too advantageous to pass up.

  • – Infliction of human loss, suffering, and disruption to induce coercion and influence may not be conducive to victory. Victory may be simply a calculated or algorithmic outcome that causes an adversary’s machine to decide their own victory is unattainable.

– The actor (nation-state or otherwise) with the most robust kairosthenic power and/or most talented humans may not achieve victory. Even powers enjoying the greatest materiel advantages could see this once reliable measure of dominion mitigated. Winning may be achieved by the actor with the best algorithms or machines.

  • These implications in turn raise several questions for the Army:

– How much and how should the Army recruit and cultivate human talent if war is no longer human-centric?

– How should forces be structured – what is the “right” mix of humans to machines if war is no longer human-centric?

– Will current ethical considerations in kinetic operations be weighed more or less heavily if humans are further removed from the equation? And what even constitutes kinetic operations in such a future?

– Should the U.S. military divest from platforms and materiel solutions (hardware) and re-focus on becoming algorithmically and digitally-centric (software)?

 

– What is the role for the armed forces in such a world? Will competition and armed conflict increasingly fall within the sphere of cyber forces in the Departments of the Treasury, State, and other non-DoD organizations?

– Will warfare become the default condition if fewer humans get hurt?

– Could an adversary (human or machine) trick us (or our machines) to miscalculate our response?

Signposts / Indicators of Change:

– Proliferation of AI use in the OE, with increasingly less human involvement in autonomous or semi-autonomous systems’ critical functions and decision-making; the development of human-out-of-the-loop systems

– Technology advances to the point of near or actual machine sentience, with commensurate machine speed accelerating the potential for escalated competition and armed conflict beyond transparency and human comprehension.

– Nation-state governments approve the use of lethal autonomy, and this capability is democratized to non-state actors.

– Cyber operations have the same political and economic effects as traditional kinetic warfare, reducing or eliminating the need for physical combat.

– Smaller, less-capable states or actors begin achieving surprising or unexpected victories in warfare.

– Kinetic war becomes less lethal as robots replace human tasks.

– Other departments or agencies stand up quasi-military capabilities, have more active military-liaison organizations, or begin actively engaging in competition and conflict.

If you enjoyed this post, please see:

    • “Second/Third Order, and Evil Effects” – The Dark Side of Technology (Parts I & II) by Dr. Nick Marsella.

… as well as our previous “Tenth Man” blog posts:

Disclaimer: The views expressed in this blog post do not necessarily reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).

119. The Queue

[Editor’s Note:  Mad Scientist Laboratory is pleased to present our next edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Mad Scientist Initiative has come across during the previous month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment (OE). We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

1. How Satellites the Size of a Grilled Cheese Sandwich Could Change the World, by Aaron Pressman, Fortune (via Yahoo! Finance), 24 January 2019.

One of Swam Technologies’ miniaturized satellites / Source:  Swarm Technologies

Space is rapidly democratizing and the death of tactical and operational surprise might be the casualty. Sara Spangelo and her startup, Swarm Technologies, is on a quest to deliver global communications at the lowest possible cost. This is a shared objective with companies like Elon Musk’s Starlink, but his solution includes thousands of satellites requiring many successful rocket launches. Swarm Technologies takes the decrease in launch costs due to commercialization and the miniaturization of satellites to the max. Swarm Technologies satellites will be the size of a grilled cheese sandwich and will harness the currents coursing through space to maneuver. This should reduce the required cost and time to create a worldwide network of connectivity for texting and collecting Internet of Things (IoT) data to approximately 25 million dollars and eighteen months.

The work at Starlink and Swarm Technologies only represents a small part of a new space race led by companies rather than the governments that built and manage much of space capability today. In the recent Mad Sci blog post “War Laid Bare,” Matthew Ader described this explosion and how access to global communications and sensing might tip the scales of warfare in favor of the finder, providing an overwhelming advantage over competitors that require stealth or need to hide their signatures to be effective in 21st Century warfare.

Eliminating dead zones in global coverage / Source: Swarm Technologies

The impact of this level of global transparency not only weighs on governments and their militaries, but businesses will find it more difficult to hide from competitors and regulators. Cade Metz writes in the New York TimesBusinesses Will Not Be Able to Hide: Spy Satellites May Give Edge from Above” about the impact this will have on global competition. It is a brave new world unless you have something to hide!

 

2. New Rules Takes the Guesswork out of Human Gene Editing, by Kristin Houser, Futurism, 14 December 2018.

Subtitled, “This will fundamentally change the way we use CRISPR,” the subject article was published following Dr. He Jiankui’s announcement in November 2018 that he had successfully gene-edited two human babies. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9, or CRISPR/Cas9, has become the “go to” tool for genomic engineering. When Dr. He announced that he had altered (as embryos) the twin girls Lulu and Nana’s genes in order to make them HIV-resistant, there was a global outcry from scientists, bio-ethicists, and politicians alike for a variety of reasons. One was the potential imprecision of the genetic editing performed, with the associated risk of unintended genomic damage leading to future health issues for the twins.

With the publication of “Target-Specific Precision of CRISPR-Mediated Genome Editing” in the scientific journal Molecular Cell by research scientists at The Francis Crick Institute in London, however, this particular concern appears to have been mitigated with a set of simple rules that determine the precision of CRISPR/Cas9 editing in human cells.

The effects of CRISPR were thought to be unpredictable and seemingly random,” Crick researcher and group leader Paola Scaffidi said in their news release, “but by analysing hundreds of edits we were shocked to find that there are actually simple, predictable patterns behind it all.”

Per Scaffidi, “Until now, editing genes with CRISPR has involved a lot of guesswork, frustration and trial and error…. The effects of CRISPR were thought to be unpredictable and seemingly random, but by analysing hundreds of edits we were shocked to find that there are actually simple, predictable patterns behind it all. This will fundamentally change the way we use CRISPR, allowing us to study gene function with greater precision and significantly accelerating our science.”

As predicted by Stanford’s bio-ethicist Hank Greely at last March’s Mad Scientist Bio Convergence and Soldier 2050 Conference in Menlo Park, CA, “killer apps” like healthier babies will help overcome the initial resistance to human enhancement via genetic engineering. The Crick Institute’s discovery, with its associated enhanced precision and reliability, may pave the way for market-based designer eugenics. Ramifications for the Future Operational Environment include further societal polarization between the privileged few that will have access to the genomic protocols providing such enhancements and the majority that do not (as in the 2013 film Elysium); the potential for unscrupulous regimes, non-state actors, and super-empowered individuals to breed and employ cadres of genetically enhanced thugs, “button men,” and super soldiers; and the relative policing / combat disadvantage experienced by those powers that outlaw such human genetic enhancements.

 

3. Radical Speaker Series: Countering Weaponized Information, SOFWERX and USSOCOM / J5 Donovan Group, 14 December 2018.

SOFWERX, in collaboration with USSOCOM / J5 Donovan Group, hosted a Radical Speaker Series on weaponized information. Mass influence operations, deep fakes, and social media metrics have been used by state and non-state actors in attempts to influence everything from public sentiment on policy issues to election results. The type and extent of influence operations has laid bare policy and technology gaps. This represents an emerging new threat vector for global competition.

As discussed in the TRADOC G-2’s The Operational Environment and the Changing Character of Future Warfare, Social Media and the Internet of Things has connected “all aspects of human engagement where cognition, ideas, and perceptions, are almost instantaneously available.” While this connectivity has been a global change agent, some are suggesting starting over and abandoning the internet as we know it in favor of alternative internet or “Alternet” solutions.  LikeWar authors Singer and Brookings provide examples of how our adversaries are weaponizing Social Media to augment their operations in the physical domain. One example is the defeat ISIS and re-capture of Mosul, “… Who was involved in the fight, where they were located, and even how they achieved victory had been twisted and transformed. Indeed, if what was online could swing the course of a battle — or eliminate the need for battle entirely — what, exactly, could be considered ‘war’ at all?”

Taken to the next level in the battle for the brain, novel neuroweapons could grant adversaries (and perhaps the United States) the ability to disrupt, degrade, damage, kill, and even “hack” human brains to influence populations. The resulting confusion and panic could disrupt government and society, without mass casualties. These attacks against the human brain facilitate personalized warfare. Neuroweapons are “Weapons of Mass Disruption” that may characterize segments of warfare in the future. These capabilities come with a host of ethical and moral considerations — does affecting someone’s brain purposely, even temporarily, violate ethical codes, treaties, conventions, and international norms followed by the U.S. military? As posed by Singer and Brookings — “what, exactly, could be considered ‘war’ at all?”

 

4. Nano, short film directed by Mike Manning, 2017.

Nano / Source: IMDb

This short film noir focuses on invasive technology and explores themes of liberty, control, and what citizens are willing to trade for safety and security. In a future America, technology has progressed to the point where embedded devices in humans are not only possible and popular, but the norm. These devices, known as Nano, can sync with one’s physiology, alter genomes, change hair and eye color, and, most importantly to law enforcement and government entities, control motor functions. Nano has resulted in a safer society, with tremendous reductions in gun violence. In the film, a new law has passed mandating that all citizens must be upgraded to Nano 2.0 – this controversial move means that the Government will now have access to everyone’s location, will be able to monitor them in real-time, and control their physiology. The Government could, were they so inclined, change someone’s hair color remotely, without permission or, perhaps, more frighteningly, induce indefinite paralysis.

Nano explores and, in some cases, answers the questions about future technologies and their potential impact on society. Nano illustrates how with many of the advantages and services we gain through new technologies, we sometimes have to give up things just as valuable. Technology no longer operates in a vacuum – meaning control over ourselves doesn’t exist. When we use a cellphone, when we access a website, when we, in Nano, change the color of our hair, our actions are being monitored, logged, and tracked by something. With cellphone use, we are willing to live with the fact that we give off a signature that could be traced by a number of agencies, including our service providers, as a net positive outweighing the associated negatives. But where does that line fall? How far would the average citizen go if they could have an embedded device installed that would heal minor wounds and lacerations? What becomes of privacy and what would we be willing to give up? Nano shows the negative consequences of this progression and the dystopian nature of technological slavery. It proposes questions of trust, both in the state and in individuals, and how blurred the lines can be, both in terms of freedoms and physical appearance.

 

5.Artificial Intelligence and the Future of Humans,” by Janna Anderson, Lee Rainie, and Alex Luchsinger, The Pew Research Center, 10 December 2018 (reviewed by Ms. Marie Murphy).

Source: Flikr

The Pew Research Center canvassed a host of technology innovators and business and policy leaders on whether artificial intelligence (AI) and related technology will enhance human capabilities and improve human life, or will it lessen human autonomy and agency to a detrimental level. A majority of the experts who responded to this query agreed that AI will better the lives of most people, but qualified this by noting significant negative outcomes will likely accompany the proliferation and integration of AI systems.

Most agree that AI will greatly benefit humanity and increase the quality of life for many, such as eliminating poverty and disease, while conveniently supplementing human intelligence helping to solve crucial problems. However, there are concerns that AI will conflict with and eventually overpower human autonomy, intelligence, decision-making, analysis, and many other uniquely “human” characteristics. Professionals in the field expressed concerns over the potential for data abuse and cybercrime, job loss, and becoming dependent on AI resulting in the loss of the ability to think independently.

Amy Webb, the founder of the Future Today Institute and professor of strategic foresight at New York University posits that the integration of AI will last for the next 50 years until every industry is reliant on AI systems, requiring workers to possess hybrid skills to compete for jobs that do not yet exist. Simon Briggs, professor of interdisciplinary arts at the University of Edinburgh, predicts that the potential negative outcomes of AI will be the result of a failure of humanity, and that “in 2030 AI will be in routine use to fight wars and kill people, far more effectively than humans can currently kill,” and, “we cannot expect our AI systems to be ethical on our behalf”.

As the U.S. Army continues to explore and experiment with how best to employ AI on the battlefield, there is the great challenge of ensuring that they are being used in the most effective and beneficial capacity, without reducing the efficiency and relevance of the humans working alongside the machines. Warfare will become more integrated with this technology, so monitoring the transition carefully is important for the successful application of AI to military strategy and operations to mitigate its potential negative effects.

 

6.Automation Will Replace Production, Food, and Transportation Jobs First,” by James Dennin, INVERSE, 28 January 2019.

A newly released paper from the Brookings Institute indicated that the advent of autonomy and advanced automation will have unevenly distributed positive and negative effects on varying job and career sectors. According to the report, the three fields most vulnerable to reduction through automation will be production, food service, and transportation jobs. Additionally, certain geographic categories (especially rural, less populated areas) will suffer graver effects of this continuous push towards autonomy.

Though automation is expected to displace labor in 72% of businesses in 2019, the prospects of future workers is not all doom and gloom. As the report notes, automation in a general sense replaces tasks and not entire jobs, although AI and autonomy makes the specter of total job replacement more likely. Remaining tasks make humans even more critical though there may be less of them. While a wide variety of workers are at risk, young people face higher risks of labor displacement (16-24 year olds) partially due to a large amount of their jobs being in the aforementioned sectors.

All of these automation impacts have significant implications for the Future Operational Environment, U.S. Army, and the Future of Warfare. An increase in automation and autonomy in production, food service, and transportation may mean that Soldiers can focus more exclusively on warfighting – moving, shooting, communicating – and in many cases will be complemented and made more lethal through automation. The dynamic nature of work due to these shifts could cause significant unrest requiring military attention in unexpected places. Additionally, the labor displacement of so much youth could be both a boon and a hindrance to the Army. On one hand, there could be a glut of new recruits due to poor employment outlook in the private sector; contrariwise, many of the freshly available recruits may not inherently have the required skills or even aptitude for becoming Warfighters.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future OE, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

110. Future Jobs and Skillsets

[Editor’s Note:  On 8-9 August 2018, the U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Learning in 2050 Conference with Georgetown University’s Center for Security Studies in Washington, DC.  Leading scientists, innovators, and scholars from academia, industry, and the government gathered to address future learning techniques and technologies that are critical in preparing for Army operations in the mid-21st century against adversaries in rapidly evolving battlespaces.  Today’s post is extracted from this conference’s final report (more of which is addressed at the bottom of this post).]

The U.S. Army currently has more than 150 Military Occupational Specialties (MOSs), each requiring a Soldier to learn unique tasks, skills, and knowledges. The emergence of a number of new technologies – drones, Artificial Intelligence (AI), autonomy, immersive mixed reality, big data storage and analytics, etc. – coupled with the changing character of future warfare means that many of these MOSs will need to change, while others will need to be created. This already has been seen in the wider U.S. and global economy, where the growth of internet services, smartphones, social media, and cloud technology over the last ten years has introduced a host of new occupations that previously did not exist. The future will further define and compel the creation of new jobs and skillsets that have not yet been articulated or even imagined. Today’s hobbies (e.g., drones) and recreational activities (e.g., Minecraft/Fortnite) that potential recruits engage in every day could become MOSs or Additional Skill Identifiers (ASIs) of the future.

Training eighty thousand new Recruits a year on existing MOSs is a colossal undertaking.  A great expansion in the jobs and skillsets needed to field a highly capable future Army, replete with modified or new MOSs, adds a considerable burden to the Army’s learning systems and institutions. These new requirements, however, will almost certainly present an opportunity for the Army to capitalize on intelligent tutors, personalized learning, and immersive learning to lessen costs and save time in Soldier and Leader development.

The recruit of 2050 will be born in 2032 and will be fundamentally different from the generations born before them.  Marc Prensky, educational writer and speaker who coined the term digital native, asserts this “New Human” will stand in stark contrast to the “Old Human” in the ways they learn and approach learning..1 Where humans today are born into a world with ubiquitous internet, hyper-connectivity, and the Internet of Things, each of these elements are generally external to the human.  By 2032, these technologies likely will have converged and will be embedded or integrated into the individual with connectivity literally on the tips of their fingers. 

Some of the newly required skills may be inherent within the next generation(s) of these Recruits. Many of the games, drones, and other everyday technologies that are already or soon to be very common – narrow AI, app development and general programming, and smart devices – will yield a variety of intrinsic skills that Recruits will have prior to entering the Army. Just like we no longer train Soldiers on how to use a computer, games like Fortnite, with no formal relationship with the military, will provide players with militarily-useful skills such as communications, resource management, foraging, force structure management, and fortification and structure building, all while attempting to survive against persistent attack.  Due to these trends, Recruits may come into the Army with fundamental technical skills and baseline military thinking attributes that flatten the learning curve for Initial Entry Training (IET).2

While these new Recruits may have a set of some required skills, there will still be a premium placed on premier skillsets in fields such as AI and machine learning, robotics, big data management, and quantum information sciences. Due to the high demand for these skillsets, the Army will have to compete for talent with private industry, battling them on compensation, benefits, perks, and a less restrictive work environment – limited to no dress code, flexible schedule, and freedom of action. In light of this, the Army may have to consider adjusting or relaxing its current recruitment processes, business practices, and force structuring to ensure it is able to attract and retain expertise. It also may have to reconsider how it adapts and utilizes its civilian workforce to undertake these types of tasks in new and creative ways.

The Recruit of 2050 will need to be engaged much differently than today. Potential Recruits may not want to be contacted by traditional methods3 – phone calls, in person, job fairs – but instead likely will prefer to “meet” digitally first. Recruiters already are seeing this today. In order to improve recruiting efforts, the Army may need to look for Recruits in non-traditional areas such as competitive online gaming. There is an opportunity for the Army to use AI to identify Recruit commonalities and improve its targeted advertisements in the digital realm to entice specific groups who have otherwise been overlooked. The Army is already exploring this avenue of approach through the formation of an eSports team that will engage young potential Recruits and attempt to normalize their view of Soldiers and the Army, making them both more relatable and enticing.4 This presents a broader opportunity to close the chasm that exists between civilians and the military.

The overall dynamic landscape of the future economy, the evolving labor market, and the changing character of future warfare will create an inflection point for the Army to re-evaluate longstanding recruitment strategies, workplace standards, and learning institutions and programs. This will bring about an opportunity for the Army to expand, refine, and realign its collection of skillsets and MOSs, making Soldiers more adapted for future battles, while at the same time challenging the Army to remain prominent in attracting premier talent in a highly competitive environment.

If you enjoyed this extract, please read the comprehensive Learning in 2050 Conference Final Report

… and see our TRADOC 2028 blog post.


1 Prensky, Mark, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

2 Schatz, Sarah, Mad Scientist Conference: Learning in 2050, Georgetown University, 8 August 2018.

3 Davies, Hans, Mad Scientist Conference: Learning in 2050, Georgetown University, 9 August 2018.

4 Garland, Chad, Uncle Sam wants you — to play video games for the US Army, Stars and Stripes, 9 November 2018, https://www.stripes.com/news/uncle-sam-wants-you-to-play-video-games-for-the-us-army-1.555885.

87. LikeWar — The Weaponization of Social Media

[Editor’s Note: Regular readers will note that one of our enduring themes is the Internet’s emergence as a central disruptive innovation. With the publication of proclaimed Mad Scientist P.W. Singer and co-author Emerson T. Brooking’s LikeWar – The Weaponization of Social Media, Mad Scientist Laboratory addresses what is arguably the most powerful manifestation of the internet — Social Media — and how it is inextricably linked to the future of warfare. Messrs. Singer and Brooking’s new book is essential reading if today’s Leaders (both in and out of uniform) are to understand, defend against, and ultimately wield the non-kinetic, yet violently manipulative effects of Social Media.]

“The modern internet is not just a network, but an ecosystem of 4 billion souls…. Those who can manipulate this swirling tide, steer its direction and flow, can…. accomplish astonishing evil. They can foment violence, stoke hate, sow falsehoods, incite wars, and even erode the pillars of democracy itself.”

As noted in The Operational Environment and the Changing Character of Future Warfare, Social Media and the Internet of Things have spawned a revolution that has connected “all aspects of human engagement where cognition, ideas, and perceptions, are almost instantaneously available.” While this connectivity has been a powerfully beneficial global change agent, it has also amplified human foibles and biases. Authors Singer and Brookings note that humans by nature are social creatures that tend to gravitate into like-minded groups. We “Like” and share things online that resonate with our own beliefs. We also tend to believe what resonates with us and our community of friends.

Whether the cause is dangerous (support for a terrorist group), mundane (support for a political party), or inane (belief that the earth is flat), social media guarantees that you can find others who share your views and even be steered to them by the platforms’ own algorithms… As groups of like-minded people clump together, they grow to resemble fanatical tribes, trapped in echo chambers of their own design.”

Weaponization of Information

The advent of Social Media less than 20 years ago has changed how we wage war.

Attacking an adversary’s most important center of gravity — the spirit of its people — no longer requires massive bombing runs or reams of propaganda. All it takes is a smartphone and a few idle seconds. And anyone can do it.”

Nation states and non-state actors alike are leveraging social media to manipulate like-minded populations’ cognitive biases to influence the dynamics of conflict. This continuous on-line fight for your mind represents “not a single information war but thousands and potentially millions of them.”

 

LikeWar provides a host of examples describing how contemporary belligerents are weaponizing Social Media to augment their operations in the physical domain. Regarding the battle to defeat ISIS and re-take Mosul, authors Singer and Brookings note that:

Social media had changed not just the message, but the dynamics of conflict. How information was being accessed, manipulated, and spread had taken on new power. Who was involved in the fight, where they were located, and even how they achieved victory had been twisted and transformed. Indeed, if what was online could swing the course of a battle — or eliminate the need for battle entirely — what, exactly, could be considered ‘war’ at all?

Even American gang members are entering the fray as super-empowered individuals, leveraging social media to instigate killings via “Facebook drilling” in Chicago or “wallbanging” in Los Angeles.

And it is only “a handful of Silicon Valley engineers,” with their brother and sister technocrats in Beijing, St. Petersburg, and a few other global hubs of Twenty-first Century innovation that are forging and then unleashing the code that is democratizing this virtual warfare.

Artificial Intelligence (AI)-Enabled Information Operations

Seeing is believing, right? Not anymore! Previously clumsy efforts to photo-shop images and fabricate grainy videos and poorly executed CGI have given way to sophisticated Deepfakes, using AI algorithms to create nearly undetectable fake images, videos, and audio tracks that then go viral on-line to dupe, deceive, and manipulate. This year, FakeApp was launched as free software, enabling anyone with an artificial neural network and a graphics processor to create and share bogus videos via Social Media. Each Deepfake video that:

“… you watch, like, or share represents a tiny ripple on the information battlefield, privileging one side at the expense of others. Your online attention and actions are thus both targets and ammunition in an unending series of skirmishes.”

Just as AI is facilitating these distortions in reality, the race is on to harness AI to detect and delete these fakes and prevent “the end of truth.”

If you enjoyed this post:

– Listen to the accompanying playlist composed by P.W. Singer while reading LikeWar.

– Watch P.W. Singer’s presentation on Meta Trends – Technology, and a New Kind of Race from Day 2 of the Mad Scientist Strategic Security Environment in 2025 and Beyond Conference at Georgetown University, 9 August 2016.

– Read more about virtual warfare in the following Mad Scientist Laboratory blog posts:

— MAJ Chris Telley’s Influence at Machine Speed: The Coming of AI-Powered Propaganda

— COL(R) Stefan J. Banach’s Virtual War – A Revolution in Human Affairs (Parts I and II)

— Mad Scientist Intiative’s Personalized Warfare

— Ms. Marie Murphy’s Virtual Nations: An Emerging Supranational Cyber Trend

— Lt Col Jennifer Snow’s Alternet: What Happens When the Internet is No Longer Trusted?

79. Character vs. Nature of Warfare: What We Can Learn (Again) from Clausewitz

[Editor’s Note: Mad Scientist Laboratory is pleased to present the following post by guest blogger LTC Rob Taber, U.S. Army Training and Doctrine Command (TRADOC) G-2 Futures Directorate, clarifying the often confused character and nature of warfare, and addressing their respective mutability.]

No one is arguing that warfare is not changing. Where people disagree, however, is whether the nature of warfare, the character of warfare, or both are changing.

Source:  Office of the Director of National Intelligence

Take, for example, the National Intelligence Council’s assertion in “Global Trends: Paradox of Progress.” They state, “The nature of conflict is changing. The risk of conflict will increase due to diverging interests among major powers, an expanding terror threat, continued instability in weak states, and the spread of lethal, disruptive technologies. Disrupting societies will become more common, with long-range precision weapons, cyber, and robotic systems to target infrastructure from afar, and more accessible technology to create weapons of mass destruction.”[I]

Additionally, Brad D. Williams, in an introduction to an interview he conducted with Amir Husain, asserts, “Generals and military theorists have sought to characterize the nature of war for millennia, and for long periods of time, warfare doesn’t dramatically change. But, occasionally, new methods for conducting war cause a fundamental reconsideration of its very nature and implications.”[II] Williams then cites “cavalry, the rifled musket and Blitzkrieg as three historical examples”[III] from Husain and General John R. Allen’s (ret.) article, “On Hyperwar.”

Unfortunately, the NIC and Mr. Williams miss the reality that the nature of war is not changing, and it is unlikely to ever change. While these authors may have simply interchanged “nature” when they meant “character,” it is important to be clear on the difference between the two and the implications for the military. To put it more succinctly, words have meaning.

The nature of something is the basic make up of that thing. It is, at core, what that “thing” is. The character of something is the combination of all the different parts and pieces that make up that thing. In the context of warfare, it is useful to ask every doctrine writer’s personal hero, Carl Von Clausewitz, what his views are on the matter.

Source: Tetsell’s Blog. https://tetsell.wordpress.com/2014/10/13/clausewitz/

He argues that war is “subjective,”[IV]an act of policy,”[V] and “a pulsation of violence.”[VI] Put another way, the nature of war is chaotic, inherently political, and violent. Clausewitz then states that despite war’s “colorful resemblance to a game of chance, all the vicissitudes of its passion, courage, imagination, and enthusiasm it includes are merely its special characteristics.”[VII] In other words, all changes in warfare are those smaller pieces that evolve and interact to make up the character of war.

The argument that artificial intelligence (AI) and other technologies will enable military commanders to have “a qualitatively unsurpassed level of situational awareness and understanding heretofore unavailable to strategic commander[s][VIII] is a grand claim, but one that has been made many times in the past, and remains unfulfilled. The chaos of war, its fog, friction, and chance will likely never be deciphered, regardless of what technology we throw at it. While it is certain that AI-enabled technologies will be able to gather, assess, and deliver heretofore unimaginable amounts of data, these technologies will remain vulnerable to age-old practices of denial, deception, and camouflage.

 

The enemy gets a vote, and in this case, the enemy also gets to play with their AI-enabled technologies that are doing their best to provide decision advantage over us. The information sphere in war will be more cluttered and more confusing than ever.

Regardless of the tools of warfare, be they robotic, autonomous, and/or AI-enabled, they remain tools. And while they will be the primary tools of the warfighter, the decision to enable the warfighter to employ those tools will, more often than not, come from political leaders bent on achieving a certain goal with military force.

Drone Wars are Coming / Source: USNI Proceedings, July 2017, Vol. 143 / 7 /  1,373

Finally, the violence of warfare will not change. Certainly robotics and autonomy will enable machines that can think and operate without humans in the loop. Imagine the future in which the unmanned bomber gets blown out of the sky by the AI-enabled directed energy integrated air defense network. That’s still violence. There are still explosions and kinetic energy with the potential for collateral damage to humans, both combatants and civilians.

Source: Lockheed Martin

Not to mention the bomber carried a payload meant to destroy something in the first place. A military force, at its core, will always carry the mission to kill things and break stuff. What will be different is what tools they use to execute that mission.

To learn more about the changing character of warfare:

– Read the TRADOC G-2’s The Operational Environment and the Changing Character of Warfare paper.

– Watch The Changing Character of Future Warfare video.

Additionally, please note that the content from the Mad Scientist Learning in 2050 Conference at Georgetown University, 8-9 August 2018, is now posted and available for your review:

– Read the Top Ten” Takeaways from the Learning in 2050 Conference.

– Watch videos of each of the conference presentations on the TRADOC G-2 Operational Environment (OE) Enterprise YouTube Channel here.

– Review the conference presentation slides (with links to the associated videos) on the Mad Scientist All Partners Access Network (APAN) site here.

LTC Rob Taber is currently the Deputy Director of the Futures Directorate within the TRADOC G-2. He is an Army Strategic Intelligence Officer and holds a Master of Science of Strategic Intelligence from the National Intelligence University. His operational assignments include 1st Infantry Division, United States European Command, and the Defense Intelligence Agency.

Note:  The featured graphic at the top of this post captures U.S. cavalrymen on General John J. Pershing’s Punitive Expedition into Mexico in 1916.  Less than two years later, the United States would find itself fully engaged in Europe in a mechanized First World War.  (Source:  Tom Laemlein / Armor Plate Press, courtesy of Neil Grant, The Lewis Gun, Osprey Publishing, 2014, page 19)

_______________________________________________________

[I] National Intelligence Council, “Global Trends: Paradox of Progress,” January 2017, https://www.dni.gov/files/documents/nic/GT-Full-Report.pdf, p. 6.
[II] Brad D. Williams, “Emerging ‘Hyperwar’ Signals ‘AI-Fueled, machine waged’ Future of Conflict,” Fifth Domain, August 7, 2017, https://www.fifthdomain.com/dod/2017/08/07/emerging-hyperwar-signals-ai-fueled-machine-waged-future-of-conflict/.
[III] Ibid.
[VI] Carl Von Clausewitz, On War, ed. Michael Howard and Peter Paret (Princeton: Princeton University Press, 1976), 85.
[V] Ibid, 87.
[VI] Ibid.
[VII] Ibid, 86.
[VIII] John Allen, Amir Hussain, “On Hyper-War,” Fortuna’s Corner, July 10, 2017, https://fortunascorner.com/2017/07/10/on-hyper-war-by-gen-ret-john-allenusmc-amir-hussain/.

77. “The Tenth Man” — Russia’s Era Military Innovation Technopark

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the second in our series of “The Tenth Man” posts (read the first one here). This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging. The Mad Scientist Laboratory offers it as a platform for the contrarians in our network to share their alternative perspectives and analyses regarding the Future Operational Environment.

Today’s post is by guest blogger Mr. Ray Finch addressing Russia’s on-going efforts to develop a military innovation center —  Era Military Innovation Technopark — near the city of Anapa (Krasnodar Region) on the northern coast of the Black Sea.  Per The Operational Environment and the Changing Character of Future Warfare, “Russia can be considered our ‘pacing threat,’ and will be our most capable potential foe for at least the first half of the Era of Accelerated Human Progress [now through 2035]. It will remain a key adversary through the Era of Contested Equality [2035-2050].” So any Russian attempts at innovation to create “A Militarized Silicon Valley in Russia” should be sounding alarms throughout the NATO Alliance, right?  Well, maybe not….]

(Please note that several of Mr. Finch’s embedded links in the post below are best accessed using non-DoD networks.)

Only a Mad Russian Scientist could write the paragraph below:

Russia Resurgent, Source: Bill Butcher, The Economist

If all goes according to plan, in October 2035 the Kremlin will host a gala birthday party to commemorate President Putin’s 83d birthday. Ever since the Russian leader began receiving special biosynthetic plasma developed by military scientists at the country’s premier Era Technopolis Center in Anapa, the president’s health and overall fitness now resembles that of a 45-year old. This development was just one in a series of innovations which have helped to transform – not just the Kremlin leader – but the entire country.  By focusing its best and brightest on new technologies, Russia has become the global leader in information and telecommunication systems, artificial intelligence, robotic complexes, supercomputers, technical vision and pattern recognition, information security, nanotechnology and nanomaterials, energy tech and technology life support cycle, as well as bioengineering, biosynthetic, and biosensor technologies. In many respects, Russia is now the strongest country in the world.

While this certainly echoes the current Kremlin propaganda, a more sober analysis regarding the outcomes of the Era Military Innovation Technopark in Anapa (Krasnodar Region) ought to consider those systemic factors which will likely retard its future development. Below are five reasons why Putin and Russia will likely have less to celebrate in 2035.

President Putin and Defense Minister Shoigu being briefed on Technopark-Era, Kremlin, 23 Feb 2018. Source: http://kremlin.ru/events/president/news/56923, CC BY 4.0.

You can’t have milk without a cow

The primary reason that the Kremlin’s attempt to create breakthrough innovations at the Era Technopark will result in disappointment stems from the lack of a robust social structure to support such innovations. And it’s not simply the absence of good roads or adequate healthcare. As the renowned MIT scientist, Dr. Loren R. Graham recently pointed out, the Kremlin leadership wants to enjoy the “milk” of technology, without worrying about supporting the system needed to support a “cow.” Graham elaborates on his observation by pointing out that even though Russian scientists have often been at the forefront of technological innovations, the country’s poor legal system prevents these discoveries from ever bearing fruit. Stifling bureaucracy and a broken legal system prevent Russian scientists and innovators from profiting from their discoveries. This dilemma leads to the second factor.

Brain drain

Despite all of the Kremlin’s patriotic hype over the past several years, many young and talented Russians are voting with their feet and pursuing careers abroad. As the senior Russian analyst, Dr. Gordon M. Hahn noted, “instead of voting for pro-democratic forces and/or fomenting unrest, Russia’s discontented, highly educated, highly skilled university graduates tend to move abroad to find suitable work.” And even though the US is maligned on a daily basis in the Kremlin-supported Russian media, many of these smart, young Russians are moving to America. Indeed, according to a recent Radio Free Europe/Radio Liberty (RFE/RL) report, “the number of asylum applications by Russian citizens in the United States hit a 24-year high in 2017, jumping nearly 40 percent from the previous year and continuing an upward march that began after Russian President Vladimir Putin returned to the Kremlin in 2012.” These smart, young Russians believe that their country is headed in the wrong direction and are looking for opportunities elsewhere.

Everything turns out to be a Kalashnikov

There’s no doubt that Russian scientists and technicians are capable of creating effective weapon systems. President Putin’s recent display of military muscle-power was not a mere campaign stratagem, but rather a reminder to his Western “partners” that since Russia remains armed to the teeth, his country deserves respect. And there’s little question that the new Era Technopark will help to create advanced weapon systems of “which there is no analogous version in the world.” But that’s just the point. While Russia is famous for its tanks, artillery, and rocket systems, it has struggled to create anything which might be qualified as a technological marvel in the civilian sector. As some Russian observers have put it, “no matter what the state tries to develop, it ends up being a Kalashnikov.”

Soviet AK-47. Type 2 made from 1951 to 1954/55. Source: http://www.dodmedia.osd.mil Public Domain

The Boss knows what’s best

The current Kremlin leadership now parades itself as being at the forefront of a global conservative and traditional movement. In their favorite narrative, the conniving US is forever trying to weaken Russia (and other autocratic countries) by infecting them with a liberal bacillus, often referred to as a “color revolution.” In their rendition, Russia was contaminated by this democratic disease during the 1990s, only to find itself weakened and taken advantage of by America.

Since then, the Kremlin leadership has retained the form of democracy, but has removed its essence. Elections are held, ballots are cast, but the winner is pre-determined from above. So far, the Russian population has played along with this charade, but at some point, perhaps in an economic crisis, the increasingly plugged-in Russian population might demand a more representative form of government. Regardless, while this top-down, conservative model is ideal for maintaining control and staging major events, it lacks the essential freedom inherent within innovation. Moreover, such a quasi-autocratic system tends to promote Russia’s most serious challenge.

The cancer of corruption

Despite the façade of a uniformed, law-governed state, Russia continues to rank near the bottom on the global corruption index. According to a recent Russian report, “90 percent of entrepreneurs have encountered corruption at least once.” Private Russian companies will likely think twice before deciding to invest in the Era Technopark, unless of course, the Kremlin makes them an offer they cannot refuse. Moreover, as suggested earlier, the young Era scientists may not be fully committed, understanding that the “milk” of their technological discoveries will likely by expropriated by their uniformed bosses.

Technopark Era is not scheduled to be fully operational until 2020, and the elevated rhetoric over its innovative mandate will likely prompt concern among some US defense officials. While the center could advance Russian military technology over the next 15-25 years, it is doubtful that Era will usher in a new era for Russia.

If you enjoyed this edition of the “Tenth Man”:

– Learn more about Russia’s Era Military Innovation Technopark in the April 2018 edition of the TRADOC G-2’s Foreign Military Studies Office (FMSO) OE Watch, Volume 8, Issue 4, pages 10-11.

– Read Mad Scientist Sam Bendett‘s guest blog post on Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward.

Ray Finch works as a Eurasian Analyst at the Foreign Military Studies Office. He’s a former Army officer (Artillery and Russian FAO).

 

71. Shaping Perceptions with Information Operations: Lessons for the Future

[Editor’s Note: Mad Scientist Laboratory is pleased to present today’s guest post by Ms. Taylor Galanides, TRADOC G-2 Summer Intern, exploring how the increasing momentum of human interaction, events, and actions, driven by the convergence of innovative technologies, is enabling adversaries to exploit susceptibilities and vulnerabilities to manipulate populations and undermine national interests.  Ms. Galanides examines contemporary Information Operations as a harbinger of virtual warfare in the future Operational Environment.]

More information is available than ever before. Recent and extensive developments in technology, media, communication, and culture – such as the advent of social media, 24-hour news coverage, and smart devices – allow people to closely monitor domestic and foreign affairs. In the coming decades, the increased speed of engagements, as well as the precise and pervasive targeting of both civilian and military populations, means that these populations and their respective nations will be even more vulnerable to influence and manipulation attempts, misinformation, and cyber-attacks from foreign adversaries.

The value of influencing and shaping the perceptions of foreign and domestic populations in order to pursue national and military interests has long been recognized. This can be achieved through the employment of information operations, which seek to affect the decision-making process of adversaries. The U.S. Army views information operations as an instrumental part of the broader effort to maintain an operational advantage over adversaries. Information operations is specifically defined by the U.S. Army as “The integrated employment, during military operations, of information-related capabilities in concert with other lines of operation to influence, disrupt, corrupt, or usurp the decision-making of adversaries and potential adversaries while protecting our own.”

The U.S. Army Training and Doctrine Command (TRADOC) G-2’s The Operational Environment and the Changing Character of Future Warfare further emphasizes this increased attention to the information and cognitive domains in the future – in the Era of Contested Equality (2035 through 2050). As a result, it has been predicted that no single nation will hold hegemony over its adversaries, and major powers and non-state actors alike “… will engage in a fight for information on a global scale.” Winning preemptively in the competitive dimension before escalation into armed conflict through the use of information and psychological warfare will become key.

Source: Becoming Human – Artificial Intelligence Magazine

Part of the driving force that is changing the character of warfare includes the rise of innovative technologies such as computer bots, artificial intelligence, and smart devices. Such emerging and advancing technologies have facilitated the convergence of new susceptibilities to individual and international security; as such, it will become increasingly more important to employ defensive and counter information operations to avoid forming misperceptions or being deceived.

Harbinger of the Future:  Information Operations in Crimea

Russia’s invasion of eastern Ukraine and subsequent annexation of Crimea in 2014 effectively serve as cautionary examples of Russia’s evolving information operations and their perception-shaping capabilities. In Crimea, Russia sought to create a “hallucinating fog of war” in an attempt to alter the analytical judgments and perceptions of its adversaries. With the additional help of computer hackers, bots, trolls, and television broadcasts, the Russian government was able to create a manipulated version of reality that claimed Russian intervention in Crimea was not only necessary, but humanitarian, in order to protect Russian speakers. Additionally, Russian cyberespionage efforts included the jamming or shutting down of telecommunication infrastructures, important Ukrainian websites, and cell phones of key officials prior to the invasion. Through the use of large demonstrations called “snap exercises,” the Russians were able to mask military buildups along the border, as well as its political and military intentions. Russia further disguised their intentions and objectives by claiming adherence to international law, while also claiming victimization from the West’s attempts to destabilize, subvert, and undermine their nation.

By denying any involvement in Crimea until after the annexation was complete, distorting the facts surrounding the situation, and refraining from any declaration of war, Russia effectively infiltrated the international information domain and shaped the decision-making process of NATO countries to keep them out of the conflict.  NATO nations ultimately chose minimal intervention despite specific evidence of Russia’s deliberate intervention in order to keep the conflict de-escalated. Despite the West’s refusal to acknowledge the annexation of Crimea, it could be argued that Russia achieved their objective of expanding its sphere of influence.

Vulnerabilities and Considerations

Russia is the U.S.’ current pacing threat, and China is projected to overtake Russia as the Nation’s primary threat as early as 2035. It is important to continue to evaluate the way that the U.S. and its Army respond to adversaries’ increasingly technological attempts to influence, in order to maintain the information and geopolitical superiority of the Nation. For example, the U.S. possesses different moral and ethical standards that restrict the use of information operations. However, because adversarial nations like Russia and China pervasively employ influence and deceptive measures in peacetime, the U.S. and its Army could benefit from developing alternative methods for maintaining an operational advantage against its adversaries.


Adversarial nations can also take advantage of “the [Western] media’s willingness to seek hard evidence and listen to both sides of an argument before coming to a conclusion” by “inserting fabricated or prejudicial information into Western analysis and blocking access to evidence.” The West’s free press will continue to be the primary counter to constructed narratives. Additionally, extensive training of U.S. military and Government personnel, in conjunction with educating its civilian population about Russia and China’s deceitful narratives may decrease the likelihood of perceptions being manipulated:  “If the nation can teach the media to scrutinize the obvious, understand the military, and appreciate the nuances of deception, it may become less vulnerable to deception.” Other ways to exploit Russian and Chinese vulnerabilities could include taking advantage of poor operations security, as well as the use and analysis of geotags to refute and discredit Russian and Chinese propaganda narratives.

A final consideration involves the formation of an interagency committee, similar to the Active Measures Working Group from the 1980s, for the identification and countering of adversarial disinformation and propaganda. The coordination of the disinformation efforts by manipulative countries like Russia is pervasive and exhaustive. Thus, coordination of information operations and counter-propaganda efforts is likewise important between the U.S. Government, the Army, and the rest of the branches of the military. The passing of the Countering Foreign Propaganda and Disinformation Act, part of the 2017 National Defense Authorization Act, was an important first step in the continuing fight to counter foreign information and influence operations that seek to manipulate the U.S. and its decision-makers and undermine its national interests.

For more information on how adversaries will seek to shape perception in the Future Operational Environment, read the following related blog posts:

Influence at Machine Speed: The Coming of AI-Powered Propaganda

Virtual War – A Revolution in Human Affairs (Part I)

Personalized Warfare

Taylor Galanides is a Junior at The College of William and Mary in Virginia, studying Psychology. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the G-2 Futures team.

54. A View of the Future: 2035-2050

[Editor’s Note: The following post addresses the Era of Contested Equality (2035-2050) and is extracted from the U.S. Army Training and Doctrine Command (TRADOC) G-2’s The Operational Environment and the Changing Character of Future Warfare, published last summer. This seminal document provides the U.S. Army with a holistic and heuristic approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future.]

Changes encountered during the Future Operational Environment’s Era of Accelerated Human Progress (the present through 2035) begin a process that will re-shape the global security situation and fundamentally alter the character of warfare. While its nature remains constant, the speed, automation, ranges, both broad and narrow effects, its increasingly integrated multi-domain conduct, and the complexity of the terrain and social structures in which it occurs will make mid-century warfare both familiar and utterly alien.

During the Era of Contested Equality (2035-2050), great powers and rising challengers have converted hybrid combinations of economic power, technological prowess, and virulent, cyber-enabled ideologies into effective strategic strength. They apply this strength to disrupt or defend the economic, social, and cultural foundations of the old Post-World War II liberal order and assert or dispute regional alternatives to established global norms. State and non-state actors compete for power and control, often below the threshold of traditional armed conflict – or shield and protect their activities under the aegis of escalatory WMD, cyber, or long-range conventional options and doctrines.

It is not clear whether the threats faced in the preceding Era of Accelerated Human Progress persist, although it is likely that China and Russia will remain key competitors, and that some form of non-state ideologically motivated extremist groups will exist. Other threats may have fundamentally changed their worldviews, or may not even exist by mid-Century, while other states, and combinations of states will rise and fall as challengers during the 2035-2050 timeframe. The security environment in this period will be characterized by conditions that will facilitate competition and conflict among rivals, and lead to endemic strife and warfare, and will have several defining features.

The nation-state perseveres. The nation-state will remain the primary actor in the international system, but it will be weaker both domestically and globally than it was at the start of the century. Trends of fragmentation, competition, and identity politics will challenge global governance and broader globalization, with both collective security and globalism in decline. States share their strategic environments with networked societies which increasingly circumvent governments unresponsive to their citizens’ needs. Many states will face challenges from insurgents and global identity networks – ethnic, religious, regional, social, or economic – which either resist state authority or ignore it altogether.

Super-Power Diminishes. Early-century great powers will lose their dominance in command and control, surveillance, and precision-strike technologies as even non-state actors will acquire and refine their own application of these technologies in conflict and war. Rising competitors will be able to acquire capabilities through a broad knowledge diffusion, cyber intellectual property theft, and their own targeted investments without having to invest into massive “sunken” research costs. This diffusion of knowledge and capability and the aforementioned erosion of long-term collective security will lead to the formation of ad hoc communities of interest. The costs of maintaining global hegemony at the mid-point of the century will be too great for any single power, meaning that the world will be multi-polar and dominated by complex combinations of short-term alliances, relations, and interests.

This era will be marked by contested norms and persistent disorder, where multiple state and non-state actors assert alternative rules and norms, which when contested, will use military force, often in a dimension short of traditional armed conflict.

For additional information on the Future Operational Environment and the Era of Contested Equality:

•  Listen to Modern War Institute‘s podcast where Retired Maj. Gen. David Fastabend and Mr. Ian Sullivan address Technology and the Future of Warfare

•  Watch the TRADOC G-2 Operational Environment Enterprise’s The Changing Character of Future Warfare video.

52. Potential Game Changers

The Mad Scientist Initiative brings together cutting-edge leaders and thinkers from the technology industry, research laboratories, academia, and across the military and Government to explore the impact of potentially disruptive technologies. Much like Johannes Gutenberg’s moveable type (illustrated above), these transformational game changers have the potential to impact how we live, create, think, and prosper. Understanding their individual and convergent impacts is essential to continued battlefield dominance in the Future Operational Environment. In accordance with The Operational Environment and the Changing Character of Future Warfare, we have divided this continuum into two distinct timeframes:

The Era of Accelerated Human Progress (Now through 2035):
The period where our adversaries can take advantage of new technologies, new doctrine, and revised strategic concepts to effectively challenge U.S. military forces across multiple domains. Game changers during this era include:

• Robotics: Forty plus countries develop military robots with some level of autonomy. Impact on society, employment.
Vulnerable: To Cyber/Electromagnetic (EM) disruption, battery life, ethics without man in the loop.
Formats: Unmanned/Autonomous; ground/air vehicles/subsurface/sea systems. Nano-weapons.
Examples: (Air) Hunter/killer Unmanned Aerial Vehicle (UAV) swarms; (Ground) Russian Uran: Recon, ATGMs, SAMs.

• Artificial Intelligence: Human-Agent Teaming, where humans and intelligent systems work together to achieve either a physical or mental task. The human and the intelligent system will trade-off cognitive and physical loads in a collaborative fashion.

• Swarms/Semi Autonomous: Massed, coordinated, fast, collaborative, small, stand-off. Overwhelm target systems. Mass or disaggregate.



• Internet of Things (IoT): Trillions of internet linked items create opportunities and vulnerabilities. Explosive growth in low Size Weight and Power (SWaP) connected devices (Internet of Battlefield Things), especially for sensor applications (situational awareness). Greater than 100 devices per human. Significant end device processing (sensor analytics, sensor to shooter, supply chain management).
Vulnerable: To Cyber/EM/Power disruption. Privacy concerns regarding location and tracking.
Sensor to shooter: Accelerate kill chain, data processing, and decision-making.

• Space: Over 50 nations operate in space, increasingly congested and difficult to monitor, endanger Positioning, Navigation, and Timing (PNT)

GPS Jamming/Spoofing: Increasingly sophisticated, used successfully in Ukraine.
Anti Satellite: China has tested two direct ascent anti-satellite missiles.

The Era of Contested Equality (2035 through 2050):
The period marked by significant breakthroughs in technology and convergences in terms of capabilities, which lead to significant changes in the character of warfare. During this period, traditional aspects of warfare undergo dramatic, almost revolutionary changes which at the end of this timeframe may even challenge the very nature of warfare itself. Game changers during this era include:

• Hyper Velocity Weapons:
Rail Guns (Electrodynamic Kinetic Energy Weapons): Electromagnetic projectile launchers. High velocity/energy and space (Mach 5 or higher). Not powered by explosive.
No Propellant: Easier to store and handle.
Lower Cost Projectiles: Potentially. Extreme G-force requires sturdy payloads.
Limiting factors: Power. Significant IR signature. Materials science.
Hyper Glide Vehicles: Less susceptible to anti-ballistic missile countermeasures.

• Directed Energy Weapons: Signature not visible without technology, must dwell on target. Power requirements currently problematic.
Potential: Tunable, lethal, and non-lethal.
Laser: Directed energy damages intended target. Targets: Counter Aircraft, UAS, Missiles, Projectiles, Sensors, Swarms.
Radio Frequency (RF): Attack targets across the frequency spectrum. Targets: Not just RF; Microwave weapons “cook targets,” people, electronics.

• Synthetic Biology: Engineering / modification of biological entities
Increased Crop Yield: Potential to reduce food scarcity.
Weaponization: Potential for micro-targeting, Seek & destroy microbes that can target DNA. Potentially accessible to super-empowered individuals.
Medical Advances: Enhance soldier survivability.
Genetic Modification: Disease resistant, potentially designer babies and super athletes/soldiers. Synthetic DNA stores digital data. Data can be used for micro-targeting.
CRISPR: Genome editing.

• Information Environment: Use IoT and sensors to harness the flow of information for situational understanding and decision-making advantage.




In envisioning Future Operational Environment possibilities, the Mad Scientist Initiative employs a number of techniques. We have found Crowdsourcing (i.e., the gathering of ideas, thoughts, and concepts from a wide variety of interested individuals assists us in diversifying thoughts and challenging conventional assumptions) to be a particularly effective technique. To that end, we have published our latest, 2-page compendium of Potential Game Changers here — we would like to hear your feedback regarding them. Please let us know your thoughts / observations by posting them in this blog post’s Comment box (found below, in the Leave a Reply section). Alternatively, you can also submit them to us via email at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil. Thank you in advance for your contributions!