191. Competition in 2035: Anticipating Chinese Exploitation of Operational Environments

[Editor’s Note:  In today’s post, Mad Scientist Laboratory explores China’s whole-of-nation approach to exploiting operational environments, synchronizing government, military, and industry activities to change geostrategic power paradigms via competition in 2035. Excerpted from products previously developed and published by the TRADOC G-2’s Operational Environment and Threat Analysis Directorate (see links below), this post describes China’s approach to exploitation and identifies the implications for the U.S. Army — Enjoy!]

The Operational Environment is envisioned as a continuum, divided into two eras: the Era of Accelerated Human Progress (now through 2035) and the Era of Contested Equality (2035 through 2050). This latter era is marked by significant breakthroughs in technology and convergences in terms of capabilities, which lead to significant changes in the character of warfare. During this period, traditional aspects of warfare undergo dramatic, almost revolutionary changes which at the end of this timeframe may even challenge the very nature of warfare itself. In this era, no one actor is likely to have any long-term strategic or technological advantage, with aggregate power between the U.S. and its strategic competitors being equivalent, but not necessarily symmetric. Prevailing in this period will depend on an ability to synchronize multi-domain capabilities against an artificial intelligence-enhanced adversary with an overarching capability to visualize and understand the battlespace at even greater ranges and velocities. Equally important will be controlling information and the narrative surrounding the conflict. Adversaries will adopt sophisticated information operations and narrative strategies to change the context of the conflict and thus defeat U.S. political will.

The future strategic environment will be characterized by a persistent state of competition where global competitors seek to exploit the conditions of operational environments to gain advantage. Adversaries understand that the application of any or all elements of national power in competition just below the threshold of armed conflict is an effective strategy against the U.S.

Chinese DF-17 carrying the DF-ZF Hypersonic Glide Vehicle / Source: Bill Bostock, Business Insider Australia, via Wikimedia Commons

China is rapidly modernizing its armed forces and developing new approaches to warfare. Beijing has invested significant resources into research and development of a wide array of advanced technologies. Coupled with its time-honored practice of reverse engineering technologies or systems it purchases or acquires through espionage, this effort likely will allow China to surpass Russia as our most capable threat sometime around 2030.

China’s Approach to Exploitation

China’s whole-of-nation approach, which involves synchronization of actions across government, military, and industry, will facilitate exploitation of operational environments and enable it to gain global influence through economic exploitation.

China will leverage the international system to advance its own interests while attempting to constrain others, including the U.S.

Preferred Conditions and Methods

The following conditions and methods are conducive to exploitation by China, enabling them to shape the strategic environment in 2035:

    • Infrastructure Capacity Challenges:  China targets undeveloped and fragile environments where their capital investments, technology, and human capital can produce financial gains and generate political influence.
    • Interconnected Economies:  China looks for partners and opportunities to become a significant stakeholder in a wide variety of economies in order to capitalize on its investments as well as generate political influence.
    • Specialized Economies:  China looks for opportunities to partner with specialized markets and leverage their vulnerabilities for gain.
    • Technology Access Gaps:  China targets areas where their capital investments in technology provide partners with key resources and competitive advantages by filling technology gaps.

Implications for the U.S. Army:

    • The Chinese People’s Liberation Army (PLA) deployed armored medical vehicles and personnel to Germany for the Combined Aid 2019 Joint Exercise with the Bundeswehr this past summer.

      Traditional Army threat paradigms may not be sufficient for competition.

    • The Army could be drawn into unanticipated escalation as a result of China’s activities during the competition phase.
    • Army military partnerships will likely be undermined by China in 2035.
    • Army operations and engagements will be increasingly impacted by the pervasiveness of Chinese goods, technology, infrastructure, and systems.

If you enjoyed this post, please see the original paper and associated infographic of the same title, both by the TRADOC G-2’s Operational Environment and Threat Analysis Directorate and hosted on their All Partners Access Network (APAN) site

… and read the following MadSci Laboratory blog posts:

A view of the Future: 2035-2050

China’s Drive for Innovation Dominance and Quantum Surprise on the Battlefield?, by Elsa Kania

A Closer Look at China’s Strategies for Innovation: Questioning True Intent, by Cindy Hurst

Critical Projection: Insights from China’s Science Fiction, by Lt Col Dave Calder

190. Weaponized Information: One Possible Vignette

[Editor’s Note:  The Information Environment (IE) is the point of departure for all events across the Multi-Domain Operations (MDO) spectrum. It’s a unique space that demands our understanding, as the Internet of Things (IoT) and hyper-connectivity have democratized accessibility, extended global reach, and amplified the effects of weaponized information. Our strategic competitors and adversaries have been quick to grasp and employ it to challenge our traditional advantages and exploit our weaknesses.

    • Our near-peers confront us globally, converging IE capabilities with hybrid strategies to expand the battlefield across all domains and create hemispheric threats challenging us from home station installations (i.e., the Strategic Support Area) to the Close Area fight.
    • Democratization of weaponized information empowers regional hegemons and non-state actors, enabling them to target the U.S. and our allies and achieve effects at a fraction of the cost of conventional weapons, without risking armed conflict.
    • The IE enables our adversaries to frame the conditions of future competition and/or escalation to armed conflict on their own terms.

Today’s post imagines one such vignette, with Russia exploiting the IE to successfully out-compete us and accomplish their political objectives, without expending a single bullet!]

Ethnic Russian minorities’ agitation against their respective governments in Estonia, Lithuania, and Latvia spike. Simultaneously, the Russian Government ratchets up tensions, with inflammatory statements of support for these ethnic Russian minorities in the Baltic States; coordinated movements and exercises by Russian ground, naval, and air forces adjacent to the region; and clandestine support to ethnic Russians in these States. The Russian Government started a covert campaign to shape people’s views about the threats against the Russian diaspora. More than 200,000 twitter accounts send 3.6 million tweets trending #protectRussianseverywhere. This sprawling Russian disinformation campaign is focused on building internal support for the Russian President and a possible military action. The U.S. and NATO respond…

The 2nd Cav Regt is placed on alert; as it prepares to roll out of garrison for Poland, several videos surface across social media, purportedly showing the sexual assault of several underage German nationals by U.S. personnel. These disturbingly graphic deepfakes appear to implicate key Leaders within the Regiment. German political and legal authorities call for an investigation and host nation protests erupt outside the gates of Rose Barracks, Vilseck, disrupting the unit’s deployment.

Simultaneously, in units comprising the initial Force Package earmarked to deploy to Europe, key personnel (and their dependents) are targeted, distracting troops from their deployment preparations and disrupting unit cohesion:

    • Social media accounts are hacked/hijacked, with false threats by dependents to execute mass/school shootings, accusations of sexual abuse, hate speech posts by Leaders about their minority troops, and revelations of adulterous affairs between unit spouses.
    • Bank accounts are hacked: some are credited with excessive amounts of cash followed by faux “See Something, Say Something” hotline accusations being made about criminal and espionage activities; while others are zeroed out, disrupting families’ abilities to pay bills.

Russia’s GRU (Military Intelligence) employs AI Generative Adversarial Networks (GANs) to create fake persona injects that mimic select U.S. Active Army, ARNG, and USAR commanders making disparaging statements about their confidence in our allies’ forces, the legitimacy of the mission, and their faith in our political leadership. Sowing these injects across unit social media accounts, Russian Information Warfare specialists seed doubt and erode trust in the chain of command amongst a percentage of susceptible Soldiers, creating further friction in deployment preparations.

As these units load at railheads or begin their road march towards their respective ports of embarkation, Supervisory Control and Data Acquisition (SCADA) attacks are launched on critical rail, road, port, and airfield infrastructures, snarling rail lines, switching yards, and crossings; creating bottlenecks at key traffic intersections; and spoofing navigation systems to cause sealift asset collisions and groundings at key maritime chokepoints. The fly-by-wire avionics are hacked on a departing C-17, causing a crash with the loss of all 134 Soldiers onboard. All C-17s are grounded, pending an investigation.

Salvos of personalized, “direct inject” psychological warfare attacks are launched against Soldiers via immersive media (Augmented, Virtual, and Mixed Reality; 360o Video/Gaming), targeting them while they await deployment and are in-transit to Theater. Similarly, attacks are vectored at spouses, parents, and dependents, with horrifying imagery of their loved ones’ torn and maimed bodies on Artificial Intelligence-generated battlefields (based on scraped facial imagery from social media accounts).

Multi-Domain Operations has improved Jointness, but exacerbated problems with “the communications requirements that constitute the nation’s warfighting Achilles heel.” As units arrive in Theater, seams within and between these U.S. and NATO Intelligence, Surveillance, and Reconnaissance; Fires; Sustainment; and Command and Control inter-connected and federated tactical networks that facilitate partner-to-partner data exchanges are exploited with specifically targeted false injects, sowing doubt and distrust across the alliance for the Multi-Domain Common Operating Picture. Spoofing of these systems leads to accidental air defense engagements, resulting in Blue-on-Blue fratricide or the downing of a commercial airliner, with additional civilian deaths on the ground from spent ordnance, providing more opportunities for Russian Information Operations to spread acrimony within the alliance and create dissent in public opinion back home.

With the flow of U.S. forces into the Baltic Nations, real instances of ethnic Russians’ livelihoods being disrupted (e.g., accidental destruction of livestock and crops, the choking off of main routes to market, and damage to essential services [water, electricity, sewerage]) by maneuver units on exercise are captured on video and enhanced digitally to exacerbate their cumulative effects. Proliferated across the net via bots, these instances further stoke anti-Baltic / anti-U.S. opinion amongst Russian-sympathetic and non-aligned populations alike.

Following years of scraping global social media accounts and building profiles across the full political spectrum, artificial influencers are unleashed on-line that effectively target each of these profiles within the U.S. and allied civilian populations. Ostensibly engaging populations via key “knee-jerk” on-line affinities (e.g., pro-gun, pro-choice, etc.), these artificial influencers, ever so subtly, begin to shift public opinion to embrace a sympathetic position on the rights of the Russian diaspora to greater autonomy in the Baltic States.

The release of deepfake videos showing Baltic security forces massacring ethnic Russians creates further division and causes some NATO partners to hesitate, question, and withhold their support, as required under Article 5. The alliance is rent asunder — Checkmate!

Many of the aforementioned capabilities described in this vignette are available now. Threats in the IE space will only increase in verisimilitude with augmented reality and multisensory content interaction. Envisioning what this Bot 2.0 Competition will look like is essential in building whole-of-government countermeasures and instilling resiliency in our population and military formations.

The Mad Scientist Initiative will continue to explore the significance of the IE to Competition and Conflict and information weaponization throughout our FY20 events — stay tuned to the MadSci Laboratory for more information. In anticipation of this, we have published The Information Environment:  Competition and Conflict anthology, a collection of previously published blog posts that serves as a primer on this topic and examines the convergence of technologies that facilitates information weaponization — Enjoy!

188. “Tenth Man” — Challenging our Assumptions about the Future Force

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish our latest “Tenth Man” post. This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging. We offer it as a platform for the contrarians in our network to share their alternative perspectives and analyses regarding the Operational Environment (OE). Today’s post examines a foundational assumption about the Future Force by challenging it, reviewing the associated implications, and identifying potential signals and/or indicators of change. Read on!]

Assumption: The United States will maintain sufficient Defense spending as a percentage of its GDP to modernize the Multi-Domain Operations (MDO) force. [Related MDO Baseline Assumption – “b. The Army will adjust to fiscal constraints and have resources sufficient to preserve the balance of readiness, force structure, and modernization necessary to meet the demands of the national defense strategy in the mid-to far-term (2020-2040),” TRADOC Pam 525-3-1, The U.S. Army in Multi-Domain Operations 2028, p. A-1.]

Source: U.S. Census Bureau

Over the past decades, the defense budget has varied but remained sufficient to accomplish the missions of the U.S. military. However, a graying population with fewer workers and longer life spans will put new demands on the non-discretionary and discretionary federal budget. These stressors on the federal budget may indicate that the U.S. is following the same path as Europe and Japan. By 2038, it is projected that 21% of Americans will be 65 years old or older.1 Budget demand tied to an aging population will threaten planned DoD funding levels.

In the near-term (2019-2023), total costs in 2019 dollars are projected to remain the same. In recent years, the DoD underestimated the costs of acquiring weapons systems and maintaining compensation levels. By taking these factors into account, a 3% increase from the FY 2019 DoD budget is needed in this timeframe. Similarly, the Congressional Budget Office (CBO) estimates that costs will steadily climb after 2023. Their base budget in 2033 is projected to be approximately $735 billion — that is an 11% increase over ten years. This is due to rising compensation rates, growing costs of operations and maintenance, and the purchasing of new weapons systems.2 These budgetary pressures are connected to several stated and hidden assumptions:

    • An all-volunteer force will remain viable [Related MDO Baseline Assumption – “a. The U.S. Army will remain a professional, all volunteer force, relying on all components of the Army to meet future commitments.”],
    • Materiel solutions’ associated technologies will have matured to the requisite Technology Readiness Levels (TRLs), and
    • The U.S. will have the industrial ability to reconstitute the MDO force following “America’s First Battle.”

Implications: If these assumptions prove false, the manned and equipped force of the future will look significantly different than the envisioned MDO force. A smaller DoD budget could mean a small fielded Army with equipping decisions for less exquisite weapons systems. A smaller active force might also drive changes to Multi-Domain Operations and how the Army describes the way it will fight in the future.

Signpost / Indicators of Change:

    • 2008-type “Great Recession”
    • Return of budget control and sequestration
    • Increased domestic funding for:
      • Universal Healthcare
      • Universal College
      • Social Security Fix
    • Change in International Monetary Environment (higher interest rates for borrowing)

If you enjoyed this alternative view on force modernization, please also see the following posts:

  • Disclaimer: The views expressed in this blog post do not reflect those of the Department of Defense, Department of the Army, Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).

1The long-term impact of aging on the federal budget,” by Louise Sheiner, Brookings, 11 January 2018 https://www.brookings.edu/research/the-long-term-impact-of-aging-on-the-federal-budget/

2Long-Term Implications of the 2019 Future Years Defense Program,” Congressional Budget Office, 13 February 2019. https://www.cbo.gov/publication/54948

184. Blurring Lines Between Competition and Conflict

[Editor’s Note: The United States Army faces multiple, complex challenges in tomorrow’s Operational Environment (OE), confronting strategic competitors in an increasingly contested space across every domain (land, air, maritime, space, and cyberspace). The Mad Scientist Initiative, the U.S. Army Training and Doctrine Command (TRADOC) G-2 Futures, and Army Futures Command (AFC) Future Operational Environment Cell have collaborated with representatives from industry, academia, and the Intelligence Community to explore the blurring lines between competition and conflict, and the character of great power warfare in the future. Today’s post captures our key findings regarding the OE and what will be required to successfully compete, fight, and win in it — Enjoy!].

Alternative Views of Warfare: The U.S. Army’s view of the possible return to Large Scale Combat Operations (LSCO) and capital systems warfare might not be the future of warfare. Near-peer competitors will seek to achieve national objectives through competition short of conflict, and regional competitors and non-state actors will effectively compete and fight with smaller, cheaper, and greater numbers of systems against our smaller number of exquisite systems. However, preparation for LSCO and great state warfare may actually contribute to its prevention.

Competition and Conflict are Blurring: The dichotomy of war and peace is no longer a useful construct for thinking about national security or the development of land force capabilities. There are no longer defined transitions from peace to war and competition to conflict. This state of simultaneous competition and conflict is continuous and dynamic, but not necessarily cyclical. Potential adversaries will seek to achieve their national interest short of conflict and will use a range of actions from cyber to kinetic against unmanned systems walking up to the line of a short or protracted armed conflict. Authoritarian regimes are able to more easily ensure unity of effort and whole-of-government over Western democracies and work to exploit fractures and gaps in decision-making, governance, and policy.

The globalization of the world – in communications, commerce, and belligerence (short of war) – as well as the fragmentation of societies and splintering of identities has created new factions and “tribes,” and opened the aperture on who has offensive capabilities that were previously limited to state actors. Additionally, the concept of competition itself has broadened as social media, digital finance, smart technology, and online essential services add to a growing target area.

Adversaries seek to shape public opinion and influence decisions through targeted information operations campaigns, often relying on weaponized social media. Competitors invest heavily in research and development in burgeoning technology fields Artificial Intelligence (Al), quantum sciences, and biotech – and engage in technology theft to weaken U.S. technological superiority. Cyber attacks and probing are used to undermine confidence in financial institutions and critical government and public functions – Supervisory Control and Data Acquisition (SCADA), voting, banking, and governance. Competition and conflict are occurring in all instruments of power throughout the entirety of the Diplomatic, Information, Military and Economic (DIME) model.

Cyber actions raise the question of what is the threshold to be considered an act of war. If an adversary launches a cyber ­attack against a critical financial institution and an economic crisis results – is it an act of war? There is a similar concern regarding unmanned assets. While the kinetic destruction of an unmanned system may cost millions, no lives are lost. How much damage without human loss of life is acceptable?

Nuclear Deterrence limits Great Power Warfare: Multi-Domain Operations (MDO) is predicated on a return to Great Power warfare. However, nuclear deterrence could make that eventuality less likely. The U.S. may be competing more often below the threshold of conventional war and the decisive battles of the 20th Century (e.g., Midway and Operation Overlord). The two most threatening adversaries – Russia and China – have substantial nuclear arsenals, as does the United States, which will continue to make Great Power conventional warfare a high risk / high cost endeavor. The availability of non-nuclear capabilities that can deliver regional and global effects is a new attribute of the OE. This further complicates the deterrence value of militaries and the escalation theory behind flexible deterrent options. The inherent implications of cyber effects in the real world – especially in economies, government functions, and essential services – further exacerbates the blurring between competition and conflict.

Hemispheric Competition and Conflict: Over the last twenty years, Russia and China have been viewed as regional competitors in Eurasia or South-East Asia. These competitors will seek to undermine and fracture traditional Western institutions, democracies, and alliances. Both are transitioning to a hemispheric threat with a primary focus on challenging the U.S. Army all the way from its home station installations (i.e., the Strategic Support Area) to the Close Area fight. We can expect cyber attacks against critical infrastructure, the use of advanced information warfare such as deep fakes targeting units and families, and the possibility of small scale kinetic attacks during what were once uncontested administrative actions of deployment. There is no institutional memory for this threat and adding time and required speed for deployment is not enough to exercise MDO.

Disposable versus Exquisite: Current thinking espouses technologically advanced and expensive weapons platforms over disposable ones, which brings with it an aversion to employ these exquisite platforms in contested domains and an inability to rapidly reconstitute them once they are committed and subsequently attrited. In LSCO with a near-peer competitor, the ability to reconstitute will be imperative. The Army (and larger DoD) may need to shift away from large and expensive systems to cheap, scalable, and potentially even disposable unmanned systems (UxS). Additionally, the increases in miniaturized computing power in cheaper systems, coupled with advances in machine learning could lead to massed precision rather than sacrificing precision for mass and vice versa.

This challenge is exacerbated by the ability for this new form of mass to quickly aggregate/disaggregate, adapt, self­-organize, self-heal, and reconstitute, making it largely unpredictable and dynamic. Adopting these capabilities could provide the U.S. Army and allied forces with an opportunity to use mass precision to disrupt enemy Observe, Orient, Decide, and Act (OODA) loops, confuse kill chains/webs, overwhelm limited adversary formations, and exploit vulnerabilities in extended logistics tails and advanced but immature communication networks.

Human-Starts-the-Loop: There have been numerous discussions and debate over whether armed forces will continue to have a “man-in-the-loop” regarding Lethal Autonomous Weapons Systems (LAWS). Lethal autonomy in future warfare may instead be “human-starts-the-loop,” meaning that humans will be involved in the development of weapons/targeting systems – establishing rules and scripts – and will initiate the process, but will then allow the system to operate autonomously. It has been stated that it would be ethically disingenuous to remain constrained by “human-on-the-loop” or “human-in-the-­loop” constructs when our adversaries are unlikely to similarly restrict their own autonomous warfighting capabilities. Further, the employment of this approach could impact the Army’s MDO strategy. The effects of “human-starts-the-loop” on the kill chain – shortening, flattening, or otherwise dispersing – would necessitate changes in force structuring that could maximize resource allocation in personnel, platforms, and materiel. This scenario presents the Army with an opportunity to execute MDO successfully with increased cost savings, by: 1) Conducting independent maneuver – more agile and streamlined units moving rapidly; 2) Employing cross-domain fires – efficiency and speed in targeting and execution; 3) Maximizing human potential – putting capable Warfighters in optimal positions; and 4) Fielding in echelons above brigade – flattening command structures and increasing efficiency.

Emulation and the Accumulation of Advantages: China and Russia are emulating many U.S. Department of Defense modernization and training initiatives. China now has Combat Training Centers. Russia has programs that mirror the Army’s Cross Functional Team initiatives and the Artificial Intelligence (AI) Task Force. China and Russia are undergoing their own versions of force modernization to better professionalize the ranks and improve operational reach. Within these different technical spaces, both China and Russia are accumulating advantages that they envision will blunt traditional U.S. combat advantages and the tenets described in MDO. However, both nations remain vulnerable and dependent on U.S. innovations in microelectronics, as well as the challenges of incorporating these technologies into their own doctrine, training, and cultures.

If you enjoyed this post, please also see:

Jomini’s Revenge: Mass Strikes Back! by Zachery Tyson Brown.

Our “Tenth Man” – Challenging our Assumptions about the Operational Environment and Warfare posts, where Part 1 discusses whether the future fight will necessarily even involve LSCO and Part 2 addresses the implications of a changed or changing nature of war.

The Death of Authenticity:  New Era Information Warfare.

 

 

178. Space: Challenges and Opportunities

[Editor’s Note:  The U.S. Army Futures Command (AFC) and Training and Doctrine Command (TRADOC) co-sponsored the Mad Scientist Disruption and the Operational Environment Conference with the Cockrell School of Engineering at The University of Texas at Austin on 24-25 April 2019 in Austin, Texas. Today’s post is excerpted from this conference’s Final Report (see link at the end of this post), addressing how the Space Domain is becoming increasingly crowded, given that the community of spacefaring entities now comprises more than 90 nations, as well as companies such as Amazon, Google, and Alibaba.  This is particularly significant to the Army as it increasingly relies on space-based assets to support long-range precision fires and mission command.  Read on to learn how this space boom will create operational challenges for the Army, while simultaneously yield advances in autonomy that will ultimately benefit military applications in the other operational domains. (Note: Some of the embedded links in this post are best accessed using non-DoD networks.)]

Everybody wants to launch satellites

Space has the potential to become the most strategically important domain in the Operational Environment. Today’s maneuver Brigade Combat Team (BCT) has over 2,500 pieces of equipment dependent on space-based assets for Positioning, Navigation, and Timing (PNT).1 This number is only going to increase as emerging technology on Earth demands increased bandwidth, new orbital infrastructure, niche satellite capabilities, and advanced robotics.

Image made from models used to track debris in Low Earth Orbit / Source: NASA Earth Observatory; Wikimedia Commons

Low Earth Orbit is cluttered with hundreds of thousands of objects, such as satellites, debris, and other refuse that can pose a hazard to space operations, and only one percent of these objects are tracked.2  This complexity is further exacerbated by the fact that there are no universally recognized “space traffic rules” and no standard operating procedures. Additionally, there is a space “gold rush” with companies and countries racing to launch assets into orbit at a blistering pace. The FCC has granted over 7,500 satellite licenses for SpaceX alone over the next five years, and the U.S. has the potential to double the number of tracked space objects in that same timeframe.3 This has the potential to cause episodes of Kessler syndrome – where cascading damage produced by collisions increases debris by orders of magnitude.4  This excess debris could also be used as cover by an adversary for a hostile act, thereby making attribution difficult.

There are efforts, such as University of Texas-Austin’s tool ASTRIAGraph, to mitigate this problem through crowdsourcing the location of orbital objects. A key benefit of these tools is their ability to analyze all sources of information simultaneously so as to get the maximum mutual information on desired space domain awareness criteria and enable going from data to discovery.5   One added benefit is that the system layers the analysis of other organizations and governments to reveal gaps, inconsistencies, and data overlaps. This information is of vital importance to avoid collisions, to determine what is debris and what is active, and to properly plan flight paths. For the military, a collision with a mission-critical asset could disable warfighter capabilities, cause unintentional escalation, or result in loss of life.

As astronauts return to Earth via the Orion spacecraft, autonomous caretaking systems will maintain Gateway. / Source: NASA

Autonomy will be critical for future space activities because physical human presence in space will be limited. Autonomous robots with human-like mechanical skills performing maintenance and hardware survivability tasks will be vital. For example, NASA’s Gateway program relies upon fully autonomous systems to function as it’s devoid of humans for 11 months out of the year.

An autonomous caretaking capability will facilitate spacecraft maintenance when Gateway is unmanned / Source: NASA; Dr. Julia Badger

Fixing mechanical and hardware problems on the space station requires a dexterous robot on board that takes direction from a self-diagnosing program, thus creating a self-healing system of systems.6 The military can leverage this technology already developed for austere environments to perform tasks requiring fine motor skills in environments that are inhospitable or too dangerous for human life. Similar dual-use autonomous capabilities employed by our near-peer competitors could also serve as a threat capability against U.S. space assets.  As the military continues to expand its mission sets in space, and its assets become more complex systems of systems, it will increasingly rely on autonomous or semi-autonomous robots for maintenance, debris collection, and defense.

The Space Domain is vital to Land Domain operations.  Our adversaries are well aware of this dependence and intend to disrupt and degrade these capabilities.  NASA is at the forefront of long range operations with robotic systems responsible for self-healing, collection of information, and communications.  What lessons are being learned and applied by the Army from NASA’s experience with autonomous operations in Space?

If you enjoyed this post, please also see:

The entire Mad Scientist Disruption and the Operational Environment Conference Final Report, dated 25 July 2019.

– Dr. Moriba K. Jah and Dr. Diane Howard‘s presentation from the aforementioned conference on Space Traffic Management and Situational Awareness

Dr. Julia Badger‘s presentation from the same conference on Robotics in Space.

– Dr. Jah‘s Modern War Institute podcast on What Does the Future Hold for the US Military in Space? hosted by our colleagues at Modern War Institute.

The following Mad Scientist Laboratory blog posts on space:


1 Houck, Caroline, “The Army’s Space Force Has Doubled in Six Years, and Demand Is Still Going Up,” DefenseOne, 23 Aug. 2017. https://www.defenseone.com/technology/2017/08/armys-space-force-has-doubled-six-years-and-demand-still-going/140467/

2 Jah, Moriba, Mad Scientist Conference: Disruption and the Future Operational Environment, University of Texas at Austin, 25 April 2019.

3 Seemangal, Robin, “Watch SpaceX Launch the First of its Global Internet Satellites,” Wired, 18 Feb. 2018. https://www.wired.com/story/watch-spacex-launch-the-first-of-its-global-internet-satellites/

4 “Micrometeoriods and Orbital Debris (MMOD),” NASA, 14 June 2016. https://www.nasa.gov/centers/wstf/site_tour/remote_hypervelocity_test_laboratory/micrometeoroid_and_orbital_debris.html

5 https://sites.utexas.edu/moriba/astriagraph/

6 Badger, Julia, Mad Scientist Conference: Disruption and the Future Operational Environment, University of Texas at Austin, 25 April 2019.

135. Enabling Future Game Changing Capabilities with Mobile Nuclear Power

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s post by guest blogger Dr. Juan Vitali, addressing how Mobile Nuclear Power Plants can contribute significantly to the Army’s future power requirements in support of Multi-Domain Operations.]

Energy is a cross cutting requirement for modern warfare. Electrical energy is essential to achieve several strategic capabilities and to operate many tactical systems. Electricity to attain strategic outcomes and to maintain the tactical edge comes at a cost, with ever-increasing amounts of liquid fuel needed for electrical generation. As future battlefield capabilities develop, fuel demand trends are expected to grow by over 30 percent.i A secondary thought on power generation is its constraining effect on new capability developments that are typically designed around existing power plant availability, size, and generation limits.

The U.S. Army’s Mobile Low-Power First Generation (ML-1) MNPP from the early 1960s

The Army recognized this issue in the 1960s and began development of a Mobile Nuclear Power Plant (MNPP) for deployed forces. Energy dense nuclear fuel would displace liquid fuel, providing the needed electrical generation capability for theater assets, while displacing fuel that could enable maneuver force reach. This concept is perhaps more valid today to support Multi-Domain Operations (MDO). Modern concepts of warfare such as MDO require increasing mobility and dispersion of combat forces in responding to current and future threats. This requires units to be capable of long periods of independent operation.

Elements of TF Spartan, 155th ABCT on live fire exercise near Alexandria, Egypt (Sgt. James Lefty Larimer/Army)

The difficulty of maintaining adequate fuel supplies over extended distances in a combat theater may hamper or halt maneuver forces far more effectively than any action taken by the enemy. Concepts, such as mobile nuclear power, enable fuel focus forward to support the warfighter and combat platforms while supplying the requisite power to sustain support areas.

Theater sustainment electrical generation requirements will need fuel to operate conventional prime power plants supporting theater entry, operations, and sustainment. Theater fuel requirements to provide electrical power for units/capabilities/infrastructure at echelons above division are significant. During any conflict, successful attacks on friendly infrastructure will require large amounts of electrical power to re-establish theater offensive, defensive, and sustainment capabilities such as radars, ports, airfields, logistics nodes, and transportation networks damaged by enemy attack (for both follow-on force Reception, Staging, Onward movement and Integration [RSOI] and sustainment). Examples from WWII are numerous but notably include the 1944 restoration of critical European ports destroyed by kinetic attacks. This necessitated the U.S. Army bringing multiple, large, megawatt (MW)-level mobile power plants on-line, each requiring over 22,000 gallons of fuel per dayii – fuel that could have supported maneuver forces such as the fuel starved Third Army. Focusing fuel to the point of need is vital for overall sustainment at scale enabling Multi-Domain Operations.

Modern technology has taken both nuclear reactor design and safety, as well as supporting power generation a long way since the initial Army foray into nuclear power in the early 1960s. Improved and inherently safe gas-cooled reactor designs have evolved, eliminating many of the safety issues associated with complex, legacy, water-cooled reactors. Use of encapsulated fuels that are designed to prevent the release of volatiles reduces/eliminates the threat of a radioactive plume if successfully attacked, or their utility for employment in a ‘dirty bomb’. Modern, multi-MW MNPP designs can be small and light enough for air transport by C-17, easily camouflaged, and can rapidly provide large amounts of power to meet theater electrical prime power needs, without the need for continuously moving large amounts of fuel.

While such a capability supports the current operating environment, it is in shaping the future operating environment (2025 and beyond) that the MNPP has its greatest utility. The ability to provide large MW-level amounts of power provides options for future weapons designers. While directed energy (DE) and electric weapons (EM Cannon/Rail Gun) come to mind first, other opportunities for expanded capabilities abound. Adequate power is available for options such as vehicle electric drive and/or beaming power to remote/forward locations, further enhancing distributed operations and survivability. This capability, in turn, can support other future capabilities such as EW jamming or replenishment of forward area electric vehicles or aircraft. An MNPP providing reliable, clean power for sensors, such as radars, in remote locations reduces resupply exposure, while supporting offensive and defensive operations over extended periods of time. Protection of non-mobile sites such as airfields, ports, or other logistics nodes is enhanced by MW-level laser/DE weapons capable of defending against ballistic or hypersonic missile attack. The ability to have large amounts of electrical power can also support future long-range attack capabilities such as electric cannons. Future logistics capabilities are enhanced, too. MNPP-levels of power would easily support desalinization/water purification, additive manufacturing, on-site fuel production and other capabilities technically possible now but dependent on large amounts of power. Lastly, enabling power resiliency by rapid reconstitution of electrical generation capability supporting the commercial power grid and its support functions (e.g., electric rail transport network, hospitals, etc.) is also possible following a deliberate attack or natural disaster.

Developing an MNPP today is not only possible given existing technologies and materials but also essential for maintaining technological dominance and sustainment at scale. Modern designs and fuels provide the needed safety for operating in a military environment while eliminating or reducing the risks associated with legacy water-cooled reactors. Large scale electric generation supporting functions and facilities at echelons above division allow displacement of fuel to focus and support fuel forward – allowing greater maneuver and reach of forward forces in the MDO fight, while enabling next generation design of types of electric lethality and mobility capabilities needed for 21st century warfare. Every one of us is part of this evolution and the construction of the future force to ensure the Army is ready, lethal, and prepared in any domain, anytime, and anywhere.

If you enjoyed this post, please also see:

Mobile Low-Power First Generation (ML-1) MNPP video from the early 1960s, demonstrating the Army’s enduring requirement for this capability.

Small Portable Nuclear Reactor video from the Los Alamos National Lab.

Potential Game Changers information paper, downloadable from the MadSci APAN site.

Study on the use of Mobile Nuclear Power Plants for Ground Operations report from the Deputy Chief of Staff G-4, U.S. Army, 26 October 2018.

… and crank up Blondie‘s Atomic!

Dr. Juan Vitali is an MNPP subject matter expert. He has a Bachelor of Science in Nuclear Engineering, Cum Laude, a Master of Engineering in Nuclear Engineering, and a Ph. D. in Nuclear and Engineering Physics, all from the University of Florida; and a Master of Science in National Security and Resource Strategy from the Eisenhower School, National Defense University. He is also a Senior Executive Fellow at the Kennedy School of Government, Harvard University.


i Fowler KM, A Colotelo, D Appriou and JL Downs. 2018. Future Contingency Base Operational Energy Concepts to Support Multi-Domain Operations. PNNL-27661 Pacific Northwest National Laboratory, Richland, Washington. [Limited Distribution].

ii USACE Baltimore. 2014. Army Nuclear Power Program, 1969.  Video accessed on August 18, 2018 at:
https://www.youtube.com/watch?v=HPWDMHH4rY4

 

131. Omega

[Editor’s Note:  Story Telling is a powerful tool that allows us to envision how innovative and potentially disruptive technologies could be employed and operationalized in the Future Operational Environment. In today’s guest blog post, proclaimed Mad Scientist Mr. August Cole and Mr. Amir Husain use story telling to effectively:

  • Describe what the future might look like if our adversaries out-innovate us using Artificial Intelligence and cheap robotics;
  • Address how the U.S. might miss a strategic breakthrough due to backward-looking analytical mindsets; and
  • Imagine an unconventional Allied response in Europe to an emboldened near-peer conflict.

Enjoy reading how the NATO Alliance could react to Omega — “a Russian autonomous joint force in a … ready-to-deploy box… [with an] area-denial bubble projected by their new S-600s extend[ing] all the way to the exo-sphere, … cover[ing] the entirety of the ground, sea and cyber domains” — on the cusp of a fictional not-so-distant future near-peer conflict!]

Omega

22 KILOMETERS NORTH OF KYIV / UKRAINE

“Incoming!” shouted Piotr Nowak, a master sergeant in Poland’s Jednostka Wojskowa Komandosów special operations unit. Dropping to the ground, he clawed aside a veil of brittle green moss to wedge himself into a gap beneath a downed tree. He hoped the five other members of his military advisory team, crouched around the fist-shaped rock formation behind him, heard his shouts. To further reinforce Ukraine’s armed forces against increasingly brazen Russian military support for separatists in the eastern part of the country, Poland’s government had been quietly supplying military trainers. A pro-Russian military coup in Belarus two weeks earlier only served to raise tensions in the region – and the stakes for the JWK on the ground.

An instant later incoming Russian Grad rocket artillery announced itself with a shrill shriek. Then a rapid succession of sharp explosive pops as the dozen rockets burst overhead. Nowak quickly realized these weren’t ordinary fires.

Russian 9a52-4 MLRS conducting a fire mission / Source: The National Interest

There was no spray of airburst shrapnel or the lung-busting concussion of a thermobaric munition. Instead, it sounded like summer fireworks – the explosive separation of the 122mm rocket artillery shell’s casing. Once split open, each weapon’s payload deployed an air brake to slow its approach.

During that momentary silence, Nowak edged out slightly from under the log to look up at the sky. He saw the drifting circular payload extend four arms and then, suddenly, it came to life as it sprang free of its parachute harness. With a whine from its electric motors, the quadcopter darted out of sight.

That sound built and built over the next minute as eleven more of these Russian autonomous drones darted menacingly in a loose formation through the forest above the Polish special operations commandos. Nowak cursed the low-profile nature of their mission: The Polish soldiers had not yet received the latest compact American counter-UAS electronic-warfare systems that could actually fit in their civilian Skoda Kodiaq SUVs.

Nowak held his airplane-mode mobile phone out from under the log to film the drones, using his arm like a selfie-stick. Nowak needed to report in what he was seeing – this was proof Russian forces had turned their new AI battle management system online inside Ukraine. But he also knew that doing so would be a death sentence, whether he texted the video on the country’s abominably slow mobile networks or used his secure NATO comms. These Russian drones could detect either type of transmission in an instant. Once the drones cued to his transmission he would be targeted either by their own onboard anti-personnel munitions or a follow-on strike by conventional artillery.

This was no mere variation on the practice of using Leer-3 drones  for electronic warfare and to spot for Russian artillery. It marked the first-ever deployment of an entirely new Russian AI battle system complex, Omega. Nowak had only heard about the Russians firing entire drone swarms from inexpensive Grad rocket-artillery rounds once before in Syria while deployed with a US task force. But they had never done so in Ukraine, at least not that he knew about.  Most observers chalked up Russia’s Syrian experimentations with battlefield robots and drone swarms to clumsy failures. Clearly something had changed.

With his phone, Nowak recorded how the drones appeared to be coordinating their search activities as if they were a single hive intelligence. They divided the dense forest into cells they searched cooperatively. Within seconds, they climbed and dove from treetop height looking for anyone or anything hiding below.

At that very instant, the drone’s computer vision algorithms detected Novak’s team. Each and every one of them. Within seconds, six of the aggressively maneuvering drones revealed themselves in a disjointed dive down from the treetops and zoomed in on the JWK fighters’ positions.

Nobody needed to be told what to do. The team raised their weapons and fired short bursts at the Russian drones. One shattered like a clay pigeon. But two more buzzed into view to take its place. Another drone went down to a shotgun-fired SkyNet round. Then the entire drone formation shifted its flight patterns, dodging and maneuvering even more erratically, making it nearly impossible to shoot the rest down. The machines learned from their own losses, Nowak realized. Would his superiors do the same for him?

Nowak emptied his magazine with a series of quick bursts, but rather than reload he put his weapon aside and rolled out from under the log. Fully exposed and clutching the phone with shaking hands, he hastily removed one of his gloves with his teeth. Then he switched the device on. Network connected. He scrolled to the video of the drones. Send! Send! Send!

Eleven seconds later, Novak’s entire Polish JWK special forces team lay dead on the forest floor.

Jednostka Wojskowa Komandosow (JWK) / Source: Wikimedia Commons

________________________________

Omega is not any one specific weapon, rather it is made up of a menagerie of Russian weapons, large and small. It’s as if you fused information warfare, SAMs, fires, drones, tactical autonomous bots… There’s everything from S-600 batteries to cheap Katyusha-style rocket artillery to Uran-9 and -13 tanks. But it is what controls the hardware that makes Omega truly unique: AI. At its core, it’s an artificial intelligence system fusing data from thousands of sensors, processed information, and found patterns that human eyes and minds cannot fathom. The system’s AI is not only developing a comprehensive real-time picture, it’s also developing probabilities and possible courses of enemy action. It can coordinate thousands of “shooters”, from surface-to-air missiles, to specialized rocket artillery deploying autonomous tactical drones like the ones that killed the JWK team, to UGVs like the latest Uran-13 autonomous tracked units.

The developers of the Omega system incorporated technologies such as software-defined radio, which uses universal receivers that could listen in to a broad array of frequencies. Thousands of these bands are monitored with machine learning algorithms to spot insurgent radio stations, spy on the locations of Ukrainian military and police, and even determine if a certain frequency is being used to remotely control explosives or other military equipment. When a threat is discovered, the system will dispatch drones to observe the triangulated location of the source. If the threat needs to be neutralized a variety of kinetic systems – from guided artillery shells to loitering munitions and autonomous drones – can be dispatched for the kill.

________________________________

If you enjoyed this excerpt, please:

Read the complete Omega short story, hosted by our colleagues at the Atlantic Council NATOSource blog,

Learn how the U.S. Joint Force and our partners are preparing to prevail in competition with our strategic adversaries and, when necessary, penetrate and dis-integrate their anti-access and area denial systems and exploit the resultant freedom of maneuver to achieve strategic objectives (win) and force a return to competition on favorable terms in The U.S. Army in Multi-Domain Operations 2028 Executive Summary, and

See one prescription for precluding the strategic surprise that is the fictional Omega in The Importance of Integrative Science/Technology Intelligence (InS/TINT) to the Prediction of Future Vistas of Emerging Threats, by Dr. James Giordano,  CAPT (USN – Ret.) L. R. Bremseth, and Mr. Joseph DeFranco.

Reminder: You only have 1 week left to enter your submissions for the Mad Scientist Science Fiction Writing Contest 2019.  Click here for more information about the contest and how to submit your short story(ies) for consideration by our 1 April 2019 deadline!

Mr. August Cole is a proclaimed Mad Scientist, author, and futurist focusing on national security issues. He is a non-resident senior fellow at the Art of the Future Project at the Atlantic Council. He also works on creative foresight at SparkCognition, an artificial intelligence company, and is a senior advisor at Avascent, a consulting firm. His novel with fellow proclaimed Mad Scientist P.W. Singer, entitled Ghost Fleet: A Novel of the Next World War, explores the future of great power conflict and disruptive technologies in wartime.

Mr. Amir Husain is the founder and CEO of SparkCognition, a company envisioned to be at the forefront of the “AI 3.0” revolution. He serves as advisor and board member to several major institutions, including IBM Watson, University of Texas Department of Computer Science, Makerarm, ClearCube Technology, uStudio and others; and his work has been published in leading tech journals, including Network World, IT Today, and Computer World. In 2015, Amir was named Austin’s Top Technology Entrepreneur of the Year.

Disclaimer: This publication is a work of fiction by Messrs. August Cole and Amir Husain, neither of whom have any affiliation with U.S. Army Training and Doctrine Command, the U.S. Army, or the U.S. Government. This piece is meant to be thought-provoking and entertaining, and does not reflect the current position of the U.S. Army.

128. Disruption and the Future Operational Environment

Mad Scientist Laboratory is pleased to announce that Headquarters, U.S. Army Training and Doctrine Command (TRADOC) is co-sponsoring the Mad Scientist Disruption and the Future Operational Environment Conference with the Cockrell School of Engineering at The University of Texas at Austin on 24-25 April 2019 in Austin, Texas.

Plan on joining us virtually as we explore the individual and convergent impacts of technological innovations on Multi-Domain Operations and the Future Operational Environment, from today through 2050.

Disruptors addressed include robotics, artificial intelligence and autonomy, the future of space, planetary habitability, and the legal and ethical dilemmas surrounding how they will impact the future of warfare, specifically in the land and space domains.

Acknowledged global experts presenting include renowned futurist Dr. James Canton, author and CEO and Chairman of the Institute for Global Futures; former Deputy Secretary of Defense Robert Work, Senior Counselor for Defense and Distinguished Senior Fellow for Defense and National Security, Center for a New American Security (CNAS); Robonaut Julia Badger, Project Manager for the NASA’s Autonomous Spacecraft Management Projects; and former NASA spacecraft navigator Dr. Moriba K. Jah, Associate Professor of Aerospace Engineering and Engineering Mechanics at UT Austin; as well as speakers from DARPA, Sandia National Labs, and Army senior leaders.

Get ready…

– Review the conference agenda’s list of presentations here.

– Read our following blog posts:  Making the Future More Personal: The Oft-Forgotten Human Driver in Future’s Analysis, An Appropriate Level of Trust…, War Laid Bare, and Star Wars 2050.

– Subscribe to the Mad Scientist Laboratory to stay abreast of this conference and all things Mad Scientist — go to the subscribe function found on the right hand side of this screen.

We look forward to your participation on-line in six weeks!

 

122. The Guy Behind the Guy: AI as the Indispensable Marshal

[Editor’s Note: Mad Scientist Laboratory is pleased to present today’s guest blog post by Mr. Brady Moore and Mr. Chris Sauceda, addressing how Artificial Intelligence (AI) systems and entities conducting machine speed collection, collation, and analysis of battlefield information will free up warfighters and commanders to do what they do best — fight and make decisions, respectively. This Augmented Intelligence will enable commanders to focus on the battle with coup d’œil, or the “stroke of an eye,” maintaining situational awareness on future fights at machine speed, without losing precious time crunching data.]

Jon Favreau’s Mike character (left) is the “guy behind the guy,” to Vince Vaughn’s Trent character (right) in Swingers, directed by Doug Liman, Miramax;(1996) / Source: Pinterest

In the 1996 film Swingers, the characters Trent (played by Vince Vaughn) and Mike (played by Jon Favreau) star as a couple of young guys trying to make it in Hollywood. On a trip to Las Vegas, Trent introduces Mike as “the guy behind the guy” – implying that Mike’s value is that he has the know-how to get things done, acts quickly, and therefore is indispensable to a leading figure. Yes, I’m talking about Artificial Intelligence for Decision-Making on the future battlefield – and “the guy behind the guy” sums up how AI will provide a decisive advantage in Multi-Domain Operations (MDO).

Some of the problems commanders will have on future battlefields will be the same ones they have today and the same ones they had 200 years ago: the friction and fog of war. The rise of information availability and connectivity brings today’s challenges – of which most of us are aware. Advanced adversary technologies will bring future challenges for intelligence gathering, command, communication, mobility, and dispersion. Future commanders and their staffs must be able to deal with both perennial and novel challenges faster than their adversaries, in disadvantageous circumstances we can’t control. “The guy behind the guy” will need to be conversant in vast amounts of information and quick to act.

Louis-Alexandre Berthier was a French Marshal and Vice-Constable of the Empire, and Chief of Staff under Napoleon / oil portrait by Jacques Augustin Catherine Pajou (1766–1828), Source: Wikimedia Commons

In western warfare, the original “guy behind the guy” wasn’t Mike – it was this stunning figure. Marshal Louis-Alexandre Berthier was Napoleon Bonaparte’s Chief of Staff from the start of his first Italian campaign in 1796 until his first abdication in 1814. Famous for rarely sleeping while on campaign, Paul Thiebault said of Berthier in 1796:

“Quite apart from his specialist training as a topographical engineer, he had knowledge and experience of staff work and furthermore a remarkable grasp of everything to do with war. He had also, above all else, the gift of writing a complete order and transmitting it with the utmost speed and clarity…No one could have better suited General Bonaparte, who wanted a man capable of relieving him of all detailed work, to understand him instantly and to foresee what he would need.”

Bonaparte’s military record, his genius for war, and skill as a leader are undisputed, but Berthier so enhanced his capabilities that even Napoleon himself admitted about his absence at Waterloo, “If Berthier had been there, I would not have met this misfortune.”

Augmented Intelligence, where intelligent systems enhance human capabilities (rather than systems that aspire to replicate the full scope of human intelligence), has the potential to act as a digital Chief of Staff to a battlefield commander. Just like Berthier, AI for decision-making would free up leaders to clearly consider more factors and make better decisions – allowing them to command more, and research and analyze less. AI should allow humans to do what they do best in combat – be imaginative, compel others, and act with an inherent intuition, while the AI tool finds, processes, and presents the needed information in time.

So Augmented Intelligence would filter information to prioritize only the most relevant and timely information to help manage today’s information overload, as well as quickly help communicate intent – but what about yesterday’s friction and fog, and tomorrow’s adversary technology? The future battlefield seems like one where U.S. commanders will be starved for the kind of Intelligence, Surveillance, and Reconnaissance (ISR) and communication we are so used to today, a battlefield with contested Electromagnetic Spectrum (EMS) and active cyber effects, whether known or unknown. How can commanders and their staffs begin to overcome challenges we haven’t yet been presented in war?

Average is Over: Powering America Beyond the Age of the Great Stagnation, by Tyler Cowen / Dutton, The Penguin Group, published in 2013

In his 2013 book Average is Over, economist Tyler Cowen examines the way freestyle chess players (who are free to use computers when playing the game) use AI tools to compete and win, and makes some interesting observations that are absolutely applicable to the future of warfare at every level. He finds competitors have to play against foes who have AI tools themselves, and that AI tools make chess move decisions that can be recognized (by people) and countered. The most successful freestyle chess players use a combination of their own knowledge of the game, but pick and choose times and situations to use different kinds of AI throughout a game. Their opponents not only then have to consider which AI is being used against them, but also their human operator’s overall strategy. This combination of Augmented Intelligence with an AI tool, along with natural inclinations and human intuitions will likely result in a powerful equilibrium of human and AI perception, analysis, and ultimately enhanced complex decision-making.

With a well-trained and versatile “guy behind the guy,” a commander and staff could employ different aspects of Augmented Intelligence at different times, based on need or appropriateness. A company commander in a dense urban fight, equipped with an appropriate AI tool – a “guy behind the guy” that helps him make sense of the battlefield – what could that commander accomplish with his company? He could employ the tool to notice things humans don’t – or at least notice them faster and alert him. Changes in historic traffic patterns or electronic signals in an area could indicate an upcoming attack or a fleeing enemy, or the system could let the commander know that just a little more specific data could help establish a pattern where enemy data was scarce. And if the commander was presented with the very complex and large problems that characterize modern dense urban combat, the system could help shrink and sequence problems to make them more solvable – for instance find a good subset of information to experiment with and help prove a hypothesis before trying out a solution in the real world – risking bandwidth instead of blood.

The U.S. strategy for MDO has already identified the critical need to observe, orient, decide, and act faster than our adversaries – multiple AI tools that have all necessary information, and can present it and act quickly will certainly be indispensable to leaders on the battlefield. An AI “guy behind the guy” continuously sizing up the situation, finding the right information and allowing for better, faster decisions in difficult situations is how Augmented Intelligence will best serve leaders in combat and provide battlefield advantage.

If you enjoyed this post, please also read:

… watch Juliane Gallina‘s Arsenal of the Mind presentation at the Mad Scientist Robotics, AI, & Autonomy Visioning Multi Domain Battle in 2030-2050 Conference at Georgia Tech Research Institute, Atlanta, Georgia, on 7-8 March 2017

… and learn more about potential AI battlefield applications in our Crowdsourcing the Future of the AI Battlefield information paper.

Brady Moore is a Senior Enterprise Client Executive at Neudesic in New York City. A graduate of The Citadel, he is a former U.S. Army Infantry and Special Forces officer with service as a leader, planner, and advisor across Iraq, Afghanistan, Africa, and, South Asia. After leaving the Army in 2011, he obtained an MBA at Penn State and worked as an IBM Cognitive Solutions Leader covering analytics, AI, and Machine Learning in National Security. He’s the Junior Vice Commander of VFW Post 2906 in Pompton Lakes, NJ, and Cofounder of the Special Forces Association Chapter 58 in New York City. He also works with Elite Meet as often as he can.

Chris Sauceda is an account manager within the U.S. Army Defense and Intel IBM account, covering Command and Control, Cyber, and Advanced Analytics/ Artificial Intelligence. Chris served on active duty and deployed in support of Operation Iraqi Freedom, and has been in the Defense contracting business for over 13 years. Focused on driving cutting edge technologies to the warfighter, he also currently serves as a Signal Officer in the Texas Military Department.

70. Star Wars 2050

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s guest post by returning blogger Ms. Marie Murphy, addressing the implication of space drones and swarms on space-based services critical to the U.S. Army.  Ms. Murphy’s previous post addressed Virtual Nations: An Emerging Supranational Cyber Trend.]

Drone technology continues to proliferate in militaries and industries around the world.  In the deep future, drones and drone swarms may extend physical conflict into the space domain.  As space becomes ever more critical to military operations, states will seek technologies to counter their adversaries’ capabilities.   Drones and swarms can blend in with space debris in order to provide a tactical advantage against vulnerable and expensive assets at a lower cost.

Source: AutoEvolution

Space was recently identified as a battlespace domain in recognition of threats increasing at an unexpected rate and, in 2013, the Army Space Training Strategy was released. The functions of the Army almost entirely depend on space systems for daily and specialized operations, particularly C4ISR and GPS capabilities. “Well over 2,500 pieces of equipment… rely on a space-based capability” in any given combat brigade, so an Army contingency plan for the loss of satellite communication is critical.[I]  It is essential for the Army, in conjunction with other branches of the military and government agencies, to best shield military assets in space and continue to develop technologies, such as outer space drones and swarms, to remain competitive and secure throughout this domain in the future.

Source: CCTV China

Drone swarms in particular are an attractive military option due to their relative inexpensiveness, autonomy, and durability as a whole. The U.S., China, and Russia are the trifecta of advanced drone and drone swarm technology and also pose the greatest threats in space. In May 2018, Chinese Company CETC launched 200 autonomous drones,[II] beating China’s own record of 119 from 2017.[III] The U.S. has also branched out into swarm technology with the testing of Perdix drones, although the U.S. is most known for its use of the high-tech Predator drone.[IV]

Source: thedrive.com

Non-state actors also possess rudimentary drone capabilities. In January 2018, Syrian rebels attacked a Russian installation with 13 drones in an attempt to overwhelm Russian defenses. The Russian military was able to neutralize the attack by shooting down seven and bringing the remaining six down with electronic countermeasures.[V] While this attack was quelled, it proves that drones are being used by less powerful or economically resourceful actors, making them capable of rendering many traditional defense systems ineffective. It is not a far leap to incorporate autonomous communication between vehicles, capitalizing on the advantages of a fully interactive and cooperative drone swarm.

NASA Homemade Drone; Source: NASA Swamp Works

The same logic applies when considering drones and drone swarms in space. However, these vehicles will need to be technologically adapted for space conditions. Potentially most similar to future space drones, the company Swarm Technology launched four nanosats called “SpaceBees” with the intention of using them to create a constellation supporting Internet of Things (IoT) networks; however, they did so from India without FCC authorization.[VI] Using nanosats as examples of small, survivable space vehicles, the issues of power and propulsion are the most dominant technological roadblocks. Batteries must be small and are subject to failure in extreme environmental conditions and temperatures.[VII] Standard drone propulsion mechanisms are not viable in space, where drones will have to rely on cold-gas jets to maneuver.[VIII] Drones and drone swarms can idle in orbit (potentially for weeks or months) until activated, but they may still need hours of power to reach their target. The power systems must also have the ability to direct flight in a specific direction, requiring more energy than simply maintaining orbit.

Source: University of Southampton

There is a distinct advantage for drones operating in space: the ability to hide in plain sight among the scattered debris in orbit. Drones can be sent into space on a private or government launch hidden within a larger, benign payload.[IX] Once in space, these drones could be released into orbit, where they would blend in with the hundreds of thousands of other small pieces of material. When activated, they would lock onto a target or targets, and swarms would converge autonomously and communicate to avoid obstacles. Threat detection and avoidance systems may not recognize an approaching threat or swarm pattern until it is too late to move an asset out of their path (it takes a few hours for a shuttle and up to 30 hours for the ISS to conduct object avoidance maneuvers). In the deep future, it is likely that there will be a higher number of larger space assets as well as a greater number of nanosats and CubeSats, creating more objects for the Space Surveillance Network to track, and more places for drones and swarms to hide.[X]

For outer space drones and drone swarms, the issue of space junk is a double-edged sword. While it camouflages the vehicles, drone and swarm attacks also produce more space junk due to their kinetic nature. One directed “kamikaze” or armed drone can severely damage or destroy a satellite, while swarm technology can be harnessed for use against larger, defended assets or in a coordinated attack. However, projecting shrapnel can hit other military or commercial assets, creating a Kessler Syndrome effect of cascading damage.[XI] Once a specific space junk removal program is established by the international community, the resultant debris effects from drone and swarm attacks can be mitigated to preclude collateral damage.  However, this reduction of space junk will also result in less concealment, limiting drones’ and swarms’ ability to loiter in orbit covertly.

Utilizing drone swarms in space may also present legal challenges.  The original governing document regarding space activities is the Outer Space Treaty of 1967. This treaty specifically prohibits WMDs in space and the militarization of the moon and other celestial bodies, but is not explicit regarding other forms of militarization, except to emphasize that space activities are to be carried out for the benefit of all countries. So far, military space activities have been limited to deploying military satellites and combatting cyber-attacks. Launching a kinetic attack in space would carry serious global implications and repercussions.

Such drastic and potentially destructive action would most likely stem from intense conflict on Earth. Norms about the usage of space would have to change. The Army must consider how widely experimented with and implemented drone and swarm technologies can be applied to targeting critical and expensive assets in orbit. Our adversaries do not have the same moral and ethical compunctions regarding space applications that the U.S. has as the world’s leading democracy. Therefore, the U.S. Army must prepare for such an eventuality.  Additionally, the Army must research and develop a more robust alternative to our current space-based GPS capability.  For now, the only war in space is the one conducted electronically, but kinetic operations in outer space are a realistic possibility in the deep future.

Marie Murphy is a rising junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative.

______________________________________________________

[I] Houck, Caroline, “The Army’s Space Force Has Doubled in Six Years, and Demand Is Still Going Up,” Defense One, 23 August 2017.

[II]China’s Drone Swarms,” OE Watch, Vol. 8.7, July 2018.

[III]China Launches Drone Swarm of 119 Fixed-Wing Unmanned Aerial Vehicles,” Business Standard, 11 June 2017.

[IV] Atherton, Kelsey D., “The Pentagon’s New Drone Swarm Heralds a Future of Autonomous War Machines,” Popular Science, 17 January 2017.

[V] Hruska, Joel, “Think One Military Drone is Bad? Drone Swarms Are Terrifyingly Difficult to Stop,” Extreme Tech, 8 March 2018.

[VI] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[VII] Chow, Eugene K., “America Is No Match for China’s New Space Drones,” The National Interest, 4 November 2017.

[VIII] Murphy, Mike, “NASA Is Working on Drones That Can Fly In Space,” Quartz, 31 July 2015.

[IX] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[X]Space Debris and Human Spacecraft,” NASA, 26 September 2013.

[XI] Scoles, Sarah, “The Space Junk Problem Is About to Get a Whole Lot Gnarlier,” WIRED, July 31, 2017.