135. Enabling Future Game Changing Capabilities with Mobile Nuclear Power

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s post by guest blogger Dr. Juan Vitali, addressing how Mobile Nuclear Power Plants can contribute significantly to the Army’s future power requirements in support of Multi-Domain Operations.]

Energy is a cross cutting requirement for modern warfare. Electrical energy is essential to achieve several strategic capabilities and to operate many tactical systems. Electricity to attain strategic outcomes and to maintain the tactical edge comes at a cost, with ever-increasing amounts of liquid fuel needed for electrical generation. As future battlefield capabilities develop, fuel demand trends are expected to grow by over 30 percent.i A secondary thought on power generation is its constraining effect on new capability developments that are typically designed around existing power plant availability, size, and generation limits.

The U.S. Army’s Mobile Low-Power First Generation (ML-1) MNPP from the early 1960s

The Army recognized this issue in the 1960s and began development of a Mobile Nuclear Power Plant (MNPP) for deployed forces. Energy dense nuclear fuel would displace liquid fuel, providing the needed electrical generation capability for theater assets, while displacing fuel that could enable maneuver force reach. This concept is perhaps more valid today to support Multi-Domain Operations (MDO). Modern concepts of warfare such as MDO require increasing mobility and dispersion of combat forces in responding to current and future threats. This requires units to be capable of long periods of independent operation.

Elements of TF Spartan, 155th ABCT on live fire exercise near Alexandria, Egypt (Sgt. James Lefty Larimer/Army)

The difficulty of maintaining adequate fuel supplies over extended distances in a combat theater may hamper or halt maneuver forces far more effectively than any action taken by the enemy. Concepts, such as mobile nuclear power, enable fuel focus forward to support the warfighter and combat platforms while supplying the requisite power to sustain support areas.

Theater sustainment electrical generation requirements will need fuel to operate conventional prime power plants supporting theater entry, operations, and sustainment. Theater fuel requirements to provide electrical power for units/capabilities/infrastructure at echelons above division are significant. During any conflict, successful attacks on friendly infrastructure will require large amounts of electrical power to re-establish theater offensive, defensive, and sustainment capabilities such as radars, ports, airfields, logistics nodes, and transportation networks damaged by enemy attack (for both follow-on force Reception, Staging, Onward movement and Integration [RSOI] and sustainment). Examples from WWII are numerous but notably include the 1944 restoration of critical European ports destroyed by kinetic attacks. This necessitated the U.S. Army bringing multiple, large, megawatt (MW)-level mobile power plants on-line, each requiring over 22,000 gallons of fuel per dayii – fuel that could have supported maneuver forces such as the fuel starved Third Army. Focusing fuel to the point of need is vital for overall sustainment at scale enabling Multi-Domain Operations.

Modern technology has taken both nuclear reactor design and safety, as well as supporting power generation a long way since the initial Army foray into nuclear power in the early 1960s. Improved and inherently safe gas-cooled reactor designs have evolved, eliminating many of the safety issues associated with complex, legacy, water-cooled reactors. Use of encapsulated fuels that are designed to prevent the release of volatiles reduces/eliminates the threat of a radioactive plume if successfully attacked, or their utility for employment in a ‘dirty bomb’. Modern, multi-MW MNPP designs can be small and light enough for air transport by C-17, easily camouflaged, and can rapidly provide large amounts of power to meet theater electrical prime power needs, without the need for continuously moving large amounts of fuel.

While such a capability supports the current operating environment, it is in shaping the future operating environment (2025 and beyond) that the MNPP has its greatest utility. The ability to provide large MW-level amounts of power provides options for future weapons designers. While directed energy (DE) and electric weapons (EM Cannon/Rail Gun) come to mind first, other opportunities for expanded capabilities abound. Adequate power is available for options such as vehicle electric drive and/or beaming power to remote/forward locations, further enhancing distributed operations and survivability. This capability, in turn, can support other future capabilities such as EW jamming or replenishment of forward area electric vehicles or aircraft. An MNPP providing reliable, clean power for sensors, such as radars, in remote locations reduces resupply exposure, while supporting offensive and defensive operations over extended periods of time. Protection of non-mobile sites such as airfields, ports, or other logistics nodes is enhanced by MW-level laser/DE weapons capable of defending against ballistic or hypersonic missile attack. The ability to have large amounts of electrical power can also support future long-range attack capabilities such as electric cannons. Future logistics capabilities are enhanced, too. MNPP-levels of power would easily support desalinization/water purification, additive manufacturing, on-site fuel production and other capabilities technically possible now but dependent on large amounts of power. Lastly, enabling power resiliency by rapid reconstitution of electrical generation capability supporting the commercial power grid and its support functions (e.g., electric rail transport network, hospitals, etc.) is also possible following a deliberate attack or natural disaster.

Developing an MNPP today is not only possible given existing technologies and materials but also essential for maintaining technological dominance and sustainment at scale. Modern designs and fuels provide the needed safety for operating in a military environment while eliminating or reducing the risks associated with legacy water-cooled reactors. Large scale electric generation supporting functions and facilities at echelons above division allow displacement of fuel to focus and support fuel forward – allowing greater maneuver and reach of forward forces in the MDO fight, while enabling next generation design of types of electric lethality and mobility capabilities needed for 21st century warfare. Every one of us is part of this evolution and the construction of the future force to ensure the Army is ready, lethal, and prepared in any domain, anytime, and anywhere.

If you enjoyed this post, please also see:

Mobile Low-Power First Generation (ML-1) MNPP video from the early 1960s, demonstrating the Army’s enduring requirement for this capability.

Small Portable Nuclear Reactor video from the Los Alamos National Lab.

Potential Game Changers information paper, downloadable from the MadSci APAN site.

Study on the use of Mobile Nuclear Power Plants for Ground Operations report from the Deputy Chief of Staff G-4, U.S. Army, 26 October 2018.

… and crank up Blondie‘s Atomic!

Dr. Juan Vitali is an MNPP subject matter expert. He has a Bachelor of Science in Nuclear Engineering, Cum Laude, a Master of Engineering in Nuclear Engineering, and a Ph. D. in Nuclear and Engineering Physics, all from the University of Florida; and a Master of Science in National Security and Resource Strategy from the Eisenhower School, National Defense University. He is also a Senior Executive Fellow at the Kennedy School of Government, Harvard University.


i Fowler KM, A Colotelo, D Appriou and JL Downs. 2018. Future Contingency Base Operational Energy Concepts to Support Multi-Domain Operations. PNNL-27661 Pacific Northwest National Laboratory, Richland, Washington. [Limited Distribution].

ii USACE Baltimore. 2014. Army Nuclear Power Program, 1969.  Video accessed on August 18, 2018 at:
https://www.youtube.com/watch?v=HPWDMHH4rY4

 

131. Omega

[Editor’s Note:  Story Telling is a powerful tool that allows us to envision how innovative and potentially disruptive technologies could be employed and operationalized in the Future Operational Environment. In today’s guest blog post, proclaimed Mad Scientist Mr. August Cole and Mr. Amir Husain use story telling to effectively:

  • Describe what the future might look like if our adversaries out-innovate us using Artificial Intelligence and cheap robotics;
  • Address how the U.S. might miss a strategic breakthrough due to backward-looking analytical mindsets; and
  • Imagine an unconventional Allied response in Europe to an emboldened near-peer conflict.

Enjoy reading how the NATO Alliance could react to Omega — “a Russian autonomous joint force in a … ready-to-deploy box… [with an] area-denial bubble projected by their new S-600s extend[ing] all the way to the exo-sphere, … cover[ing] the entirety of the ground, sea and cyber domains” — on the cusp of a fictional not-so-distant future near-peer conflict!]

Omega

22 KILOMETERS NORTH OF KYIV / UKRAINE

“Incoming!” shouted Piotr Nowak, a master sergeant in Poland’s Jednostka Wojskowa Komandosów special operations unit. Dropping to the ground, he clawed aside a veil of brittle green moss to wedge himself into a gap beneath a downed tree. He hoped the five other members of his military advisory team, crouched around the fist-shaped rock formation behind him, heard his shouts. To further reinforce Ukraine’s armed forces against increasingly brazen Russian military support for separatists in the eastern part of the country, Poland’s government had been quietly supplying military trainers. A pro-Russian military coup in Belarus two weeks earlier only served to raise tensions in the region – and the stakes for the JWK on the ground.

An instant later incoming Russian Grad rocket artillery announced itself with a shrill shriek. Then a rapid succession of sharp explosive pops as the dozen rockets burst overhead. Nowak quickly realized these weren’t ordinary fires.

Russian 9a52-4 MLRS conducting a fire mission / Source: The National Interest

There was no spray of airburst shrapnel or the lung-busting concussion of a thermobaric munition. Instead, it sounded like summer fireworks – the explosive separation of the 122mm rocket artillery shell’s casing. Once split open, each weapon’s payload deployed an air brake to slow its approach.

During that momentary silence, Nowak edged out slightly from under the log to look up at the sky. He saw the drifting circular payload extend four arms and then, suddenly, it came to life as it sprang free of its parachute harness. With a whine from its electric motors, the quadcopter darted out of sight.

That sound built and built over the next minute as eleven more of these Russian autonomous drones darted menacingly in a loose formation through the forest above the Polish special operations commandos. Nowak cursed the low-profile nature of their mission: The Polish soldiers had not yet received the latest compact American counter-UAS electronic-warfare systems that could actually fit in their civilian Skoda Kodiaq SUVs.

Nowak held his airplane-mode mobile phone out from under the log to film the drones, using his arm like a selfie-stick. Nowak needed to report in what he was seeing – this was proof Russian forces had turned their new AI battle management system online inside Ukraine. But he also knew that doing so would be a death sentence, whether he texted the video on the country’s abominably slow mobile networks or used his secure NATO comms. These Russian drones could detect either type of transmission in an instant. Once the drones cued to his transmission he would be targeted either by their own onboard anti-personnel munitions or a follow-on strike by conventional artillery.

This was no mere variation on the practice of using Leer-3 drones  for electronic warfare and to spot for Russian artillery. It marked the first-ever deployment of an entirely new Russian AI battle system complex, Omega. Nowak had only heard about the Russians firing entire drone swarms from inexpensive Grad rocket-artillery rounds once before in Syria while deployed with a US task force. But they had never done so in Ukraine, at least not that he knew about.  Most observers chalked up Russia’s Syrian experimentations with battlefield robots and drone swarms to clumsy failures. Clearly something had changed.

With his phone, Nowak recorded how the drones appeared to be coordinating their search activities as if they were a single hive intelligence. They divided the dense forest into cells they searched cooperatively. Within seconds, they climbed and dove from treetop height looking for anyone or anything hiding below.

At that very instant, the drone’s computer vision algorithms detected Novak’s team. Each and every one of them. Within seconds, six of the aggressively maneuvering drones revealed themselves in a disjointed dive down from the treetops and zoomed in on the JWK fighters’ positions.

Nobody needed to be told what to do. The team raised their weapons and fired short bursts at the Russian drones. One shattered like a clay pigeon. But two more buzzed into view to take its place. Another drone went down to a shotgun-fired SkyNet round. Then the entire drone formation shifted its flight patterns, dodging and maneuvering even more erratically, making it nearly impossible to shoot the rest down. The machines learned from their own losses, Nowak realized. Would his superiors do the same for him?

Nowak emptied his magazine with a series of quick bursts, but rather than reload he put his weapon aside and rolled out from under the log. Fully exposed and clutching the phone with shaking hands, he hastily removed one of his gloves with his teeth. Then he switched the device on. Network connected. He scrolled to the video of the drones. Send! Send! Send!

Eleven seconds later, Novak’s entire Polish JWK special forces team lay dead on the forest floor.

Jednostka Wojskowa Komandosow (JWK) / Source: Wikimedia Commons

________________________________

Omega is not any one specific weapon, rather it is made up of a menagerie of Russian weapons, large and small. It’s as if you fused information warfare, SAMs, fires, drones, tactical autonomous bots… There’s everything from S-600 batteries to cheap Katyusha-style rocket artillery to Uran-9 and -13 tanks. But it is what controls the hardware that makes Omega truly unique: AI. At its core, it’s an artificial intelligence system fusing data from thousands of sensors, processed information, and found patterns that human eyes and minds cannot fathom. The system’s AI is not only developing a comprehensive real-time picture, it’s also developing probabilities and possible courses of enemy action. It can coordinate thousands of “shooters”, from surface-to-air missiles, to specialized rocket artillery deploying autonomous tactical drones like the ones that killed the JWK team, to UGVs like the latest Uran-13 autonomous tracked units.

The developers of the Omega system incorporated technologies such as software-defined radio, which uses universal receivers that could listen in to a broad array of frequencies. Thousands of these bands are monitored with machine learning algorithms to spot insurgent radio stations, spy on the locations of Ukrainian military and police, and even determine if a certain frequency is being used to remotely control explosives or other military equipment. When a threat is discovered, the system will dispatch drones to observe the triangulated location of the source. If the threat needs to be neutralized a variety of kinetic systems – from guided artillery shells to loitering munitions and autonomous drones – can be dispatched for the kill.

________________________________

If you enjoyed this excerpt, please:

Read the complete Omega short story, hosted by our colleagues at the Atlantic Council NATOSource blog,

Learn how the U.S. Joint Force and our partners are preparing to prevail in competition with our strategic adversaries and, when necessary, penetrate and dis-integrate their anti-access and area denial systems and exploit the resultant freedom of maneuver to achieve strategic objectives (win) and force a return to competition on favorable terms in The U.S. Army in Multi-Domain Operations 2028 Executive Summary, and

See one prescription for precluding the strategic surprise that is the fictional Omega in The Importance of Integrative Science/Technology Intelligence (InS/TINT) to the Prediction of Future Vistas of Emerging Threats, by Dr. James Giordano,  CAPT (USN – Ret.) L. R. Bremseth, and Mr. Joseph DeFranco.

Reminder: You only have 1 week left to enter your submissions for the Mad Scientist Science Fiction Writing Contest 2019.  Click here for more information about the contest and how to submit your short story(ies) for consideration by our 1 April 2019 deadline!

Mr. August Cole is a proclaimed Mad Scientist, author, and futurist focusing on national security issues. He is a non-resident senior fellow at the Art of the Future Project at the Atlantic Council. He also works on creative foresight at SparkCognition, an artificial intelligence company, and is a senior advisor at Avascent, a consulting firm. His novel with fellow proclaimed Mad Scientist P.W. Singer, entitled Ghost Fleet: A Novel of the Next World War, explores the future of great power conflict and disruptive technologies in wartime.

Mr. Amir Husain is the founder and CEO of SparkCognition, a company envisioned to be at the forefront of the “AI 3.0” revolution. He serves as advisor and board member to several major institutions, including IBM Watson, University of Texas Department of Computer Science, Makerarm, ClearCube Technology, uStudio and others; and his work has been published in leading tech journals, including Network World, IT Today, and Computer World. In 2015, Amir was named Austin’s Top Technology Entrepreneur of the Year.

Disclaimer: This publication is a work of fiction by Messrs. August Cole and Amir Husain, neither of whom have any affiliation with U.S. Army Training and Doctrine Command, the U.S. Army, or the U.S. Government. This piece is meant to be thought-provoking and entertaining, and does not reflect the current position of the U.S. Army.

128. Disruption and the Future Operational Environment

Mad Scientist Laboratory is pleased to announce that Headquarters, U.S. Army Training and Doctrine Command (TRADOC) is co-sponsoring the Mad Scientist Disruption and the Future Operational Environment Conference with the Cockrell School of Engineering at The University of Texas at Austin on 24-25 April 2019 in Austin, Texas.

Plan on joining us virtually as we explore the individual and convergent impacts of technological innovations on Multi-Domain Operations and the Future Operational Environment, from today through 2050.

Disruptors addressed include robotics, artificial intelligence and autonomy, the future of space, planetary habitability, and the legal and ethical dilemmas surrounding how they will impact the future of warfare, specifically in the land and space domains.

Acknowledged global experts presenting include renowned futurist Dr. James Canton, author and CEO and Chairman of the Institute for Global Futures; former Deputy Secretary of Defense Robert Work, Senior Counselor for Defense and Distinguished Senior Fellow for Defense and National Security, Center for a New American Security (CNAS); Robonaut Julia Badger, Project Manager for the NASA’s Autonomous Spacecraft Management Projects; and former NASA spacecraft navigator Dr. Moriba K. Jah, Associate Professor of Aerospace Engineering and Engineering Mechanics at UT Austin; as well as speakers from DARPA, Sandia National Labs, and Army senior leaders.

Get ready…

– Review the conference agenda’s list of presentations here.

– Read our following blog posts:  Making the Future More Personal: The Oft-Forgotten Human Driver in Future’s Analysis, An Appropriate Level of Trust…, War Laid Bare, and Star Wars 2050.

– Subscribe to the Mad Scientist Laboratory to stay abreast of this conference and all things Mad Scientist — go to the subscribe function found on the right hand side of this screen.

We look forward to your participation on-line in six weeks!

 

122. The Guy Behind the Guy: AI as the Indispensable Marshal

[Editor’s Note: Mad Scientist Laboratory is pleased to present today’s guest blog post by Mr. Brady Moore and Mr. Chris Sauceda, addressing how Artificial Intelligence (AI) systems and entities conducting machine speed collection, collation, and analysis of battlefield information will free up warfighters and commanders to do what they do best — fight and make decisions, respectively. This Augmented Intelligence will enable commanders to focus on the battle with coup d’œil, or the “stroke of an eye,” maintaining situational awareness on future fights at machine speed, without losing precious time crunching data.]

Jon Favreau’s Mike character (left) is the “guy behind the guy,” to Vince Vaughn’s Trent character (right) in Swingers, directed by Doug Liman, Miramax;(1996) / Source: Pinterest

In the 1996 film Swingers, the characters Trent (played by Vince Vaughn) and Mike (played by Jon Favreau) star as a couple of young guys trying to make it in Hollywood. On a trip to Las Vegas, Trent introduces Mike as “the guy behind the guy” – implying that Mike’s value is that he has the know-how to get things done, acts quickly, and therefore is indispensable to a leading figure. Yes, I’m talking about Artificial Intelligence for Decision-Making on the future battlefield – and “the guy behind the guy” sums up how AI will provide a decisive advantage in Multi-Domain Operations (MDO).

Some of the problems commanders will have on future battlefields will be the same ones they have today and the same ones they had 200 years ago: the friction and fog of war. The rise of information availability and connectivity brings today’s challenges – of which most of us are aware. Advanced adversary technologies will bring future challenges for intelligence gathering, command, communication, mobility, and dispersion. Future commanders and their staffs must be able to deal with both perennial and novel challenges faster than their adversaries, in disadvantageous circumstances we can’t control. “The guy behind the guy” will need to be conversant in vast amounts of information and quick to act.

Louis-Alexandre Berthier was a French Marshal and Vice-Constable of the Empire, and Chief of Staff under Napoleon / oil portrait by Jacques Augustin Catherine Pajou (1766–1828), Source: Wikimedia Commons

In western warfare, the original “guy behind the guy” wasn’t Mike – it was this stunning figure. Marshal Louis-Alexandre Berthier was Napoleon Bonaparte’s Chief of Staff from the start of his first Italian campaign in 1796 until his first abdication in 1814. Famous for rarely sleeping while on campaign, Paul Thiebault said of Berthier in 1796:

“Quite apart from his specialist training as a topographical engineer, he had knowledge and experience of staff work and furthermore a remarkable grasp of everything to do with war. He had also, above all else, the gift of writing a complete order and transmitting it with the utmost speed and clarity…No one could have better suited General Bonaparte, who wanted a man capable of relieving him of all detailed work, to understand him instantly and to foresee what he would need.”

Bonaparte’s military record, his genius for war, and skill as a leader are undisputed, but Berthier so enhanced his capabilities that even Napoleon himself admitted about his absence at Waterloo, “If Berthier had been there, I would not have met this misfortune.”

Augmented Intelligence, where intelligent systems enhance human capabilities (rather than systems that aspire to replicate the full scope of human intelligence), has the potential to act as a digital Chief of Staff to a battlefield commander. Just like Berthier, AI for decision-making would free up leaders to clearly consider more factors and make better decisions – allowing them to command more, and research and analyze less. AI should allow humans to do what they do best in combat – be imaginative, compel others, and act with an inherent intuition, while the AI tool finds, processes, and presents the needed information in time.

So Augmented Intelligence would filter information to prioritize only the most relevant and timely information to help manage today’s information overload, as well as quickly help communicate intent – but what about yesterday’s friction and fog, and tomorrow’s adversary technology? The future battlefield seems like one where U.S. commanders will be starved for the kind of Intelligence, Surveillance, and Reconnaissance (ISR) and communication we are so used to today, a battlefield with contested Electromagnetic Spectrum (EMS) and active cyber effects, whether known or unknown. How can commanders and their staffs begin to overcome challenges we haven’t yet been presented in war?

Average is Over: Powering America Beyond the Age of the Great Stagnation, by Tyler Cowen / Dutton, The Penguin Group, published in 2013

In his 2013 book Average is Over, economist Tyler Cowen examines the way freestyle chess players (who are free to use computers when playing the game) use AI tools to compete and win, and makes some interesting observations that are absolutely applicable to the future of warfare at every level. He finds competitors have to play against foes who have AI tools themselves, and that AI tools make chess move decisions that can be recognized (by people) and countered. The most successful freestyle chess players use a combination of their own knowledge of the game, but pick and choose times and situations to use different kinds of AI throughout a game. Their opponents not only then have to consider which AI is being used against them, but also their human operator’s overall strategy. This combination of Augmented Intelligence with an AI tool, along with natural inclinations and human intuitions will likely result in a powerful equilibrium of human and AI perception, analysis, and ultimately enhanced complex decision-making.

With a well-trained and versatile “guy behind the guy,” a commander and staff could employ different aspects of Augmented Intelligence at different times, based on need or appropriateness. A company commander in a dense urban fight, equipped with an appropriate AI tool – a “guy behind the guy” that helps him make sense of the battlefield – what could that commander accomplish with his company? He could employ the tool to notice things humans don’t – or at least notice them faster and alert him. Changes in historic traffic patterns or electronic signals in an area could indicate an upcoming attack or a fleeing enemy, or the system could let the commander know that just a little more specific data could help establish a pattern where enemy data was scarce. And if the commander was presented with the very complex and large problems that characterize modern dense urban combat, the system could help shrink and sequence problems to make them more solvable – for instance find a good subset of information to experiment with and help prove a hypothesis before trying out a solution in the real world – risking bandwidth instead of blood.

The U.S. strategy for MDO has already identified the critical need to observe, orient, decide, and act faster than our adversaries – multiple AI tools that have all necessary information, and can present it and act quickly will certainly be indispensable to leaders on the battlefield. An AI “guy behind the guy” continuously sizing up the situation, finding the right information and allowing for better, faster decisions in difficult situations is how Augmented Intelligence will best serve leaders in combat and provide battlefield advantage.

If you enjoyed this post, please also read:

… watch Juliane Gallina‘s Arsenal of the Mind presentation at the Mad Scientist Robotics, AI, & Autonomy Visioning Multi Domain Battle in 2030-2050 Conference at Georgia Tech Research Institute, Atlanta, Georgia, on 7-8 March 2017

… and learn more about potential AI battlefield applications in our Crowdsourcing the Future of the AI Battlefield information paper.

Brady Moore is a Senior Enterprise Client Executive at Neudesic in New York City. A graduate of The Citadel, he is a former U.S. Army Infantry and Special Forces officer with service as a leader, planner, and advisor across Iraq, Afghanistan, Africa, and, South Asia. After leaving the Army in 2011, he obtained an MBA at Penn State and worked as an IBM Cognitive Solutions Leader covering analytics, AI, and Machine Learning in National Security. He’s the Junior Vice Commander of VFW Post 2906 in Pompton Lakes, NJ, and Cofounder of the Special Forces Association Chapter 58 in New York City. He also works with Elite Meet as often as he can.

Chris Sauceda is an account manager within the U.S. Army Defense and Intel IBM account, covering Command and Control, Cyber, and Advanced Analytics/ Artificial Intelligence. Chris served on active duty and deployed in support of Operation Iraqi Freedom, and has been in the Defense contracting business for over 13 years. Focused on driving cutting edge technologies to the warfighter, he also currently serves as a Signal Officer in the Texas Military Department.

70. Star Wars 2050

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s guest post by returning blogger Ms. Marie Murphy, addressing the implication of space drones and swarms on space-based services critical to the U.S. Army.  Ms. Murphy’s previous post addressed Virtual Nations: An Emerging Supranational Cyber Trend.]

Drone technology continues to proliferate in militaries and industries around the world.  In the deep future, drones and drone swarms may extend physical conflict into the space domain.  As space becomes ever more critical to military operations, states will seek technologies to counter their adversaries’ capabilities.   Drones and swarms can blend in with space debris in order to provide a tactical advantage against vulnerable and expensive assets at a lower cost.

Source: AutoEvolution

Space was recently identified as a battlespace domain in recognition of threats increasing at an unexpected rate and, in 2013, the Army Space Training Strategy was released. The functions of the Army almost entirely depend on space systems for daily and specialized operations, particularly C4ISR and GPS capabilities. “Well over 2,500 pieces of equipment… rely on a space-based capability” in any given combat brigade, so an Army contingency plan for the loss of satellite communication is critical.[I]  It is essential for the Army, in conjunction with other branches of the military and government agencies, to best shield military assets in space and continue to develop technologies, such as outer space drones and swarms, to remain competitive and secure throughout this domain in the future.

Source: CCTV China

Drone swarms in particular are an attractive military option due to their relative inexpensiveness, autonomy, and durability as a whole. The U.S., China, and Russia are the trifecta of advanced drone and drone swarm technology and also pose the greatest threats in space. In May 2018, Chinese Company CETC launched 200 autonomous drones,[II] beating China’s own record of 119 from 2017.[III] The U.S. has also branched out into swarm technology with the testing of Perdix drones, although the U.S. is most known for its use of the high-tech Predator drone.[IV]

Source: thedrive.com

Non-state actors also possess rudimentary drone capabilities. In January 2018, Syrian rebels attacked a Russian installation with 13 drones in an attempt to overwhelm Russian defenses. The Russian military was able to neutralize the attack by shooting down seven and bringing the remaining six down with electronic countermeasures.[V] While this attack was quelled, it proves that drones are being used by less powerful or economically resourceful actors, making them capable of rendering many traditional defense systems ineffective. It is not a far leap to incorporate autonomous communication between vehicles, capitalizing on the advantages of a fully interactive and cooperative drone swarm.

NASA Homemade Drone; Source: NASA Swamp Works

The same logic applies when considering drones and drone swarms in space. However, these vehicles will need to be technologically adapted for space conditions. Potentially most similar to future space drones, the company Swarm Technology launched four nanosats called “SpaceBees” with the intention of using them to create a constellation supporting Internet of Things (IoT) networks; however, they did so from India without FCC authorization.[VI] Using nanosats as examples of small, survivable space vehicles, the issues of power and propulsion are the most dominant technological roadblocks. Batteries must be small and are subject to failure in extreme environmental conditions and temperatures.[VII] Standard drone propulsion mechanisms are not viable in space, where drones will have to rely on cold-gas jets to maneuver.[VIII] Drones and drone swarms can idle in orbit (potentially for weeks or months) until activated, but they may still need hours of power to reach their target. The power systems must also have the ability to direct flight in a specific direction, requiring more energy than simply maintaining orbit.

Source: University of Southampton

There is a distinct advantage for drones operating in space: the ability to hide in plain sight among the scattered debris in orbit. Drones can be sent into space on a private or government launch hidden within a larger, benign payload.[IX] Once in space, these drones could be released into orbit, where they would blend in with the hundreds of thousands of other small pieces of material. When activated, they would lock onto a target or targets, and swarms would converge autonomously and communicate to avoid obstacles. Threat detection and avoidance systems may not recognize an approaching threat or swarm pattern until it is too late to move an asset out of their path (it takes a few hours for a shuttle and up to 30 hours for the ISS to conduct object avoidance maneuvers). In the deep future, it is likely that there will be a higher number of larger space assets as well as a greater number of nanosats and CubeSats, creating more objects for the Space Surveillance Network to track, and more places for drones and swarms to hide.[X]

For outer space drones and drone swarms, the issue of space junk is a double-edged sword. While it camouflages the vehicles, drone and swarm attacks also produce more space junk due to their kinetic nature. One directed “kamikaze” or armed drone can severely damage or destroy a satellite, while swarm technology can be harnessed for use against larger, defended assets or in a coordinated attack. However, projecting shrapnel can hit other military or commercial assets, creating a Kessler Syndrome effect of cascading damage.[XI] Once a specific space junk removal program is established by the international community, the resultant debris effects from drone and swarm attacks can be mitigated to preclude collateral damage.  However, this reduction of space junk will also result in less concealment, limiting drones’ and swarms’ ability to loiter in orbit covertly.

Utilizing drone swarms in space may also present legal challenges.  The original governing document regarding space activities is the Outer Space Treaty of 1967. This treaty specifically prohibits WMDs in space and the militarization of the moon and other celestial bodies, but is not explicit regarding other forms of militarization, except to emphasize that space activities are to be carried out for the benefit of all countries. So far, military space activities have been limited to deploying military satellites and combatting cyber-attacks. Launching a kinetic attack in space would carry serious global implications and repercussions.

Such drastic and potentially destructive action would most likely stem from intense conflict on Earth. Norms about the usage of space would have to change. The Army must consider how widely experimented with and implemented drone and swarm technologies can be applied to targeting critical and expensive assets in orbit. Our adversaries do not have the same moral and ethical compunctions regarding space applications that the U.S. has as the world’s leading democracy. Therefore, the U.S. Army must prepare for such an eventuality.  Additionally, the Army must research and develop a more robust alternative to our current space-based GPS capability.  For now, the only war in space is the one conducted electronically, but kinetic operations in outer space are a realistic possibility in the deep future.

Marie Murphy is a rising junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative.

______________________________________________________

[I] Houck, Caroline, “The Army’s Space Force Has Doubled in Six Years, and Demand Is Still Going Up,” Defense One, 23 August 2017.

[II]China’s Drone Swarms,” OE Watch, Vol. 8.7, July 2018.

[III]China Launches Drone Swarm of 119 Fixed-Wing Unmanned Aerial Vehicles,” Business Standard, 11 June 2017.

[IV] Atherton, Kelsey D., “The Pentagon’s New Drone Swarm Heralds a Future of Autonomous War Machines,” Popular Science, 17 January 2017.

[V] Hruska, Joel, “Think One Military Drone is Bad? Drone Swarms Are Terrifyingly Difficult to Stop,” Extreme Tech, 8 March 2018.

[VI] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[VII] Chow, Eugene K., “America Is No Match for China’s New Space Drones,” The National Interest, 4 November 2017.

[VIII] Murphy, Mike, “NASA Is Working on Drones That Can Fly In Space,” Quartz, 31 July 2015.

[IX] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[X]Space Debris and Human Spacecraft,” NASA, 26 September 2013.

[XI] Scoles, Sarah, “The Space Junk Problem Is About to Get a Whole Lot Gnarlier,” WIRED, July 31, 2017.

 

 

 

 

 

 

 

 

 

59. Fundamental Questions Affecting Army Modernization

[Editor’s Note:  The Operational Environment (OE) is the start point for Army Readiness – now and in the Future. The OE answers the question, “What is the Army ready for?”  Without the OE in training and Leader development, Soldiers and Leaders are “practicing” in a benign condition, without the requisite rigor to forge those things essential for winning in a complex, multi-domain battlefield.  Building the Army’s future capabilities, a critical component of future readiness, requires this same start point.  The assumptions the Army makes about the Future OE are the sine qua non start point for developing battlefield systems — these assumptions must be at the forefront of decision-making for all future investments.]

There are no facts about the future. Leaders interested in building future ready organizations must develop assumptions about possible futures and these assumptions require constant scrutiny. Leaders must also make decisions based on these assumptions to posture organizations to take advantage of opportunities and to mitigate risks. Making these decisions is fundamental to building future readiness.

Source: Evan Jensen, ARL

The TRADOC G-2 has made the following foundational assumptions about the future that can serve as launch points for important questions about capability requirements and capabilities under development. These assumptions are further described in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

1. Contested in all domains (air, land, sea, space, and cyber). Increased lethality, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions, further enabled by autonomy, robotics, and Artificial Intelligence (AI) with an increasing potential for overmatch. Adversaries will restrict us to temporary windows of advantage with periods of physical and electronic isolation.

Source: Army Technology

2. Concealment is difficult on the future battlefield. Hiding from advanced sensors — where practicable — will require dramatic reduction of heat, electromagnetic, and optical signatures. Traditional hider techniques such as camouflage, deception, and concealment will have to extend to “cross-domain obscuration” in the cyber domain and the electromagnetic spectrum. Canny competitors will monitor their own emissions in real-time to understand and mitigate their vulnerabilities in the “battle of signatures.” Alternately, “hiding in the open” within complex terrain clutter and near-constant relocation might be feasible, provided such relocation could outpace future recon / strike targeting cycles.   Adversaries will operate among populations in complex terrain, including dense urban areas.

3. Trans-regional, gray zone, and hybrid strategies with both regular and irregular forces, criminal elements, and terrorists attacking our weaknesses and mitigating our advantages. The ensuing spectrum of competition will range from peaceful, legal activities through violent, mass upheavals and civil wars to traditional state-on-state, unlimited warfare.

Source: Science Photo Library / Van Parys Media

4. Adversaries include states, non-state actors, and super-empowered individuals, with non-state actors and super empowered individuals now having access to Weapons of Mass Effect (WME), cyber, space, and Nuclear/Biological/ Chemical (NBC) capabilities. Their operational reach will range from tactical to global, and the application of their impact from one domain into another will be routine. These advanced engagements will also be interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Source: Northrop Grumman

5. Increased speed of human interaction, events and action with democratized and rapidly proliferating capabilities means constant co-evolution between competitors. Recon / Strike effectiveness is a function of its sensors, shooters, their connections, and the targeting process driving decisions. Therefore, in a contest between peer competitors with comparable capabilities, advantage will fall to the one that is better integrated and makes better and faster decisions.

These assumptions become useful when they translate to potential decision criteria for Leaders to rely on when evaluating systems being developed for the future battlefield. Each of the following questions are fundamental to ensuring the Army is prepared to operate in the future.

Source: Lockheed Martin

1. How will this system operate when disconnected from a network? Units will be disconnected from their networks on future battlefields. Capabilities that require constant timing and precision geo-locational data will be prioritized for disruption by adversaries with capable EW systems.

2. What signature does this system present to an adversary? It is difficult to hide on the future battlefield and temporary windows of advantage will require formations to reduce their battlefield signatures. Capabilities that require constant multi-directional broadcast and units with large mission command centers will quickly be targeted and neutralized.

Image credit: Alexander Kott

3. How does this system operate in dense urban areas? The physical terrain in dense urban areas and megacities creates concrete canyons isolating units electronically and physically. Automated capabilities operating in dense population areas might also increase the rate of false signatures, confusing, rather than improving, Commander decision-making. New capabilities must be able to operate disconnected in this terrain. Weapons systems must be able to slew and elevate rapidly to engage vertical targets. Automated systems and sensors will require significant training sets to reduce the rate of false signatures.

Source: Military Embedded Systems

4. How does this system take advantage of open and modular architectures? The rapid rate of technological innovations will offer great opportunities to militaries capable of rapidly integrating prototypes into formations.  Capabilities developed with open and modular architectures can be upgraded with autonomous and AI enablers as they mature. Early investment in closed-system capabilities will freeze Armies in a period of rapid co-evolution and lead to overmatch.

5. How does this capability help win in competition short of conflict with a near peer competitor? Near peer competitors will seek to achieve limited objectives short of direct conflict with the U.S. Army. Capabilities will need to be effective at operating in the gray zone as well as serving as deterrence. They will need to be capable of strategic employment from CONUS-based installations.

If you enjoyed this post, check out the following items of interest:

    • Join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live 11 June 2018 — click here to learn more!

54. A View of the Future: 2035-2050

[Editor’s Note: The following post addresses the Era of Contested Equality (2035-2050) and is extracted from the U.S. Army Training and Doctrine Command (TRADOC) G-2’s The Operational Environment and the Changing Character of Future Warfare, published last summer. This seminal document provides the U.S. Army with a holistic and heuristic approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future.]

Changes encountered during the Future Operational Environment’s Era of Accelerated Human Progress (the present through 2035) begin a process that will re-shape the global security situation and fundamentally alter the character of warfare. While its nature remains constant, the speed, automation, ranges, both broad and narrow effects, its increasingly integrated multi-domain conduct, and the complexity of the terrain and social structures in which it occurs will make mid-century warfare both familiar and utterly alien.

During the Era of Contested Equality (2035-2050), great powers and rising challengers have converted hybrid combinations of economic power, technological prowess, and virulent, cyber-enabled ideologies into effective strategic strength. They apply this strength to disrupt or defend the economic, social, and cultural foundations of the old Post-World War II liberal order and assert or dispute regional alternatives to established global norms. State and non-state actors compete for power and control, often below the threshold of traditional armed conflict – or shield and protect their activities under the aegis of escalatory WMD, cyber, or long-range conventional options and doctrines.

It is not clear whether the threats faced in the preceding Era of Accelerated Human Progress persist, although it is likely that China and Russia will remain key competitors, and that some form of non-state ideologically motivated extremist groups will exist. Other threats may have fundamentally changed their worldviews, or may not even exist by mid-Century, while other states, and combinations of states will rise and fall as challengers during the 2035-2050 timeframe. The security environment in this period will be characterized by conditions that will facilitate competition and conflict among rivals, and lead to endemic strife and warfare, and will have several defining features.

The nation-state perseveres. The nation-state will remain the primary actor in the international system, but it will be weaker both domestically and globally than it was at the start of the century. Trends of fragmentation, competition, and identity politics will challenge global governance and broader globalization, with both collective security and globalism in decline. States share their strategic environments with networked societies which increasingly circumvent governments unresponsive to their citizens’ needs. Many states will face challenges from insurgents and global identity networks – ethnic, religious, regional, social, or economic – which either resist state authority or ignore it altogether.

Super-Power Diminishes. Early-century great powers will lose their dominance in command and control, surveillance, and precision-strike technologies as even non-state actors will acquire and refine their own application of these technologies in conflict and war. Rising competitors will be able to acquire capabilities through a broad knowledge diffusion, cyber intellectual property theft, and their own targeted investments without having to invest into massive “sunken” research costs. This diffusion of knowledge and capability and the aforementioned erosion of long-term collective security will lead to the formation of ad hoc communities of interest. The costs of maintaining global hegemony at the mid-point of the century will be too great for any single power, meaning that the world will be multi-polar and dominated by complex combinations of short-term alliances, relations, and interests.

This era will be marked by contested norms and persistent disorder, where multiple state and non-state actors assert alternative rules and norms, which when contested, will use military force, often in a dimension short of traditional armed conflict.

For additional information on the Future Operational Environment and the Era of Contested Equality:

•  Listen to Modern War Institute‘s podcast where Retired Maj. Gen. David Fastabend and Mr. Ian Sullivan address Technology and the Future of Warfare

•  Watch the TRADOC G-2 Operational Environment Enterprise’s The Changing Character of Future Warfare video.