140. A Closer Look at China’s Strategies for Innovation: Questioning True Intent

[Editor’s Note: Mad Scientist Laboratory is pleased to publish today’s guest blog post by Ms. Cindy Hurst, addressing China’s continued drive for dominance regarding innovative technologies.  The asymmetry in ethics existing between their benign and altruistic publicly stated policies and their whole-of-government commitment to modernization and the development of disruptive technologies will remain a key component of multi-domain competition.]

One of China’s most important initiatives is to become an innovative society — but at what cost? In February, the Center for New American Security published a paper, entitled Understanding China’s AI Strategy: Clues to Chinese Strategic Thinking on Artificial Intelligence and National Security. Its author, Gregory Allen, explains that the Chinese government sees Artificial Intelligence (AI) as a “high strategic priority” and is therefore devoting resources “to cultivate AI expertise and strategic thinking among its national security community.” He further urges careful tracking of China’s progress in AI.

Indeed, it would behoove the West to stay abreast of what China is doing in the areas of AI, and not just militarily, but in all areas since there is a clear overlap of civilian and military applications. According to countless official statements, publications, and strategic plans, such as the 13th Five-Year National Science and Technology Innovation Plan, China has placed great emphasis on developing AI, along with other cutting edge technologies, which it views as “majorly influential disruptive technologies” that are capable of altering “the structure of science and technology, the economy, society, and the ecology, to win a competitive advantage in the new round of industry transformation.” 1

Know your enemy and know yourself and in 100 battles you will not be in peril” is one of the key principles of Sun Tzu. The compelling reasons for China’s goals to become a strong global force can easily be explained by understanding its past history and ancient strategies, which are still studied today. The Middle Kingdom had been touted as having once been a seafaring power with a past of contributing world-class innovation at different points over its 5,000 year history. More recently, during the 19th and 20th centuries, China endured what it refers to as the “century of humiliation” — a period in which it was carved up by Western forces during the Opium Wars and then pummeled by Japanese forces in the 1930s.

After the Communist Party’s defeat of the Kuomintang, who retreated to Taiwan, Communist Party Chairman Mao Zedong proclaimed the establishment of the People’s Republic of China in 1949. Since then, the country has vowed to never again be vulnerable to outside forces. They would press forward, making their own path, suffering bumps and bruises along the way. However, it was the United States’ crushing defeat of Iraqi forces during the Persian Gulf War in 1991 that served as the real wakeup call that China lagged far behind Western forces in military capabilities. Since then, generals working at the Academy of Military Science in Beijing and others have studied every aspect of the U.S. revolution in military affairs, including advances in microprocessors, sensors, communication, and Joint operations.2

In its efforts to try to make some headway in technology, China has been accused of stealing massive amounts of foreign intellectual property over the past few decades. Their methodology has included acquisition and reverse engineering, participating in joint ventures sharing research and development, spying, and hacking into government and corporate computer systems. According to a report by CNBC, one in five North American-based corporations on the CNBC Global CFO Council claimed that Chinese companies had stolen their intellectual property within the last year.3 Such thefts and acquisitions make it easier for China to catch up on technology at a low-cost. While the United States spends billions of dollars in research and development, China also benefits without having to expend similar amounts of capital.

Artificial intelligence, quantum information, and Internet of Things are three examples of disruptive technologies shaping the future and in which China aspires to one day have a large or controlling stake. In his speech delivered at the 19th National Congress of the Communist Party of China in October 2017, President Xi Jinping stated that “innovation is the primary driving force behind development” and “it is the strategic underpinning for building a modernized economy.”4

However, while Xi and other Chinese officials outwardly push for international cooperation in AI technology, their efforts and methods have raised concern among some analysts. China openly promotes international cooperation in research and development. However, one might consider possible alternative intentions in trying to push for international cooperation. For example, in Allen’s article, he explains that Fu Ying, the Vice-Chair of the Foreign Affairs Committee of the National People’s Congress had stated that “we should cooperate to preemptively prevent the threat of AI.” Fu further said that China was interested in “playing a leading role in creating norms to mitigate” the risks. A PLA think-tank scholar reportedly expressed support for “mechanisms that are similar to arms control.”5 How sincere are the Chinese in this sentiment? Should it join forces with foreign states to come up with control mechanisms, would China abide by these mechanisms or act in secret, continuing their forward momentum to gain the edge? After all, if both China and the United States, for example, ended up on an even playing field, it would run counter to China’s objectives, if one subscribes to the concept as outlined by Michael Pillsbury in his book, The Hundred-Year Marathon: China’s Secret Strategy to Replace America as the Global Superpower.

While China’s spoken objectives might be sincere, it is prudent to continually review a few of the ancient strategies/stratagems developed during the warring states period, still studied in China today and applied. Some examples include:

1. Cross the sea without the emperor’s knowledge: Hide your true intentions by using the ruse of fake intentions… until you achieve your real intentions.

2. Kill with a borrowed sword: Use the enemy’s strength against them or the strength of another to conquer your enemy.

3. Hide a dagger behind a smile: charm and ingratiate your enemy until you have gained his trust… and then move against him in secret.

In his article, Allen cites a recent Artificial Intelligence Security White Paper, written by “an influential Chinese government think tank,” calling upon China’s government to “avoid Artificial Intelligence arms races among countries” adding that China will “deepen international cooperation on AI laws and regulations, international rules, and so on…” However, as Allen points out, “China’s behavior of aggressively developing, utilizing, and exporting increasingly autonomous robotic weapons and surveillance AI technology runs counter to the country’s stated goals of avoiding an AI arms race.” China may have good intentions. However, its opaque nature breeds skepticism.

Another interesting point to expand upon and that Allen touched upon in his article are the effects of disruptive technologies on societies. According to a Chinese think tank scholar, “China believes that the United States is likely to spend too much to maintain and upgrade mature systems and underinvest in disruptive new systems that make America’s existing sources of advantage vulnerable and obsolete…” When considering the Chinese stratagem, “Sacrifice the plum tree to preserve the peach tree,” it is easy to argue that China will not be easily swayed from developing disruptive technologies, despite possible repercussions and damaging effects. For example, the development of autonomous systems results in unemployment and a steep learning curve. It is inherent in Chinese culture to sacrifice short-term objectives in order to obtain long-term goals. Sustaining initial, short-term repercussions are necessary before China can achieve some of its long-term production goals. Allen explains, “modernization is a top priority, and there is a general understanding that many of its current platforms and approaches are obsolete and must be replaced regardless.”

Particularly intriguing in Allen’s article is his discussion of SenseTime, which is a “world leader in computer vision AI.” The author states that “China’s government and leadership is enthusiastic about using AI for surveillance.” He goes on to say that one Chinese scholar had told him that he “looks forward to a world in AI” in which it will be “impossible to commit a crime without being caught.” While this may seem like an ideal scenario, given the technology is put into the hands of a level-headed and fair law enforcement agency; should it be turned over to an authoritarian dictatorship, such a technology could prove to be disastrous to private citizens. Government control and scare tactics could further suppress their citizens’ basic rights and freedoms.

In conclusion, while China openly pushes the concept of its modernization efforts as a win-win, peaceful development strategy — a careful study of Chinese strategies that have been around for millennia may point to a different scenario, bringing skepticism into the equation. It would be easy to fall prey to an ideology that preaches peace, mutual development, and mutual respect. However, it is important to ask the following two questions: “Is this real?” and “What, if anything, are their ulterior motives?”

If you enjoyed this post, please see:

China’s Drive for Innovation Dominance

Quantum Surprise on the Battlefield?

Cindy Hurst is a research analyst under contract for the Foreign Military Studies Office, Fort Leavenworth, Kansas. Her focus has been primarily on China, with a recent emphasis on research and development, China’s global expansion efforts, and Chinese military strategy. She has published nearly three dozen major papers and countless articles in a variety of journals, magazines, and online venues.

Disclaimer:  The views expressed in this article are Ms. Hurst’s alone and do not imply endorsement by the U.S. Army Training and Doctrine Command, the U.S. Army, the Department of Defense, or the U.S. Government.  This piece is meant to be thought-provoking and does not reflect the current position of the U.S. Army.

1 “Notice of the State Council Regarding the Issuance of the 13th Five-Year National Science and Technology Innovation Plan, State Council Issuance (2016) No. 43, 28 March 2017, http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.

2 “Neither War Nor Peace,” The Economist, 25 January 2018, https://www.economist.com/special-report/2018/01/25/neither-war-nor-peace.

3 Eric Rosenbaum, “1 in 5 Corporations Say China Has Stolen Their IP within the Last Year: CNBC CFO Survey,” CNBC, 1 March 2019, https://www.cnbc.com/2019/02/28/1-in-5-companies-say-china-stole-their-ip-within-the-last-year-cnbc.html.

4 Xi Jinping, “Secure a Decisive Victory in Building a Moderately Prosperous Society in All Respects and Strive for the Great Success of Socialism with Chinese Characteristics for a New Era,” Transcript of speech delivered at the 19th National Congress of the communist Party of China, 18 October 2017.

5 Gregory Allen, “Understanding China’s AI Strategy,” Center for a New American Security, 6 February 2019, https://www.cnas.org/publications/reports/understanding-chinas-ai-strategy.

134. On Hype and Hyperwar

[Editor’s Note: Mad Scientist Laboratory is pleased to publish today’s post by Collin Meisel and returning guest blogger Dr. Jonathan D. Moyer, both of the Frederick S. Pardee Center for International Futures. Eschewing another discussion of disruptive emergent technologies, Mr. Meisel and Dr. Moyer instead focus on persistent global trends that, while perhaps not as sexy as artificial intelligence or quantum computing, are just as relevant to warfighters preparing for competition and conflict with potential adversaries in the Future Operational Environment!]

Too often, discussion of the Future Operational Environment (FOE) is filled with science fiction-inspired speculation of a world driven by the likes of quantum artificial intelligence (AI) and “self-constructing robotic ‘cyburgs’”. While these and similar potential technological developments are entertaining—and even useful to ponder—we should not let them distract us from less sensational but also consequential trends that are sure to transform the FOE in the coming decades, such as persistent demographic and economic shifts among great powers and the developing world. In other words, let’s take the “hype” out of hyperwar (i.e., a possible future where AI calls the shots on the battlefield).

For example, as a common feature of proposed hyperwar scenarios, quantum computing is often portrayed as both a force multiplier and boogeyman of the future despite its well-known fragility, stunted development, and potentially insurmountable limitations. Indeed, predictions of a soon-to-arrive quantum code-cracking menace are pure fiction. Similarly, despite predictions of the AI singularity—the hypothetical moment when AI surpasses human intelligence and subsequent advances presumably occur exponentially—AI, too, has its limitations.

Rather than speculating about what could become of these much-hyped technological developments, a more productive use of time is to consider, for example, the serious threat that more limited versions of quantum computing and AI might still pose in, say, the hands of a declining China. Even as it rises, China is up against long-term, persistent trends—such as a forthcoming shrinking population and the predicament of aging before it gets rich—that are sure to impact geopolitics in East Asia and beyond as the Chinese Communist Party, which in part justifies its one-party rule by continued prosperity, clings to power. Indeed, this is a foreseeable, understandable future—the opposite of hype and speculation.

As another increasingly important geopolitical player, India faces its own set of structural shifts in a direction much different from that of China. With relatively high birth rates and lower death rates compared to China, India’s  population will likely continue to rise—and, in part, drive economic growth—as its counterpart to the northeast begins to wither. While these forecasts are of one possible future, their consistency with trends over the last half-century suggests that policymakers in the United States and elsewhere should be preparing for such a world. And what of other persistent demographic trends? Although we cannot know for certain what Africa’s growth to nearly one-third of the world’s population by 2060 will mean in light of Europe’s simultaneous contraction, we can say with a fair degree of certainty that such a demographic shift is likely to happen given persistent global trends. Again, these are understandable futures; they are what is and has been happening, not hype.

Using the freely-available, open-source International Futures tool, we and our colleagues at the Pardee Center for International Futures are working with the Army Future Studies Group (AFSG) to think about long-term futures by examining these and other persistent trends in areas ranging from material power to natural systems. For example, AFSG fellows are asked to think about the planet’s water systems, impending water shortages across regions like Central and Western Asia and Northern Africa, and what they might mean for regional development and potential conflicts. While study of these less buzz-worthy trends may not tell the Army how it will be fighting wars of the future, it can at least help forecast trends that point to where and with whom.

Demographic transitions and shrinking aquifers may not have the same pizzazz as warfare at the speed of thought and other elements of the AI battlefield, but they possess equal potential to transform the FOE in fundamental ways. More importantly, these less sensational but persistent structural shifts can be considered in combination to develop plausible, understandable future scenarios—not science fiction fantasy. To be clear, hyperwar and its accompanying technologies still deserve attention, so long as those considering them do not get caught up in the hype. The goal of futures studies should be to strive towards a more understandable future—then we can worry about Elon Musk and the impending AI apocalypse.

If you enjoyed reading this post, please also see:

Building Capacity to Think about the Future, by Drs.  Jonathan D. Moyer and Christopher Rice and Mr. Alex Porter.

Long Term Trends and Some Implications of Decreasing Global Interdependence, by Dr. Moyer, presented at the Mad Scientist Strategic Security Environment in 2050 Conference at Georgetown University, 8-9 August 2016.

Extended Trends Impacting the Future Operational Environment, excerpted from the aforementioned Mad Scientist Conference’s final report.

Emergent Global Trends Impacting on the Future Operational Environment, reviewing three additional sources that help us to understand new trends and technologies affecting the FOE.

 Making the Future More Personal: The Oft-Forgotten Human Driver in Future’s Analysis, by Mr. Andrew Sullivan, addressing the paramount disruptor — people and ideas.

… and crank up R.E.M.‘s It’s The End Of The World As We Know It (And I Feel Fine)!

Collin Meisel is a Research Associate at the Frederick S. Pardee Center for International Futures and a former U.S. Air Force Security Forces member.

Dr. Jonathan D. Moyer is Assistant Professor at the Josef Korbel School of International Studies at the University of Denver and Director of the Frederick S. Pardee Center for International Futures.

70. Star Wars 2050

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s guest post by returning blogger Ms. Marie Murphy, addressing the implication of space drones and swarms on space-based services critical to the U.S. Army.  Ms. Murphy’s previous post addressed Virtual Nations: An Emerging Supranational Cyber Trend.]

Drone technology continues to proliferate in militaries and industries around the world.  In the deep future, drones and drone swarms may extend physical conflict into the space domain.  As space becomes ever more critical to military operations, states will seek technologies to counter their adversaries’ capabilities.   Drones and swarms can blend in with space debris in order to provide a tactical advantage against vulnerable and expensive assets at a lower cost.

Source: AutoEvolution

Space was recently identified as a battlespace domain in recognition of threats increasing at an unexpected rate and, in 2013, the Army Space Training Strategy was released. The functions of the Army almost entirely depend on space systems for daily and specialized operations, particularly C4ISR and GPS capabilities. “Well over 2,500 pieces of equipment… rely on a space-based capability” in any given combat brigade, so an Army contingency plan for the loss of satellite communication is critical.[I]  It is essential for the Army, in conjunction with other branches of the military and government agencies, to best shield military assets in space and continue to develop technologies, such as outer space drones and swarms, to remain competitive and secure throughout this domain in the future.

Source: CCTV China

Drone swarms in particular are an attractive military option due to their relative inexpensiveness, autonomy, and durability as a whole. The U.S., China, and Russia are the trifecta of advanced drone and drone swarm technology and also pose the greatest threats in space. In May 2018, Chinese Company CETC launched 200 autonomous drones,[II] beating China’s own record of 119 from 2017.[III] The U.S. has also branched out into swarm technology with the testing of Perdix drones, although the U.S. is most known for its use of the high-tech Predator drone.[IV]

Source: thedrive.com

Non-state actors also possess rudimentary drone capabilities. In January 2018, Syrian rebels attacked a Russian installation with 13 drones in an attempt to overwhelm Russian defenses. The Russian military was able to neutralize the attack by shooting down seven and bringing the remaining six down with electronic countermeasures.[V] While this attack was quelled, it proves that drones are being used by less powerful or economically resourceful actors, making them capable of rendering many traditional defense systems ineffective. It is not a far leap to incorporate autonomous communication between vehicles, capitalizing on the advantages of a fully interactive and cooperative drone swarm.

NASA Homemade Drone; Source: NASA Swamp Works

The same logic applies when considering drones and drone swarms in space. However, these vehicles will need to be technologically adapted for space conditions. Potentially most similar to future space drones, the company Swarm Technology launched four nanosats called “SpaceBees” with the intention of using them to create a constellation supporting Internet of Things (IoT) networks; however, they did so from India without FCC authorization.[VI] Using nanosats as examples of small, survivable space vehicles, the issues of power and propulsion are the most dominant technological roadblocks. Batteries must be small and are subject to failure in extreme environmental conditions and temperatures.[VII] Standard drone propulsion mechanisms are not viable in space, where drones will have to rely on cold-gas jets to maneuver.[VIII] Drones and drone swarms can idle in orbit (potentially for weeks or months) until activated, but they may still need hours of power to reach their target. The power systems must also have the ability to direct flight in a specific direction, requiring more energy than simply maintaining orbit.

Source: University of Southampton

There is a distinct advantage for drones operating in space: the ability to hide in plain sight among the scattered debris in orbit. Drones can be sent into space on a private or government launch hidden within a larger, benign payload.[IX] Once in space, these drones could be released into orbit, where they would blend in with the hundreds of thousands of other small pieces of material. When activated, they would lock onto a target or targets, and swarms would converge autonomously and communicate to avoid obstacles. Threat detection and avoidance systems may not recognize an approaching threat or swarm pattern until it is too late to move an asset out of their path (it takes a few hours for a shuttle and up to 30 hours for the ISS to conduct object avoidance maneuvers). In the deep future, it is likely that there will be a higher number of larger space assets as well as a greater number of nanosats and CubeSats, creating more objects for the Space Surveillance Network to track, and more places for drones and swarms to hide.[X]

For outer space drones and drone swarms, the issue of space junk is a double-edged sword. While it camouflages the vehicles, drone and swarm attacks also produce more space junk due to their kinetic nature. One directed “kamikaze” or armed drone can severely damage or destroy a satellite, while swarm technology can be harnessed for use against larger, defended assets or in a coordinated attack. However, projecting shrapnel can hit other military or commercial assets, creating a Kessler Syndrome effect of cascading damage.[XI] Once a specific space junk removal program is established by the international community, the resultant debris effects from drone and swarm attacks can be mitigated to preclude collateral damage.  However, this reduction of space junk will also result in less concealment, limiting drones’ and swarms’ ability to loiter in orbit covertly.

Utilizing drone swarms in space may also present legal challenges.  The original governing document regarding space activities is the Outer Space Treaty of 1967. This treaty specifically prohibits WMDs in space and the militarization of the moon and other celestial bodies, but is not explicit regarding other forms of militarization, except to emphasize that space activities are to be carried out for the benefit of all countries. So far, military space activities have been limited to deploying military satellites and combatting cyber-attacks. Launching a kinetic attack in space would carry serious global implications and repercussions.

Such drastic and potentially destructive action would most likely stem from intense conflict on Earth. Norms about the usage of space would have to change. The Army must consider how widely experimented with and implemented drone and swarm technologies can be applied to targeting critical and expensive assets in orbit. Our adversaries do not have the same moral and ethical compunctions regarding space applications that the U.S. has as the world’s leading democracy. Therefore, the U.S. Army must prepare for such an eventuality.  Additionally, the Army must research and develop a more robust alternative to our current space-based GPS capability.  For now, the only war in space is the one conducted electronically, but kinetic operations in outer space are a realistic possibility in the deep future.

Marie Murphy is a rising junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative.


[I] Houck, Caroline, “The Army’s Space Force Has Doubled in Six Years, and Demand Is Still Going Up,” Defense One, 23 August 2017.

[II]China’s Drone Swarms,” OE Watch, Vol. 8.7, July 2018.

[III]China Launches Drone Swarm of 119 Fixed-Wing Unmanned Aerial Vehicles,” Business Standard, 11 June 2017.

[IV] Atherton, Kelsey D., “The Pentagon’s New Drone Swarm Heralds a Future of Autonomous War Machines,” Popular Science, 17 January 2017.

[V] Hruska, Joel, “Think One Military Drone is Bad? Drone Swarms Are Terrifyingly Difficult to Stop,” Extreme Tech, 8 March 2018.

[VI] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[VII] Chow, Eugene K., “America Is No Match for China’s New Space Drones,” The National Interest, 4 November 2017.

[VIII] Murphy, Mike, “NASA Is Working on Drones That Can Fly In Space,” Quartz, 31 July 2015.

[IX] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[X]Space Debris and Human Spacecraft,” NASA, 26 September 2013.

[XI] Scoles, Sarah, “The Space Junk Problem Is About to Get a Whole Lot Gnarlier,” WIRED, July 31, 2017.