129. “The Queue”

[Editor’s Note: Mad Scientist Laboratory is pleased to present our latest edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Mad Scientist Initiative has come across during the previous month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment (OE). We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

Recently ML Cavanaugh asked and answered in a LA Times Op-Ed piece, “Can science fiction help us prepare for 21st Century Warfare?

The Mad Science team answers this question with an emphatic, “YES!

Below is a re-run of our review of Eliot Peper’s argument for business leaders to read more science fiction. His urban planning business case speaks for itself.

For the burgeoning authors among you, submit a story to our Science Fiction Writing Contest 2019 –- you only have two weeks left! — see contest details here.

1.Why Business Leaders Need to Read More Science Fiction,” by Eliot Peper, Harvard Business Review, 24 July 17.

New York City’s Fifth Avenue bustling with horse-drawn traffic on Easter Sunday, 1900 (see if you can spot the horseless carriage!) / Source: Commons Wikimedia

There are no facts about the future and the future is not a linear extrapolation from the present. We inherently understand this about the future, but Leaders oftentimes seek to quantify the unquantifiable. Eliot Peper opens his Harvard Business Review article with a story about one of the biggest urban problems in New York City at the end of the 19th century – it stank!

Horses were producing 45,000 tons of manure a month. The urban planners of 1898 convened a conference to address this issue, but the experts failed to find a solution. More importantly, they could not envision a future only a decade and a half hence, when cars would outnumber horses. The urban problem of the future was not horse manure, but motor vehicle-generated pollution and road infrastructure. All quantifiable data available to the 1898 urban planners only extrapolated to more humans, horses, and manure. It is likely that any expert sharing an assumption about cars over horses would have been laughed out of the conference hall. Flash forward a century and the number one observation from the 9/11 Commission was that the Leaders and experts responsible for preventing such an attack lacked imagination. Story telling and the science fiction genre allow Leaders to imagine beyond the numbers and broaden the assumptions needed to envision possible futures.

2. Challenges to Security in Space, Defense Intelligence Agency, January 2019.

Source: Evan Vucci / AP / REX / Shutterstock

On 19 Feb 19, President Trump signed Space Policy Directive-4 (SPD-4), establishing the Space Force as the nation’s newest military branch. This force will initially reside within the U.S. Air Force, much as the U.S.  Marine Corps resides within the U.S. Navy. Acting Secretary of Defense Patrick Shanahan, as Deputy Secretary of Defense, must now provide the associated draft legislative proposal to the President via the Office of Management and Budget; then it will be submitted to Congress for approval – its specific “details… and how effectively Administration officials defend it on Capitol Hill will determine its fate.

Given what is sure to be a contentious and polarizing congressional debate, the Defense Intelligence Agency’s Challenges to Security in Space provides a useful unclassified reference outlining our near-peer adversaries’ (China and Russia) space strategy, doctrine, and intent; key space and counterspace organizations; and space and counterspace capabilities. These latter capabilities are further broken out into: space launch capabilities; human spaceflight and space exploration; Intelligence, Surveillance, and Reconnaissance (ISR); navigation and communications; and counterspace.

In addition to our near-peer’s space capabilities, Iranian and North Korean space challenges are also addressed. The paper explores these nations’ respective national space launch facilities as venues for testing ballistic missile technologies.

The paper concludes with an outlook assessment addressing the increasing number of spacefaring nations, with “some actors integrat[ing] space and counterspace capabilities into military operations,” and “trends… pos[ing] a challenge to U.S. space dominance and present[ing] new risks for assets on orbit.”

A number of useful appendices are also included, addressing the implications of debris and orbital collisions; counterspace threats illustrating the associated capabilities on a continuum from reversible (e.g., Electronic Warfare and Denial and Deception) to irreversible (e.g., Ground Site Attacks and Nuclear Detonation in Space); and a useful list defining space acronyms.

With the U.S. and our allies’ continued dependence on space domain operations in maintaining a robust deterrence, and failing that, winning on future battlefields, this DIA assessment is an important reference for warfighters and policy makers, alike.

3. Superconduction: Why does it have to be so cold?Vienna University of Technology via ScienceDaily, 20 February 2019.  (Reviewed by Marie Murphy)

One of the major barriers to quantum computing is a rather unexpected one: in order for superconduction to occur, it must be very cold. Superconduction is an electrical current that moves “entirely without resistance” and, as of now, with standard materials superconduction is only possible at -200oC. In quantum computing there are massive amounts of particles moving in interdependent trajectories, and precisely calculating all of them is impossible. Researchers at TU Wien (Technische Universität Wien – Vienna University of Technology) were able to add on to an existing equation that allows for the approximate calculation of these particles in solid matter, not just a vacuum. This new formula may make it easier to develop different superconducting materials and potentially identify materials that could conduct at room temperature.

Quantum computing is heralded as the next big step in the technological revolution and the key to unlocking unthinkable possibilities of human and technological advancement. If there was a way for quantum computing to work at closer to room temperature, then that could lead to a major breakthrough in the technology and the rapid application of quantum computing to the operational environment. There is also a massive first mover advantage in quantum computing technology: the organization that solves the problem first will have unlimited and uncontested use of the technology, and very few people in the world have the technological expertise to quickly replicate the discovery.

4.The Twenty-First Century General, with Dr. Anthony King,” hosted by John Amble, Modern War Institute Podcast, 7 March 2019.

Command: The Twenty-First Century General / Source: Cambridge University Press

In this prescient episode of the Modern War Institute podcast, John Amble interviews Dr. Anthony King (Chair of War Studies in the Politics and International Studies Department at Warwick University in the United Kingdom) about his new book Command: The Twenty-First Century General. Amble and Dr. King have a detailed and informative discussion about the future of command as the world has moved into a digital age and what it’s meant for the battlefield, warfighters, commanders, and even organizational staffs.

One of the more impactful ideas explored in this podcast, in relation to the future of warfare, was the idea of collective decision-making on the part of commanders, as opposed to previous “hero era” individualistic leadership typified by General Patton and Field Marshals Rommel and Montgomery. Command teams (divisional staff, for example) have swelled in size not simply to create meaningless career milestones but due to digital age revolutions that allowed for increasingly complex operations.

With artificial intelligence becoming increasingly pervasive throughout the future operational environment and likely ever-present on future command staffs, Dr. King points out that staffs may not become smaller but actually may increase as operations become even more complex. The changing character of future warfare (especially the emergence of AI) may enable incredible new capabilities in coordination, synchronization, and convergence of effects but adversaries using more simplistic command structures could expose this inherent complexity through speed and decisiveness.

5. Alexa, call the police! Smart assistants should come with a ‘moral AI’ to decide whether to report their owners for breaking the law, experts say,” by Peter Lloyd, Daily Mail.com, 22 February 2019.

Scientists at the University of Bergen in Norway discussed the idea of a “moral A.I.” for smart home assistants, like the Amazon Echo, Google Home, and Apple HomePod at the AAAI / ACM Conference for Artificial Intelligence, Ethics and Society in Hawaii.  Marija Slavkovik, associate professor at the department of information science and media studies “suggested that digital assistants should possess an ethical awareness that at once represents both the owner and the authorities — or, in the case of a minor, their parents.” Recall that previously, police have seized information gathered by smart devices.

Moral A.I. would require home assistants to “decide whether to report their owners for breaking the law,” or to remain silent. “This would let them weigh whether to report illegal activity to the police, effectively putting millions of people under constant surveillance.” Stakeholders “need to be identified and have a say, including when machines shouldn’t be able to listen in. Right now only the manufacturer decides.” At present, neither stakeholders nor consumers are in charge of their own information and companies use our personal information freely, without commensurate compensation.

If developed, brought to market, and installed (presumably willingly) in our homes (or public spaces), is Moral A.I. a human problem?

Yes. Broadly speaking, no place on earth is completely homogeneous; each country has a different culture, language, beliefs, norms, and society. Debating the nuances, the dystopian sounding and murky path of Moral A.I. involves the larger question on how should ethics be incorporated in AI.

Furthermore – should lethal autonomous weapons be used on humans? In his recent post entitled “AI Enhancing EI in War,” MAJ Vincent Dueñas addressed how AI can mitigate a human commander’s cognitive biases and enhance his/her (and their staff’s) decision-making to assist them in commanding, fighting, and winning on future battlefields. Humans are susceptible to cognitive biases and these biases sometimes result in catastrophic outcomes—particularly in the high stress environment of wartime decision-making.  AI offers the possibility of mitigating the susceptibility of negative outcomes in the commander’s decision-making process by enhancing the collective Emotional Intelligence (EI) of the commander and his/her staff.  For now, however, AI is too narrow to carry this out in someone’s home, let alone on the battlefield.

6.SS7 Cellular Network Flaw Nobody Wants To Fix Now Being Exploited To Drain Bank Accounts,” by Karl Bode, Techdirt.com, 11 February 2019.

Signaling System 7 (SS7) is a series of cellular telephone protocols first built in 1975 that allows for telephonic communication around the globe. Within this set of protocols is a massive security vulnerability that has been public knowledge for over a decade. The vulnerability allows a nefarious actor to, among other things, track user location, dodge encryption, and record conversations. What’s more, this can be done while looking like ordinary carrier chatter and, in some cases, can be used to gain access to bank accounts through 2-factor authentication and effectively drain them.

This is significant from a military perspective because, as highlighted within a recent blog post, we have already seen near-peer adversarial states execute attacks through cellphone activity, personal wearable device location data, and social media. These states attempt to degrade soldier morale by launching information operations campaigns targeted at soldier families or the soldiers themselves through text messages, social media, or cell phone calls. The SS7 vulnerability could make these campaigns more successful or easier to execute and allow them to penetrate farther into the personal lives of soldiers than ever before.

Lastly, this vulnerability highlights an enduring trend: legacy communications infrastructure still exists and is still heavily used by civilian and military alike. This infrastructure is old and vulnerable and was designed before cellphones were commonplace. Modernizing this infrastructure around the world would be costly and time consuming and there has been little movement on fixing the vulnerability itself. Despite this vulnerability being known since 2008, is this something that will affect operations going forward? With no intrusion signature, will the Army need to modify existing policy on personal electronic devices for Soldiers and their families?

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future OE, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

125. The Importance of Integrative Science/Technology Intelligence (InS/TINT) to the Prediction of Future Vistas of Emerging Threats

[Editor’s Note: Mad Scientist Laboratory is pleased to feature today’s post by returning guest bloggers Dr. James Giordano and CAPT (USN – Ret.) L. R. Bremseth, and co-author Joseph DeFranco. Given on-going collaboration by our near-peer adversaries in Science and Technology (S/T) development and the execution of non-kinetic operations, today’s authors propose an expanded, integrated, and multi-national approach to S/T Intelligence. Enjoy!]

InS/TINT Karma *

(click on the link above to listen along as you read this post!)

“[it’s]… gonna get you; gonna knock you right on the head; you better get yourself together; pretty soon you’re gonna be dead.”

John Lennon 1

On January 29th, 2019, Daniel Coats, the United States Director of National Intelligence, reported to the Senate Select Committee on Intelligence about emerging threats to national security.2  The report stated that “…rapid advances in biotechnology, including gene editing, synthetic biology, and neuroscience, are likely to present new economic, military, ethical, and regulatory challenges worldwide as governments struggle to keep pace. These technologies hold…potential for adversaries to develop novel biological warfare agents, threaten food security, and enhance or degrade human performance

Supportive of our ongoing work,3 the report detailed the ways that existing S/T (i.e., radical leveling science and technologies, or RLT) and newly developing methods and tools (i.e., emerging science and technologies, or ET) can force-multiply non-kinetic engagements that disrupt the extant balances of economic, political, and military power. This is further fortified by the Intelligence Community’s observation of recent Chinese and Russian activities and collaborative efforts4 in S/T development and execution of non-kinetic operations. China and Russia have made significant investments and deepened political interest in research and innovation to assert growing effect, if not dominance, in international scientific, biomedical, and technological markets. Specifically, the report stated:

During the past two decades, the US lead in S&T fields has been significantly eroded, most predominantly by China, which is well ahead in several areas.5

China’s expanding efforts in bio S/T research and innovation is significant as it can, and is intended to alter the international geopolitical landscape.6, 7 Chinese philosophy and political culture establish ethico-legal grounds for research practices that can differ from those of the west and that enable somewhat more rapid progress across a broader range of S/T enterprises.8, 9, 10

Beijing has stepped up efforts to reshape the international discourse around human rights, especially within the UN system. Beijing has sought not only to block criticism of its own system but also to erode norms, such as the notion that the international community has a legitimate role in scrutinizing other countries’ behavior on human rights (e.g., initiatives to proscribe country-specific resolutions), and to advance narrow definitions of human rights based on economic standards.11

This is occurring via Chinese interest and engagement in (1) academic and university research; (2) the economic and political encouragement of government scientific agencies; (3) commercial investment; and (4) establishing legal bases for intellectual property in order to gain greater ownership and control of S/T development. China’s current and proposed Five-Year Plans (FYPs) conjoin governmental, academic, and commercial enterprises to initiate and fulfill long-term agendas to establish and sustain S/T development and use to exercise multi-dimensional global power.12

Xinhua News Agency (Li Gang/Xinhua via AP)

At the 2018 Central Foreign Affairs Work Conference, Xi stated his desire to lead the reform of the global governance system, driving a period of increased Chinese foreign policy activism and a Chinese worldview that links China’s domestic vision to its international vision.13

As we have claimed, we believe that it will be increasingly important to analyze, quantify, and predict how particular RLTs and ETs can and likely will be employed by foreign competitors and advisories in both non-kinetic and kinetic ways.14 Currently, the models used by the United States and its allies tend to favor a somewhat limited timescale and linear pattern of S/T development.15 And if/when more extensive timescales are used, linear modeling and limited analysis for the scope of effects can constrain accuracy and reliability of predictions.

However, current research and progress in S/T is assuming a more exponential increase (Figure 1), which reflects China’s more long-term visions, if not aspirations. Thus, we feel that it is near-sighted to solely focus on five-ten-year developments. Yet it may be that the lenses currently used for more far-sighted views tend to be restricted in scope. This is problematic because such models can fail to recognize and appreciate the ways that both short- and long-term enterprises may be used to evoke strategically latent, multi-focal, disruptive effects to establish balances of power in the future.

Figure 1

To this point, we advocate expanding and improving the focus of the “predictability horizon” to better perceive three vistas of future S/T development and use. As shown in Figure 2, these are the: (1) vista of probability (present to 5 years); (2) vista of possibility (6 to 15 years); and (3) vista of potentiality (16 to 30 years). We assert that in light of current trends in global S/T research and development, it is important to examine what is probable, and from such probabilities, what is possible thereafter. Identification and depiction of possibilities (and the multi-dimensional factors that would be necessary for their actualization) enables a more salient view to better gauge the potentialities that could be realized 16 to 30 years into the future.

Figure 2

Of course, more proximate developments are easier to define and predict. Moving farther into the future, extant and emerging technologies can foster a greater variety of uses and effects. The potential uses and influences of S/T are more difficult to accurately model due to (1) diverse socio-political and economic pushing and pulling forces (in society and science), and (2) the contingencies of socio-cultural and political variables that establish “fertile” grounds for viable uses of S/T. Using a solely inductive (i.e., advancing) approach to S/T analysis and prediction may be inadequate. Rather, we recommend combining inductive methods with deductive (i.e., retrospective) analytics that are aimed at identifying potential uses and values of S/T (and the multi-varied factors required for its articulation) in the 16-30 year future timeframe, and working backwards to address and model what possibilities and probabilities would be necessary to allow such long-term occurrences. We refer to this deductive-inductive approach as Integrative S/T Intelligence (InS/TINT) that engages temporal and socio-cultural trends, contingencies, and necessities to define, analyze, model, and predict strategically-latent S/T developments, uses, and effects on the global stage.

Such an enterprise requires:  (1) an ongoing assessment of current S/T, research trends, and implicitly and/or explicitly stated long-term goals of competitors and/or possible adversaries; (2) multi-national cooperation to monitor the development of S/T that could be weaponized; and (3) establishing more acute, improved perspectives of non-kinetic engagements and the viable roles that S/T can play in leveraging their effects. Toward these goals, the United States and its allies must recognize and assess both the explicit/overt and more tacit aspects of research and use activities of several countries that already have enterprises dedicated to dual- and/or direct-use of S/T in warfare, intelligence, and national security (WINS) operations.16, 17 This will mandate deeper surveillance of international S/T research and agendas to accurately evaluate both near-and longer-term activities, progress, and trajectories. Surveillance should focus on (1) university and research sites; (2) the extent and directions of private and public support in S/T; (3) efforts toward recruitment of researchers; (4) S/T commercialization; (5) current/future military postures; and (6) current/future market space occupation and leveraging potential.

As we have previously described, an effort of this magnitude demands conjoined efforts from multiple national resources (that are beyond a whole-of-government approach).18 The type of program of record or program management office (PMO) that we have proposed is crucial. Such a program will require ongoing domestic funding and participation and support of like-minded, multi-national allies. But we perceive such effort and commitment to be worthwhile, important, and necessary, as the threat of adversaries’ use of emerging technologies in non-kinetic engagements is clear – both at present and for the future. Therefore, we consider it prudent to dedicate funding and resources to prevent such engagements of emergent S/T from becoming a national emergency.

History punishes strategic frivolity sooner or later

Henry Kissinger

If you enjoyed this post, please also see:

… and her presentation on PLA Human-Machine Integration at the Mad Scientist Bio Convergence and Soldier 2050 Conference at SRI International’s Menlo Park Campus on Day 2 (9 March 2018).

Mad Scientist James Giordano, PhD, is Professor of Neurology and Biochemistry, Chief of the Neuroethics Studies Program, and Co-Director of the O’Neill-Pellegrino Program in Brain Science and Global Law and Policy at Georgetown University Medical Center. As well, he is J5 Donovan Group Senior Fellow, Biowarfare and Biosecurity, at US Special Operations Command, (USSOCOM). He has served as Senior Science Advisory Fellow to the SMA Group of the Joint Staff of the Pentagon; as Research Fellow and Task Leader of the EU-Human Brain Project Sub-Program on Dual-Use Brain Science, and as an appointed member of the Neuroethics, Legal and Social Issues Advisory Panel of the Defense Advanced Research Projects Agency (DARPA). He is an elected member of the European Academy of Science and Arts, and a Fellow of the Royal Society of Medicine (UK).

L. R. Bremseth, CAPT, USN SEAL (Ret.), is Senior Special Operations Forces Advisor for CSCI, Springfield, VA. A 29+ years veteran of the US Navy, he commanded SEAL Team EIGHT, Naval Special Warfare GROUP THREE, and completed numerous overseas assignments. He also served as Deputy Director, Operations Integration Group, for the Department of the Navy.

Joseph DeFranco is J5 Donovan Group Fellow in Biowarfare and Biosecurity, at U.S. Special Operations Command (USSOCOM). He is currently studying neuroscience in the college of arts and sciences, and biodefense at the Schar School of Policy and Government of George Mason University, VA, and formerly served on the staff of Congressman Donald S. Beyer (VA-08). His current research focuses upon the possible use of novel microbiological agents and big data as force-multiplying elements in non-kinetic, hybrid, and kinetic engagements, and the role of global agencies in biosecurity.

DISCLAIMER: This blog post was adapted from portions the authors’ whitepaper of the Strategic Multilayer Assessment Group, Joint Staff, Pentagon, and their essay to appear in the Defense Life Sciences Journal. The opinions expressed in this post are those of the authors, and do not necessarily represent those of the US Government, Department of Defense, and/or the institutions with which the authors are affiliated.


* Crank it up!  Karma is the sum of all actions in this and previous states of existence, viewed as deciding one’s fate in their future existence(s). https://en.oxforddictionaries.com/definition/karma

1 Lennon J. “Instant Karma! (We All Shine On).” Instant Karma! Apple Records, 1970.

2 Worldwide Threat Assessment of the US Intelligence Community, Senate, 116th Congress. p. 16 (2019) (Testimony of Daniel R. Coats).

3 Bremseth LR, Giordano J. Emerging technologies as threats in non-kinetic engagements. Mad Scientist Laboratory Post #105, 13. December, 2018. Available online at:
http://madsciblog.tradoc.army.mil/105-emerging-technologies-as-threats-in-non-kinetic-engagements/.

4 Ibid. ref. 2. p.24.

5 Ibid. ref. 2. p. 15.

6 Chen C, Andriola J, Giordano J. Biotechnology, commercial veiling and implications for strategic latency: The exemplar of neuroscience and neurotechnology research and development in China. In: Davis ZD, Nacht M. (eds.) Strategic Latency Red, White and Blue: Managing the National and International Security Consequences of Disruptive Technologies. Livermore, CA: Lawrence Livermore Press, 2018, pp. 12-32.

7 Nach, M, Laderman S, Beeston J. Strategic Competition in China-US Relations. No. 5, Lawrence Livermore National Laboratory Center for Global Security Research, October 2018.

8 Giordano J. Looking ahead: The importance of views, values, and voices in neuroethics –now. Camb Q Health Care Ethics 27(4): 728-731 (2018).

9 Shook JR, Giordano J. Ethics transplants? Addressing the risks and benefits of guiding international biomedicine. AJOB-Neurosci 8(4): 230-232 (2017).

10 Palchik G, Chen C, Giordano J. Monkey business? Development, influence and ethics of potentially dual-use brain science on the world stage. Neuroethics, 10:1-4 (2017).

11 Ibid. ref. 2. p. 26.

12 Ibid. ref. 6.

13 Ibid. ref. 2. p. 25.

14 Ibid. ref. 3.

15 Pillsbury M. The Hundred-Year Marathon: China’s Secret Strategy to Replace America as the Global Superpower. NY: Griffin, 2016. For additional overviews, see: Bipartisan Report of the Blue-Ribbon Study Panel on Biodefense. Biodefense Indicators: One Year Later; Events Outpacing Efforts to Defend the Nation, December 2016.  Siegrist DW, Tennyson SL (eds.) Technologically-based Biodefense. Arlington, VA: Potomac Institute Press (2003).

16 Ben Ouagrham-Gormley S. The bioweapons convention; A new approach. Bull Atomic Sci 71, Nov 24 (2015).

17 Giordano J. The neuroweapons threat. Bull Atomic Sci 72(3): May 31 (2016).

18 Ibid. ref. 3.

65. “The Queue”

[Editor’s Note:  Now that another month has flown by, Mad Scientist Laboratory is pleased to present our June edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the past month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

Source: KUO CHENG LIAO

1. Collaborative Intelligence: Humans and AI are Joining Forces, by H. James Wilson and Paul R. Daugherty, Harvard Business Review, July – August 2018.

 

Source: OpenAI

A Team of AI Algorithms just crushed Expert Humans in a Complex Computer Game, by Will Knight, MIT Technology Review, June 25, 2018.

I know — I cheated and gave you two articles to read. These “dueling” articles demonstrate the early state of our understanding of the role of humans in decision-making. The Harvard Business Review article describes findings where human – Artificial Intelligence (AI) partnerships take advantage of the leadership, teamwork, creativity, and social skills of humans with the speed, scalability, and quantitative capabilities of AI. This is basically the idea of “centaur” chess which has been prevalent in discussions of human and AI collaboration. Conversely, the MIT Technology Review article describes the ongoing work to build AI algorithms that are incentivized to collaborate with other AI teammates. Could it be that collaboration is not a uniquely human attribute? The ongoing work on integration of AI into the workforce and in support of CEO decision-making could inform the Army’s investment strategy for AI. Julianne Gallina, one of our proclaimed Mad Scientists, described a future where everyone would have an entourage and Commanders would have access to a “Patton in the Pocket.” How the human operates on or in the loop and how Commanders make decisions at machine speed will be informed by this research. In August, the Mad Scientist team will conduct a conference focused on Learning in 2050 to further explore the ideas of human and AI teaming with intelligent tutors and mentors.

Source: Doubleday

2. Origin: A Novel, by Dan Brown, Doubleday, October 3, 2017, reviewed by Ms. Marie Murphy.

Dan Brown’s famous symbologist Robert Langdon returns to avenge the murder of his friend, tech developer and futurist Edmund Kirsch. Killed in the middle of presenting what he advertised as a life-changing discovery, Langdon teams up with Kirsch’s most faithful companion, his AI assistant Winston, in order to release Edmund’s presentation to the public. Winston is able to access Kirsch’s entire network, give real-time directions, and make decisions based on ambiguous commands — all via Kirsch’s smartphone. However, this AI system doesn’t appear to know Kirsch’s personal password, and can only enable Langdon in his mission to find it. An omnipresent and portable assistant like Winston could greatly aid future warfighters and commanders. Having this scope of knowledge on command is beneficial, but future AI will be able to not only regurgitate data, but present the Soldier with courses of action analyses and decision options based on the data. Winston was also able to mimic emotion via machine learning, which can reduce Soldier stress levels and present information in a humanistic manner. Once an AI has been attached to a Soldier for a period of time, it can learn the particular preferences and habits of that Soldier, and make basic or routine decisions and assumptions for that individual, anticipating their needs, as Winston does for Kirsch and Langdon.

Source: Getty Images adapted by CNAS

3. Technology Roulette: Managing Loss of Control as Many Militaries Pursue Technological Superiority, by Richard Danzig, Center for a New American Security, 30 May 2018.

Mad Scientist Laboratory readers are already familiar with the expression, “warfare at machine speed.” As our adversaries close the technology gap and potentially overtake us in select areas, there is clearly a “need for speed.”

“… speed matters — in two distinct dimensions. First, autonomy can increase decision speed, enabling the U.S. to act inside an adversary’s operations cycle. Secondly, ongoing rapid transition of autonomy into warfighting capabilities is vital if the U.S. is to sustain military advantage.” — Defense Science Board (DSB) Report on Autonomy, June 2016 (p. 3).

In his monograph, however, author and former Clinton Administration Secretary of the Navy Richard Danzig contends that “superiority is not synonymous with security;” citing the technological proliferation that almost inevitably follows technological innovations and the associated risks of unintended consequences resulting from the loss of control of military technologies. Contending that speed is a form of technological roulette, former Secretary Danzig proposes a control methodology of five initiatives to help mitigate the associated risks posed by disruptive technologies, and calls for increased multilateral planning with both our allies and opponents. Unfortunately, as with the doomsday scenario played out in Nevil Shute’s novel On the Beach, it is “… the little ones, the Irresponsibles…” that have propagated much of the world’s misery in the decades following the end of the Cold War. It is the specter of these Irresponsible nations, along with non-state actors and Super-Empowered Individuals, experimenting with and potentially unleashing disruptive technologies, who will not be contained by any non-proliferation protocols or controls. Indeed, neither will our near-peer adversaries, if these technologies promise to offer a revolutionary, albeit fleeting, Offset capability.

U.S. Vice Chairman of the Joint Chiefs of Staff Air Force Gen. Paul Selva, Source: Alex Wong/Getty Images

4. The US made the wrong bet on radiofrequency, and now it could pay the price, by Aaron Metha, C4ISRNET, 21 Jun 2018.

This article illustrates how the Pentagon’s faith in its own technology drove the Department of Defense to trust it would maintain dominance over the electromagnetic spectrum for years to come.  That decision left the United States vulnerable to new leaps in technology made by our near-peers. GEN Paul Selva, Vice Chairman of the Joint Chiefs of Staff, has concluded that the Pentagon must now keep up with near-peer nations and reestablish our dominance of electronic warfare and networking (spoiler alert – we are not!).  This is an example of a pink flamingo (a known, known), as we know our near-peers have surpassed us in technological dominance in some cases.  In looking at technological forecasts for the next decade, we must ensure that the U.S. is making the right investments in Science and Technology to keep up with our near-peers. This article demonstrates that timely and decisive policy-making will be paramount in keeping up with our adversaries in the fast changing and agile Operational Environment.

Source: MIT CSAIL

5. MIT Device Uses WiFi to ‘See’ Through Walls and Track Your Movements, by Kaleigh Rogers, MOTHERBOARD, 13 June 2018.

Researchers at MIT have discovered a way to “see” people through walls by tracking WiFi signals that bounce off of their bodies. Previously, the technology limited fidelity to “blobs” behind a wall, essentially telling you that someone was present but no indication of behavior. The breakthrough is using a trained neural network to identify the bouncing signals and compare those with the shape of the human skeleton. This is significant because it could give an added degree of specificity to first responders or fire teams clearing rooms. The ability to determine if an individual on the other side of the wall is potentially hostile and holding a weapon or a non-combatant holding a cellphone could be the difference between life and death. This also brings up questions about countermeasures. WiFi signals are seemingly everywhere and, with this technology, could prove to be a large signature emitter. Will future forces need to incorporate uniforms or materials that absorb these waves or scatter them in a way that distorts them?

Source: John T. Consoli / University of Maryland

6. People recall information better through virtual reality, says new UMD study, University of Maryland, EurekaAlert, 13 June 2018.

A study performed by the University of Maryland determined that people will recall information better when seeing it first in a 3D virtual environment, as opposed to a 2D desktop or mobile screen. The Virtual Reality (VR) system takes advantage of what’s called “spatial mnemonic encoding” which allows the brain to not only remember something visually, but assign it a place in three-dimensional space which helps with retention and recall. This technique could accelerate learning and enhance retention when we train our Soldiers and Leaders. As the VR hardware becomes smaller, lighter, and more affordable, custom mission sets, or the skills necessary to accomplish them, could be learned on-the-fly, in theater in a compressed timeline. This also allows for education to be distributed and networked globally without the need for a traditional classroom.

Source: Potomac Books

7. Strategy Strikes Back: How Star Wars Explains Modern Military Conflict, edited by Max Brooks, John Amble, ML Cavanaugh, and Jaym Gates; Foreword by GEN Stanley McChrystal, Potomac Books, May 1, 2018.

This book is fascinating for two reasons:  1) It utilizes one of the greatest science fiction series (almost a genre unto itself) in order to brilliantly illustrate some military strategy concepts and 2) It is chock full of Mad Scientists as contributors. One of the editors, John Amble, is a permanent Mad Scientist team member, while another, Max Brooks, author of World War Z, and contributor, August Cole, are officially proclaimed Mad Scientists.

The book takes a number of scenes and key battles in Star Wars and uses historical analogies to help present complex issues like civil-military command structure, counterinsurgency pitfalls, force structuring, and battlefield movement and maneuver.

One of the more interesting portions of the book is the concept of ‘droid armies vs. clone soldiers and the juxtaposition of that with the future testing of manned-unmanned teaming (MUM-T) concepts. There are parallels in how we think about what machines can and can’t do and how they think and learn.

 
If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!