208. Guns of August 2035 – “Ferdinand Visits the Kashmir”: A Future Strategic and Operational Environment

[Editor’s Note: Today’s post by guest bloggers Mike Filanowski, Ruth Foutz, Sean McEwen, Mike Yocum, and Matt Ziemann (collectively, Team RSM3 from the Army Futures Study Group Cohort VI in 2019), effectively uses storytelling to illustrate a conflict scenario in a Future Strategic and Operational Environment. Read on to learn how Team RSM3 developed this vignette, and the events that transpire to morph a hypothetical limited Asian conflict into one that ultimately embroils the U.S. Army in Large Scale Combat Operations with a near-peer competitor!]

Prologue

Drone swarm! Let’s go!” The sudden eerie whoop of the drone attack sirens urged LTC Mark Barnowski and his driver, SPC Pat Deeman, to hasten throwing their gear into their truck. The Indian Army units Barnowski was advising had fought well, but the Chinese with their vastly superior equipment had devastated them. Barnowski doubted his old infantry battalion in the 82nd Airborne Division would have fared much better against the Chinese drones, missiles, and exo-skeletoned soldiers helping Pakistan humiliate India.

Barnowski’s boss, BG McNewe, had recalled him to the American advisory base further south (to be evacuated?). Fortunately 20th Century landlines still worked — pretty much no other commo did. Barnowski said his goodbyes to his counterparts and headed south post-haste.

As Barnowski and Deeman sped out of the outpost, they were stunned anew by timeless scenes of military collapse. Piles of dead bodies mixed with rows of wounded soldiers waiting for help. As the sirens sounded, soldiers began to panic as officers struggled for control; all this blended with the indecipherable din and stench of war. Lines of soldiers intermixed with the occasional truck straggled out of the outpost, away from the advancing Chinese, silently, in utter defeat, staring thousands of yards ahead at nothing.

.50 Cal M2 MG firing tracer / Source, FUNKER530 via https://www.youtube.com/watch?v=PzlvF–6bPI

As the duo exited the wire, the unmistakable roar of American-supplied M2 .50 caliber machine guns took center stage as the Indians attempted resistance. Soldiers cheered as tracers arced not only toward the drones but also Chinese soldiers cresting the ridges outside the wire. The Chinese moved implausibly fast, but the angles of their exo-skeletons exposed them against the softer curves of the Himalayan foothills in Kashmir.

The Chinese sounded morale-boosting bugles and started firing. In response, the machine guns tore into them, sending up brown-dirt geysers tinted occasionally by red spray as armor piercing bullets ripped through exoskeletons into the soft humans beneath.

Barnowski and Deeman couldn’t resist a pause to enjoy the guns’ handiwork. Somewhat cheered, they exchanged grins. “It might be 2035, but some things never change.” “Yessss, ssssir!” “Now let’s get the #!@! out of here!” “Yes, sir!” Deeman accelerated the truck to join the flow heading south.

Introduction

How did Barnowski get there? In the 2030’s, America could battle a technologically and numerically superior adversary (China) per the U.S. Army’s current operating concept (U.S. Army Training and Doctrine Command (TRADOC) Pamphlet 525-3-1, The U.S. Army in Multi-Domain Operations 2028). Army officers and soldiers from the centennial generation could face another Asian land war as future leaders; this time against a more capable foe.

But what will be the conflict’s nature? Where and how does our next war start? The U.S. Army’s Futures Studies Group (AFSG) spent over six months answering these questions using cutting-edge strategy analysis techniques.

This post highlights some of that analysis in the form of a future strategic and operational environment (FSOE). The FSOE found the most likely flashpoint for war with China involves Islamist militant havens in Pakistan. The Army could face combat there against numerically superior opponents with an asymmetric advantage in artificial intelligence (AI) and robotics.

Global power convergence among China, India, and America creates the conflict framework, in a world where China and America are superpowers, albeit in decline. America and China’s technologically advanced militaries are progressively drawn into a conflict with questionable strategic ends that strenuously tests the boundaries of “limited” war.

Students of history will recognize in this analysis past parallels, futurists will identify the collision of dominant trends, and technologists will see today’s emerging technologies realized in military application. These predictions rest on credible, cutting edge analytical techniques used by the best in the field, as the rest of this article describes.

Background

The AFSG developing this FSOE combined qualitative and quantitative analysis to reach its conclusions, combining this information with quantitative trend analysis models. Most notable of these was the International Futures (IFs) model from the Frederick S. Pardee Center for International Futures at the University of Denver. It uses hundreds of socio-economic-military variables to produce forecasts for 186 countries through 2100. The team assessed multiple IFs variables that propel significant change (for example, demography and energy) to identify global factors correlated to relevant change, such as increases in military or political power (“drivers”). The team then coupled drivers with qualitative information to identify actors with a stake in areas of interest. This analysis further enabled identification of likely future real world events (“signposts”) catalyzing driver change, thus generating the predicted future.

This analysis revealed the overarching importance of relative economic success between China and America in determining important global secondary factors, such as political stability and military growth. Using this observation, the team narrowed its analysis to four alternative futures: strong Chinese/ strong American economy, strong Chinese /weak American economy, weak Chinese /strong American economy, and weak Chinese/weak American economy.

In scenario four, the team noticed a convergence of global power among China, America, and India that hinted at conflict in an area (the Indo-Chinese border) rife with political tensions even today. However, what leads to declining American and Chinese economies in 2035?

Future Strategic Environment

America and China resolve their trade disputes before the end of President Trump’s first term, creating a mutually beneficial economic boom. Historically low energy prices follow Maduro’s overthrow in Venezuela, adding impetus to the boom.

The economic trends continue into President Trump’s second term, during which he negotiates for OPEC to include Russia and Kazakhstan (OPEC+) in an attempt to stabilize those countries. Meanwhile, China reaps huge monetary and military technological returns on robotics investments, mitigating its transition into a post-mature demography, an erstwhile drag on their economy. Technology investments are the only feasible economic escape from their demographic destiny.

Iran is left behind by global economic growth. Continued sanctions combined with the resurgence of a newly democratic Venezuela (inspiring oppressed Iranians) spark a civil war in Iran in 2025. President Pence, elected to continue President Trump’s economic policies, joins Xi Jinping in the UN Security Council to create a French-led UN task force to restore Iranian governance.

Disappointed by this acquiescence to the West, and following Xi’s “accidental” death, the Chinese Communist Party (CCP) elects a hard-liner nationalist in 2028 to renegotiate terms for foreign investment and influence in a free Iran. As Iran becomes more democratic, foreign investment floods the country to exploit the world’s fourth-largest proven oil reserves and meet skyrocketing global energy demands. This renews Chinese and American economic competition.

Although an aged Vladimir Putin is “retired” from public life at this point, he is still Russia’s power broker. Joining OPEC+ was step one in a long play to disintegrate OPEC and establish Russian oil market dominance. America’s decision to curb shale and green-energy investments has only strengthened world dependence on OPEC oil.

Sensing the opportunity in Iran to drive a wedge between the US and China, Russian global gray zone warfare intercedes to disintegrate OPEC+ during the 2029-2033 domestically-focused US presidential term. Attempting to survive the fallout of social security default and renewed anger on U.S. dependence on foreign oil, the U.S. Congress passes “NOPEC” legislation. OPEC+ is thus rendered ineffectual if not outright disbanded.

The oil market becomes hyper-volatile without the predictability of OPEC+ market strategies. America turns inward to jumpstart shale production but suffers delays due to the limited availability of an experienced workforce.

China’s Eurasian land bridge through Kazakhstan remains strongly subject to Russian influence and China shifts focus to transporting oil through the Chinese-Pakistan Economic Corridor (CPEC). Renewed competition and missed gross domestic product projections between China and America ushers in renewed tariffs and competition for expensive oil.

China also must deal with internal discord. Although the CCP has retained control of the country, the Chinese middle class, temporarily placated by the growth of robots, economic boom, and global peace, pressures the CCP anew to deliver the “China Dream” during a slowing economy.

Hong Kong Shatin anti-extradition bill protest / Source: Studio Incendo via Flickr, Attribution 2.0 Generic (CC BY 2.0)

Historically-high levels of ethnically Han dissent on the Chinese coast lead the Han to coordinate with inland ethnic groups to oppose the CCP due to its slowness on delivering the dream. A younger faction of the weakest-ever CCP seeks military action to drive nationalist party support. In early 2035, they succeed in replacing the People’s Liberation Army (PLA) leader with a nationalist hard-liner.

Meanwhile, India is able to engage in “realpolitik” with all the key global players and benefit from the advantages each offers. This, coupled with its younger demographic profile, excellent education system, and access to technology, allows it to converge into almost near-peer status with the two dominant powers.

Future Operational Environment

This strategic environment enables a 2035 operational environment possessing clear continuities and contrasts with the past. An emergent India, combined with a declining China and U.S., sets the stage for a conflict between America and China during an escalating war between India and Pakistan.

This conflict’s hallmark is the tendency of limited wars to escalate; a clear continuity with historical precedent. The primary contrast between history and the proposed operational environment is the incorporation of AI and robotic technology into conventional ground combat.

Reopening a 20th Century wound, an Islamic extremist terrorist attack in Kashmir in 2035 sparks conflict. The assassination of India’s Kashmir governor by Pakistan-based Islamic terrorists in the summer results in a massive military response. The Indian Army dismantles terrorist networks on Indian Territory in the Northwest.

Simultaneously, Indian Special Forces raid terrorist support zones across the international border into Pakistan’s portion of the Chenab River Valley. The Indian Army rapidly achieves its limited objectives and initiates a ceasefire, but the Pakistan government, sensing their poor negotiating position, escalates by involving their regional benefactor, China.

China has multiple reasons for involvement. A Pakistani alliance allows them to support a key regional partner and safeguard their economic investment in CPEC. A successful limited war with India would cement them as the regional hegemon. Finally, the Chinese have the “justification” to seize historically important territory, helping fulfill the Chinese Dream by 2050. China is thus compelled to intervene.

Chinese intrusion quickly escalates the conflict in unanticipated ways. China initiates a joint navy/air force strike, including cyber-attacks, to neutralize the Indian strategic nuclear deterrent. Chinese space forces disrupt Indian telecommunication, resulting in widespread confusion and panic in the Indian government.

In response, the Indian Prime Minister orders the mobilization of the northern army, but poor communication cripples this effort. The Chinese see the mobilization as an escalation and begin mobilizing the PLA along their southern border. Effective communication and a thoroughly professionalized military force allows the PLA to mobilize in days while the Indian Army struggles just to move. The Chinese justify their subsequent attack into Indian-controlled territory as pre-emption of India’s mobilization.

The Chinese offensive in August 2035 routs the Indian Army and demonstrates a major leap forward in their military technology. Chinese soldiers enjoy equipment augmented with AI and robotics advances gleaned from industry. PLA forces equipped with robotic exoskeletons move rapidly through previously denied mountainous terrain. Their newfound mobility allows the PLA to flank Indian defenses and destroy them with AI-controlled drones and missiles.

The Indian Army collapses and retreats south in the face of the Chinese “blitz”. The Chinese attack seizes the disputed border areas and shocks the Indian Army a la the German 1940 offensive. However, the stunning success of China’s technology leads to further escalation.

Shaheen Bagh protests. 15 Jan 2020 / Source: DTM via Wikimedia Commons, Creative Commons CC0 1.0 Universal Public Domain Dedication

The Indian people blame their government for the defeat and the Indian Army’s lack of preparedness due to their antiquated 20th century strategies and technologies. They subsequently threaten to replace India’s democratic government with a military dictatorship.

The Indian government reacts decisively to save the remaining Indian forces and demonstrate their resolve. India’s Prime Minister accepts a proposed plan to employ remaining tactical nuclear weapons on an isolated portion of the Chinese forces.

India then plays their trump card and delivers an ultimatum to the country with which it has built increasingly close military ties, America: enter the conflict or risk nuclear war. America again faces inexorable entry into yet another “limited conflict” in Asia that threatens to spin out of control.

Conclusion

Who knows if all this will occur as described? However, everything presented here is well grounded in known facts and credible forecasts.

Regardless, over the next 16 years it seems likely ground combat will remain the primary means with which warring entities will exert their will on each other. Furthermore, mobility, protection, and firepower will remain the foundations of ground combat. Technological advances will alter methods but technology can’t alter these fundamental concepts of ground combat success.

In all those regards, history will more than likely “rhyme with itself” in yet another conflict on China’s periphery. Finally, “limited” war will remain politically irresistible, but as warfighters have known immutably since at least Clausewitz’s time, they unleash relentless momentum toward “unlimited” war.

Epilogue

Barnowski reported immediately upon arriving at the American advisory base. He was barely in the general’s office before BG McNewe barked at him without looking up from his work. “Where in the hell have you been?” Barnowski contemplated relating the hell he had seen, but thought better of it.

Unpack your bags, you’re my new three.” “Sir?” “Are you deaf AND slow? I said unpack your bags, you’re my new three.” Still no response, so McNewe looked up. “I said unpack, you’re my new ops guy. The advisory team is now responsible for setting up a joint reception and staging area. The ready brigade arrives tomorrow.  Looks like we’re in it for the long haul.”

Barnowski turned to go but BG McNewe locked eyes with him. “Mark, we’ve got a lot to do….but I know you’re up to it…..let’s get after it!

What are your thoughts about competition and conflict in the operational environment?  Take a few minutes and share your insights by completing our short, on-line Global Perspectives Conference Survey. Check out our initial findings here and stay tuned for future blog posts at the Mad Scientist Laboratory to learn what further insights we will have gleaned from this survey about operational environment trends, challenges, technologies, and disruptors….

Mike Filanowski is an Infantry Officer assigned to Headquarters Department of the Army G3. Ruth Foutz is an Army Public Health Center Safety and Occupational Health Manager assigned to Army Futures Command Headquarters. Sean McEwen is an Artillery Officer assigned to the U.S. Army Research Laboratory. Mike Yocum is a supervisory Operations Research/Systems Analyst assigned to the U.S. Army Manpower Analysis Agency, and Matt Ziemann is a physicist assigned to the U.S. Army Research Laboratory. Collectively, they are “Team RSM3”, one of the teams that completed a 6-month developmental assignment with Army Futures Study Group Cohort VI in 2019.

Disclaimer: The views and analysis expressed in this article are solely their own and do not represent those of the U.S. Army Training and Doctrine Command (TRADOC), Army Futures Command (AFC), the U.S. Army, the U.S. Department of Defense, the U.S. Government, or the Pardee Center for International Studies at the University of Denver.

207. China Issues New Plan to Address Aging Population

[Editor’s Note: Today’s post, excerpted from this month’s OE Watch, addresses China’s new plan to redress its most pressing socio-economic predicament — a declining population of working age citizens (the legacy of its national “One-Child Policy”) who must simultaneously care for an aging population while trying to stem a decline in real economic growth (down from a high of 14.3% in 2007 to a reported 6.1% last year). As previous guest bloggers Collin Meisel and Dr. Jonathan D. Moyer, from the Frederick S. Pardee Center for International Futures, have observed in On Hype and Hyperwar, how our near-peer adversary tackles this persistent, declining trend is just as relevant to future warfighters preparing for competition and conflict in the operational environment as is artificial intelligence, quantum computing, or any other potential game changing technology. How China resolves this issue will determine if it will surpass Russia as our most capable threat in the latter half of the Era of Accelerated Human Progress (now through 2035) — Read on!]

China Population Pyramid – 2018 / Source: The World Factbook, CIA, https://www.cia.gov/library/publications/the-world-factbook/geos/ch.html

China’s government is issuing a new plan to address population aging. While many countries’ population growth have begun to slow down, China’s aging is on track to be particularly dramatic. In 2016, over 230 million Chinese were over 60, and that number is expected to rise to 487 million (35% of the population) by 2055. As explained in the translated readout of the new Plan, the Chinese Communist Party and State Council view population aging as having a direct impact on every aspect of the Chinese economy and China’s “comprehensive national power.” The plan sets deadlines for developing a framework for dealing with population aging by 2022, instituting the policies by 2035, and having complete and mature policies in place by 2050.

Despite strong economic growth since the 1980s, China’s government and economy will likely have trouble when faced with slowing growth and rising healthcare and pension costs. China’s total debt ratio to GDP hit a record high in the summer of 2019, topping 300 percent for the first time, a consequence of lending that helped fuel its economic growth.

“Please for the sake of your country, use birth control” — Government sign found in Nanchang (Tangshan Village, De’an County, Jiujiang, Jiangxi) / Source: China One Child Policy, by Lori Scott via Creative Commons Attribution 2.0 Generic

China loosened the One-Child Policy in January 2016, but the new two-child policy and financial incentives appear to have limited success. High costs of living, and pressure from educational and work cultures and other factors have disincentivized new parents from having multiple children, so the Chinese government will have to take steps to avoid further problems.

The Plan, therefore, lays out five areas of action: First, social security funds for retirees are to be consolidated and expanded. Second, promote more effective pre-natal screening and education to create a high-quality population. Third, create a high-quality system of services and products for the elderly, with an emphasis on better health care, including preventative care. Fourth, refocus scientific and technological development to address population-aging related issues. The fifth section notes that additional work is needed to ensure legal frameworks to protect the elderly, which have increasingly been the target of various scams and other crimes in China. As emphasized in the fourth directive, Chinese leaders understand that population aging will have a significant impact on the economy. While the service industry now makes up over 50 percent of the economy, many sectors will likely see shortfalls in workers, requiring prompt investment in automation and other smart technologies to increase productivity while reducing reliance on workers. Educating the workforce, and reforms to the mandatory retirement age could allow workers to defer retirement.

China’s Belt and Road Initiative / Source: Lommes via Creative Commons Attribution-Share Alike 4.0 International

Interestingly, the article ends with a note that China plans to use international cooperative agreements, particularly the Belt and Road Initiative to help address population aging. While this includes cooperation in scientific studies and sharing lessons on effective policies, it is possible that China may seek to encourage migration to help reduce the domestic burden of the elderly—something that appears to be happening informally already. End OE Watch Commentary (Peter Wood)

Population aging has far-reaching impacts on the entire economy, society, culture and even comprehensive national strength and international competitiveness.

Source: 中共中央 国务院印发《国家积极应对人口老龄化中长期规划 (CCP Central Committee and State Council issue Medium and
Long-Term Plan for Proactive Response to Population Aging), Xinhua, 21 November 2019.

To proactively address population aging, and in accordance with the Party’s 19th Congress Work Report, recently the CCP Central Committee and State Council issued the Medium- and Long-Term Plan for Proactive Response to Population Aging (hereafter, “Plan”). The Plan is a strategic, comprehensive and guiding document for China to actively respond to population aging by the middle of this century, with a long-term outlook to 2050, from the near to mid-term components covering 2022-2035.

Source: http://cc.nphoto.net/view/2008/12597.shtml via Creative Commons Attribution 2.5 China Mainland, by 芝崖

The Plan points out that population aging is an important trend of social development, the embodiment of the progress of human civilization, and the basic national conditions of our country for a longer period of time. Population aging has far-reaching impacts on the entire economy, society, culture and even comprehensive national strength and international competitiveness.

The Plan emphasizes that actively responding to population aging is a basic requirement for implementing the ‘people-centric development concept,’ a necessary guarantee for the realization of high-quality economic development, and an important measure to safeguard national security and social harmony and stability. In accordance with the requirements of high-quality economic development, we should adhere to the main line of supply-side structural reform, build a long-term institutional framework, formulate major policies that are effective, adhere to the basic principles of active response, joint construction, and sharing, moderate capacity, innovation and openness, and develop a response to population aging with Chinese characteristics.

Chinese characters “Chinese Dream” in South Lake Park, Panzhou, Guizhou, China / Source: Huangdan2060 via Creative Commons Attribution 3.0 Unported

The Plan defines the strategic objectives of actively responding to population aging, namely, the continuous consolidation of the institutional basis for actively responding to the population aging, the increasing abundance of wealth reserves, the continuous improvement of human capital, more powerful support of science and technology, the rich quality of products and services, the livable and friendly social environment, and the continuous adaptation of economic and social development to the process of population aging. We will successfully build a socialist modern power and realize the Chinese Dream of the great rejuvenation of the Chinese nation. By 2022, China’s institutional framework for actively dealing with population will be initially established, by 2035, the institutional arrangements for actively dealing with population aging will be more scientific and effective, and by the middle of this century, the institutional arrangements for dealing with population aging, which are compatible with a strong modern socialist nation, will be mature and complete.

The Plan deploys specific tasks to address population aging in five areas.

First, consolidate social security reserves that deal with population aging. By expanding the total amount, optimizing the structure and improving the efficiency, the economic development is adapted to population aging. By perfecting the national income distribution system, optimizing the distribution pattern between government, enterprises and residents, we will steadily increase the reserve of retirement benefits. A more equitable and sustainable social security system will continue to promote the well-being of all people.

Second, improve the effective supply of labor under the background of population aging. Improve the overall quality of China’s human resources by improving the quality of the new population, improving the quality of the new labor force, and building a lifelong learning system for learning. We will promote the utilization of human resources development, achieve higher quality and full employment, and ensure that the total amount and quality of human resources actively cope with population aging are sufficient and high quality.

Beijing Haidian Hospital / Source: AddisWang via Creative Commons Attribution-Share Alike 3.0 Unported

Third, create high-quality services and product-supply systems for the elderly. We will actively promote the construction of a healthy China and establish and improve a comprehensive and continuous system of health care for the elderly, including health education, preventive health care, disease diagnosis and treatment, rehabilitation care, long-term care and peaceful care. We will improve the multi-level old-age service system based on homeownership, community-based, full institutional development, a natural combination of medical care, expand the supply of elderly-appropriate products and services in various channels and fields, and improve the quality of products and services.

Fourth, strengthen the capacity of scientific and technological innovation to cope with population aging. Deepen implementation of innovation-driven development strategies, with technological innovation as the first driving force and strategic support to actively respond to population aging, and comprehensively improve the smart technology-level of the national economic industrial system. Improve the level of science and technology and informationization of services for the elderly, increase the support of health science and technology for the elderly, and strengthen the research and development and application of assisted technologies for the elderly.

Fifth, build a social environment emphasizing elder-care, filial piety, and respect for the elderly. Strengthen the rule of law to deal with population aging and safeguard the legitimate rights and interests of the elderly. Build a family support system, build a friendly society for the elderly, and create a good atmosphere for the elderly, family, society and the government to participate together.

President Xi / Source: U.S. Department of State

The Plan calls for adhering to the Party’s leadership in actively responding to population aging, adhering to the overall responsibility of the principals of the Party and government, strengthening all levels of government’s ability to implement the plan, and further improving the organizational coordination mechanisms. We will promote international cooperation and policy dialogue and project interface with the Belt and Road countries to address population aging…

If you enjoyed this post, please see the OE Watch, January 2020 issue, by the TRADOC G-2’s Foreign Military Studies Office (FMSO), featuring this piece and other articles of interest…

… don’t forget to take a few minutes to complete our short, on-line Global Perspectives Conference Survey. Check out our initial findings here and stay tuned to future blog posts on the Mad Scientist Laboratory to learn what further insights we will have gleaned from this survey about operational environment trends, challenges, technologies, and disruptors….

197. The Arctic: An Emergent Zone of Great Power Competition

[Editor’s Note: Mad Scientist Laboratory is pleased to present in today’s post two articles excerpted from last month’s OE Watch addressing BNU-1, China’s first observation satellite providing coverage of the Arctic and Antarctic regions, and their high latitude (i.e., polar) equipment. Our near-peer competitors — China and Russia — understand the geo-strategic ramifications of global climate change and are positioning themselves for the coming race to tap the vast (and as of yet relatively unexploited) energy and mineral wealth of the Arctic. Similar signals, like Russia’s mini-subs planting a Russian flag on the seabed beneath the North Pole and deploying their first floating nuclear power plant to the Arctic coast are harbingers that the Arctic is an emergent zone of great power competition in the Operational Environment’s (OE’s) Era of Accelerated Human Progress.]

China continues to show interest and invest time, funding, and research in the polar regions. According to the following passage from Xinhuanet, China has her first polar satellite. The article reports that the BNU-1 has successfully obtained data on the polar regions and is conducting full-coverage observation of the Antarctic and the Arctic every day. Developed by the Beijing Normal University and Shenzhen Aerospace Dongfanghong Development Ltd., the satellite will promote research of the Earth’s polar regions and support China’s upcoming 36th Antarctic expedition by enhancing its navigation capability in the polar ice zone.

Note that the Soviet Union/Russia launched a series of Molniya military communications satellites over the polar regions from 1965 to 2004. They used a high elliptical orbit to attain a long dwell time over these high latitude areas. These orbits are suited for Arctic and Antarctic communications similar to the geostationary satellites used over the equator. Russia now uses the updated Meridian satellite series over the polar regions. (Les Grau, OE Watch analyst note)

China’s first polar observation satellite supports polar research,” Xinhua, 9 October 2019.

China’s first polar observation satellite, the BNU-1, has successfully obtained data on polar regions, according to the satellite’s chief scientist.

After nearly one month of in-orbit testing, the satellite is working normally and conducting full-coverage observation of the Antarctic and the Arctic every day, Cheng Xiao, the chief scientist, said at the China Symposium on Polar Science 2019. Cheng said the satellite data connection system allows scientists around the world to obtain polar observation data acquired by the satellite. Registered users can also propose new observation requirements.

The satellite continuously monitored a gigantic iceberg breaking away from the Amery Ice Shelf in east Antarctica in September, helping limit its impact on submerged buoys and investigation ships in the surrounding area. Cheng said the satellite will help reduce China’s reliance on foreign satellites for polar observation data. “The satellite’s spatial resolution reaches 75 meters, which offers more detailed information on the ice cover and the sea ice…”

The satellite will also support China’s upcoming 36th Antarctic expedition by enhancing its navigation capability in the polar ice zone. Developed by the Beijing Normal University and Shenzhen Aerospace Dongfanghong Development Ltd., the satellite weighs 16 kg and is equipped with two cameras and one receiver. It has great significance in promoting the research of Polar Regions and global climate change.

China’s first ice breaker, Xue Long [Snow Dragon] doubles as a polar research vessel and has spent most of her time in the Arctic and Antarctic including over 20 annual Chinese Antarctic expeditions. The vessel was built in Soviet Ukraine shipyards in 1993. As the accompanying passage below from Xinhuanet discusses, Xue Long 2, built in China, will probably make the Antarctic voyage this year. China maintains the Taishan Station in Antarctica. As discussed in the following passage from Xinhuanet, the development of the Nanji 2 all-terrain amphibious polar vehicle will support the station and other polar research. (Les Grau, OE Watch analyst note)

China’s New All-Terrain Vehicle to Join 36th Antarctic Expedition, Xinhuanet.com, 9 October 2019.

China’s self-developed all-terrain vehicle will set off to the South Pole, contributing to the country’s upcoming 36th Antarctic expedition.

The vehicle Nanji 2 (Antarctica No. 2), painted in red and yellow, was manufactured by Guizhou Jonyang Kinetics Co., Ltd. It was recently delivered to the Polar Research Institute of China in Shanghai.

Compared to previous generations, the new amphibious vehicle is equipped with an upgraded running system. It also applies new material and technologies to improve low-temperature performance and wear resistance, allowing it to work at minus 41 degrees Celsius. In addition, the vehicle has increased comfort for researchers with air conditioning and ventilation systems.

Its control system and other core components were all developed in China, said Lyu Qian, general manager of the manufacturer. The vehicle is multifunctional with strong transport capacity and good adaptability to complex terrain. It can undertake various missions, including personnel and materials transportation, sea, ice and land explorations, as well as search and rescue operations.

China is continuing to develop capabilities and acquire experience operating in the polar regions, making them formidable competitors in this space.

If you enjoyed this post, please also see:

Our Arctic—The World’s Pink Flamingo and Black Swan Bird Sanctuary, by Mr. Frank Prautzsch.

Climate Change Laid Bare: Why We Need To Act Now by Ms. Sage Miller, as well as her “The Implications of Climate Change for the U.S. Military” Strategic Multilayer Assessment (SMA) Speaker Session presentation

The OE Watch, November issue, by the TRADOC G-2’s Foreign Military Studies Office (FMSO), featuring these two stories, in addition to “China Expands Gaofen Earth Observing Satellite Constellation” and other articles of interest.

 

192. New Skills Required to Compete & Win in the Future Operational Environment

[Editor’s Note: The U.S. Army Training and Doctrine Command (TRADOC) recruits, trains, educates, develops, and builds the Army, driving constant improvement and change to ensure that the Army can successfully compete and deter, fight, and decisively win on any battlefield. The pace of change, however, is accelerating with the convergence of new and emergent technologies that are driving the changing character of warfare in the future Operational Environment (OE).  Preparing to compete and win in this future OE is one of the toughest challenges facing the Army. TRADOC must identify the requisite new Knowledge, Skills, and Behaviors (KSBs) that our Soldiers and leaders will need to compete and win, and then program and implement the associated policy changes, improvements to training facilities, development of leader programs, and the integration of required equipment into the Multi-Domain force.]

The future OE will compel a change in the character of warfare driven by the diffusion of power, economic disparity, and the democratization and convergence of technology. There are no longer defined transitions from peace to war, or from competition to conflict. “Steady State” now consists of continuous, dynamic, and simultaneous competition and conflict that is not necessarily cyclical. Russia and China, our near-peer competitors, confront us globally, converging capabilities with hybrid strategies to expand the battlefield across all domains and create hemispheric threats challenging us from home stations to the Close Area. They seek to achieve national objectives through competition short of conflict and synthesize emerging technologies with military doctrine and operations to deploy capabilities that create multiple layers of multi-domain stand-off. Additionally, regional competitors and non-state actors such as Iran, North Korea, and regional and transnational terrorist organizations, will effectively compete and fight in similar ways shaped to their strategic situations, but with lesser scope and scale in terms of capabilities.

The convergence and availability of cutting-edge technologies will act as enablers and force multipliers for our adversaries. Artificial intelligence (AI), quantum information sciences, and the Internet of Things will flatten decision making structures and increase speed on the battlefield, while weaponized information will empower potential foes, enabling them to achieve effects at a fraction of the cost of conventional weapons, without risking armed conflict. Space will become a contested domain, as our adversaries will enhance their ability to operate in that domain while working to deny us what was once a key area of advantage.

Preparing for this new era is one of the toughest challenges the Army will face in the next 25 years. A key component of this preparation is identifying the skills and attributes required for the Soldiers and Leaders operating in our multi-domain formations.

The U.S. Army currently has more than 150 Military Occupational Specialties (MOSs), each requiring a Soldier to learn unique tasks, skills, and knowledge. The emergence of a number of new technologies – drones, AI autonomy, immersive mixed reality, big data storage and analytics, etc. – coupled with the changing character of warfare means that many of these MOSs will need to change, while new ones will need to be created. This already has been seen in the wider U.S. and global economy, where the growth of internet services, smartphones, social media, and cloud technology over the last ten years has introduced a host of new occupations that previously did not exist.

Acquiring and developing the talent pool and skills for a new MOS requires policy changes, improvements to training facilities, development of leader programs, and the integration of required equipment into current and planned formations. The Army’s recent experience building a cyber MOS offers many lessons learned. The Army needed to change policies for direct entry into the force, developed cyber training infrastructure at Fort Gordon, incorporated cyber operations into live training exercises at home station and the Combat Training Centers, built the Army Cyber Institute at West Point, and developed concepts and equipment baselines for cyber protection teams. This effort required action from Department of the Army and each of the subordinate Army commands. Identifying, programming, and implementing new knowledge, skills, and attributes is a multi-year effort that requires synchronizing the delivery of Soldiers possessing the requisite skills with the fielding of a Multi-Domain Operations (MDO)-capable force in 2028 and the MDO-ready force in 2035.

The Army’s MDO concept offers a clear glimpse of the types of new skills that will be required to win on the future battlefield. A force with all warfighting functions enabled by big data and AI will require Soldiers with data science expertise and some basic coding experience to improve AI integration and to maintain proper transparency and biases supporting leader decision making. The Internet of Battle things connecting Soldiers and systems will require Soldiers with technical integration skills and cyber security experience. The increased numbers of air and land robots and associated additive manufacturing systems to support production and maintenance means a new series of maintenance skills now only found in manufacturing centers, Amazon warehouses, and universities. There are many more emerging skill requirements. Not all of these will require a new MOS, but in some cases, the introduction of new skill identifiers and functional areas may be required.

Some of the needed skills may be inherent within the next generation(s) of recruits. Many of the games, drones, and other everyday technologies that already are, or soon will be very common – narrow AI, app development and general programming, and smart devices – will yield a variety of intrinsic skills that recruits will have prior to entering the Army. Just like we no longer train Soldiers on how to use a computer, games like Fortnite©, with no formal relationship with the military, will provide players with militarily-useful skills such as communications, problem solving, and creative thinking, all while attempting to survive against persistent attack. Due to these trends, recruits may come into the Army with fundamental technical skills and baseline military thinking attributes that flatten the learning curve for Initial Entry Training (IET).

While these new recruits may have a set of some required skills, there will still be a premium placed on premier skillsets in fields such as AI and machine learning, robotics, big data management, and quantum information sciences. Due to the high demand for these skillsets, the Army will have to compete for talent with private industry, battling them on compensation, benefits, perks, and a less restrictive work environment. In light of this, the Army may have to consider adjusting or relaxing its current recruitment processes, business practices, and force structuring to ensure it is able to attract and retain expertise. It also may have to reconsider how it adapts and utilizes its civilian workforce to undertake these types of tasks in new and creative ways.

If you enjoyed reading this, please see the following MadSci blog posts:

… and the Mad Scientist Learning in 2050 Conference Final Report.

191. Competition in 2035: Anticipating Chinese Exploitation of Operational Environments

[Editor’s Note:  In today’s post, Mad Scientist Laboratory explores China’s whole-of-nation approach to exploiting operational environments, synchronizing government, military, and industry activities to change geostrategic power paradigms via competition in 2035. Excerpted from products previously developed and published by the TRADOC G-2’s Operational Environment and Threat Analysis Directorate (see links below), this post describes China’s approach to exploitation and identifies the implications for the U.S. Army — Enjoy!]

The Operational Environment is envisioned as a continuum, divided into two eras: the Era of Accelerated Human Progress (now through 2035) and the Era of Contested Equality (2035 through 2050). This latter era is marked by significant breakthroughs in technology and convergences in terms of capabilities, which lead to significant changes in the character of warfare. During this period, traditional aspects of warfare undergo dramatic, almost revolutionary changes which at the end of this timeframe may even challenge the very nature of warfare itself. In this era, no one actor is likely to have any long-term strategic or technological advantage, with aggregate power between the U.S. and its strategic competitors being equivalent, but not necessarily symmetric. Prevailing in this period will depend on an ability to synchronize multi-domain capabilities against an artificial intelligence-enhanced adversary with an overarching capability to visualize and understand the battlespace at even greater ranges and velocities. Equally important will be controlling information and the narrative surrounding the conflict. Adversaries will adopt sophisticated information operations and narrative strategies to change the context of the conflict and thus defeat U.S. political will.

The future strategic environment will be characterized by a persistent state of competition where global competitors seek to exploit the conditions of operational environments to gain advantage. Adversaries understand that the application of any or all elements of national power in competition just below the threshold of armed conflict is an effective strategy against the U.S.

Chinese DF-17 carrying the DF-ZF Hypersonic Glide Vehicle / Source: Bill Bostock, Business Insider Australia, via Wikimedia Commons

China is rapidly modernizing its armed forces and developing new approaches to warfare. Beijing has invested significant resources into research and development of a wide array of advanced technologies. Coupled with its time-honored practice of reverse engineering technologies or systems it purchases or acquires through espionage, this effort likely will allow China to surpass Russia as our most capable threat sometime around 2030.

China’s Approach to Exploitation

China’s whole-of-nation approach, which involves synchronization of actions across government, military, and industry, will facilitate exploitation of operational environments and enable it to gain global influence through economic exploitation.

China will leverage the international system to advance its own interests while attempting to constrain others, including the U.S.

Preferred Conditions and Methods

The following conditions and methods are conducive to exploitation by China, enabling them to shape the strategic environment in 2035:

    • Infrastructure Capacity Challenges:  China targets undeveloped and fragile environments where their capital investments, technology, and human capital can produce financial gains and generate political influence.
    • Interconnected Economies:  China looks for partners and opportunities to become a significant stakeholder in a wide variety of economies in order to capitalize on its investments as well as generate political influence.
    • Specialized Economies:  China looks for opportunities to partner with specialized markets and leverage their vulnerabilities for gain.
    • Technology Access Gaps:  China targets areas where their capital investments in technology provide partners with key resources and competitive advantages by filling technology gaps.

Implications for the U.S. Army:

    • The Chinese People’s Liberation Army (PLA) deployed armored medical vehicles and personnel to Germany for the Combined Aid 2019 Joint Exercise with the Bundeswehr this past summer.

      Traditional Army threat paradigms may not be sufficient for competition.

    • The Army could be drawn into unanticipated escalation as a result of China’s activities during the competition phase.
    • Army military partnerships will likely be undermined by China in 2035.
    • Army operations and engagements will be increasingly impacted by the pervasiveness of Chinese goods, technology, infrastructure, and systems.

If you enjoyed this post, please see the original paper and associated infographic of the same title, both by the TRADOC G-2’s Operational Environment and Threat Analysis Directorate and hosted on their All Partners Access Network (APAN) site

… and read the following MadSci Laboratory blog posts:

A view of the Future: 2035-2050

China’s Drive for Innovation Dominance and Quantum Surprise on the Battlefield?, by Elsa Kania

A Closer Look at China’s Strategies for Innovation: Questioning True Intent, by Cindy Hurst

Critical Projection: Insights from China’s Science Fiction, by Lt Col Dave Calder

184. Blurring Lines Between Competition and Conflict

[Editor’s Note: The United States Army faces multiple, complex challenges in tomorrow’s Operational Environment (OE), confronting strategic competitors in an increasingly contested space across every domain (land, air, maritime, space, and cyberspace). The Mad Scientist Initiative, the U.S. Army Training and Doctrine Command (TRADOC) G-2 Futures, and Army Futures Command (AFC) Future Operational Environment Cell have collaborated with representatives from industry, academia, and the Intelligence Community to explore the blurring lines between competition and conflict, and the character of great power warfare in the future. Today’s post captures our key findings regarding the OE and what will be required to successfully compete, fight, and win in it — Enjoy!].

Alternative Views of Warfare: The U.S. Army’s view of the possible return to Large Scale Combat Operations (LSCO) and capital systems warfare might not be the future of warfare. Near-peer competitors will seek to achieve national objectives through competition short of conflict, and regional competitors and non-state actors will effectively compete and fight with smaller, cheaper, and greater numbers of systems against our smaller number of exquisite systems. However, preparation for LSCO and great state warfare may actually contribute to its prevention.

Competition and Conflict are Blurring: The dichotomy of war and peace is no longer a useful construct for thinking about national security or the development of land force capabilities. There are no longer defined transitions from peace to war and competition to conflict. This state of simultaneous competition and conflict is continuous and dynamic, but not necessarily cyclical. Potential adversaries will seek to achieve their national interest short of conflict and will use a range of actions from cyber to kinetic against unmanned systems walking up to the line of a short or protracted armed conflict. Authoritarian regimes are able to more easily ensure unity of effort and whole-of-government over Western democracies and work to exploit fractures and gaps in decision-making, governance, and policy.

The globalization of the world – in communications, commerce, and belligerence (short of war) – as well as the fragmentation of societies and splintering of identities has created new factions and “tribes,” and opened the aperture on who has offensive capabilities that were previously limited to state actors. Additionally, the concept of competition itself has broadened as social media, digital finance, smart technology, and online essential services add to a growing target area.

Adversaries seek to shape public opinion and influence decisions through targeted information operations campaigns, often relying on weaponized social media. Competitors invest heavily in research and development in burgeoning technology fields Artificial Intelligence (Al), quantum sciences, and biotech – and engage in technology theft to weaken U.S. technological superiority. Cyber attacks and probing are used to undermine confidence in financial institutions and critical government and public functions – Supervisory Control and Data Acquisition (SCADA), voting, banking, and governance. Competition and conflict are occurring in all instruments of power throughout the entirety of the Diplomatic, Information, Military and Economic (DIME) model.

Cyber actions raise the question of what is the threshold to be considered an act of war. If an adversary launches a cyber ­attack against a critical financial institution and an economic crisis results – is it an act of war? There is a similar concern regarding unmanned assets. While the kinetic destruction of an unmanned system may cost millions, no lives are lost. How much damage without human loss of life is acceptable?

Nuclear Deterrence limits Great Power Warfare: Multi-Domain Operations (MDO) is predicated on a return to Great Power warfare. However, nuclear deterrence could make that eventuality less likely. The U.S. may be competing more often below the threshold of conventional war and the decisive battles of the 20th Century (e.g., Midway and Operation Overlord). The two most threatening adversaries – Russia and China – have substantial nuclear arsenals, as does the United States, which will continue to make Great Power conventional warfare a high risk / high cost endeavor. The availability of non-nuclear capabilities that can deliver regional and global effects is a new attribute of the OE. This further complicates the deterrence value of militaries and the escalation theory behind flexible deterrent options. The inherent implications of cyber effects in the real world – especially in economies, government functions, and essential services – further exacerbates the blurring between competition and conflict.

Hemispheric Competition and Conflict: Over the last twenty years, Russia and China have been viewed as regional competitors in Eurasia or South-East Asia. These competitors will seek to undermine and fracture traditional Western institutions, democracies, and alliances. Both are transitioning to a hemispheric threat with a primary focus on challenging the U.S. Army all the way from its home station installations (i.e., the Strategic Support Area) to the Close Area fight. We can expect cyber attacks against critical infrastructure, the use of advanced information warfare such as deep fakes targeting units and families, and the possibility of small scale kinetic attacks during what were once uncontested administrative actions of deployment. There is no institutional memory for this threat and adding time and required speed for deployment is not enough to exercise MDO.

Disposable versus Exquisite: Current thinking espouses technologically advanced and expensive weapons platforms over disposable ones, which brings with it an aversion to employ these exquisite platforms in contested domains and an inability to rapidly reconstitute them once they are committed and subsequently attrited. In LSCO with a near-peer competitor, the ability to reconstitute will be imperative. The Army (and larger DoD) may need to shift away from large and expensive systems to cheap, scalable, and potentially even disposable unmanned systems (UxS). Additionally, the increases in miniaturized computing power in cheaper systems, coupled with advances in machine learning could lead to massed precision rather than sacrificing precision for mass and vice versa.

This challenge is exacerbated by the ability for this new form of mass to quickly aggregate/disaggregate, adapt, self­-organize, self-heal, and reconstitute, making it largely unpredictable and dynamic. Adopting these capabilities could provide the U.S. Army and allied forces with an opportunity to use mass precision to disrupt enemy Observe, Orient, Decide, and Act (OODA) loops, confuse kill chains/webs, overwhelm limited adversary formations, and exploit vulnerabilities in extended logistics tails and advanced but immature communication networks.

Human-Starts-the-Loop: There have been numerous discussions and debate over whether armed forces will continue to have a “man-in-the-loop” regarding Lethal Autonomous Weapons Systems (LAWS). Lethal autonomy in future warfare may instead be “human-starts-the-loop,” meaning that humans will be involved in the development of weapons/targeting systems – establishing rules and scripts – and will initiate the process, but will then allow the system to operate autonomously. It has been stated that it would be ethically disingenuous to remain constrained by “human-on-the-loop” or “human-in-the-­loop” constructs when our adversaries are unlikely to similarly restrict their own autonomous warfighting capabilities. Further, the employment of this approach could impact the Army’s MDO strategy. The effects of “human-starts-the-loop” on the kill chain – shortening, flattening, or otherwise dispersing – would necessitate changes in force structuring that could maximize resource allocation in personnel, platforms, and materiel. This scenario presents the Army with an opportunity to execute MDO successfully with increased cost savings, by: 1) Conducting independent maneuver – more agile and streamlined units moving rapidly; 2) Employing cross-domain fires – efficiency and speed in targeting and execution; 3) Maximizing human potential – putting capable Warfighters in optimal positions; and 4) Fielding in echelons above brigade – flattening command structures and increasing efficiency.

Emulation and the Accumulation of Advantages: China and Russia are emulating many U.S. Department of Defense modernization and training initiatives. China now has Combat Training Centers. Russia has programs that mirror the Army’s Cross Functional Team initiatives and the Artificial Intelligence (AI) Task Force. China and Russia are undergoing their own versions of force modernization to better professionalize the ranks and improve operational reach. Within these different technical spaces, both China and Russia are accumulating advantages that they envision will blunt traditional U.S. combat advantages and the tenets described in MDO. However, both nations remain vulnerable and dependent on U.S. innovations in microelectronics, as well as the challenges of incorporating these technologies into their own doctrine, training, and cultures.

If you enjoyed this post, please also see:

Jomini’s Revenge: Mass Strikes Back! by Zachery Tyson Brown.

Our “Tenth Man” – Challenging our Assumptions about the Operational Environment and Warfare posts, where Part 1 discusses whether the future fight will necessarily even involve LSCO and Part 2 addresses the implications of a changed or changing nature of war.

The Death of Authenticity:  New Era Information Warfare.

 

 

172. Splinternets

[Editor’s Note: Mad Scientist Laboratory welcomes returning guest blogger and proclaimed Mad Scientist Mr. Howard R. Simkin with his submission to our Mad Scientist Crowdsourcing topic from earlier this summer on The Operational Environment: What Will Change and What Will Drive It – Today to 2035?  Mr. Simkin’s post addresses the military challenges posed by Splinternets.  Competition during Multi-Domain Operations is predicated on our Forces’ capability to conduct cyber and influence operations against and inside our strategic competitors’ networks.  In a world of splinternets, our flexibility to conduct and respond to non-kinetic engagements is challenged by this new reality in the operational environment. (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

Purpose.
This paper discusses the splintering of the Internet that is currently underway – the creation of what are commonly being called splinternets. Most versions of the future operational environment assume an Internet that is largely accessible to all. Recent trends point to a splintering effect as various nation states or multi-state entities seek to regulate access to or isolate their portion of the Internet.1, 2  This paper will briefly discuss the impacts of those tendencies and propose an operational response.

The Problem.
What are the impacts of a future operational environment in which the Internet has fractured into a number of mutually exclusive subsets, referred to as splinternets?

Background.
Splinternets threaten both access to data and the exponential growth of the Internet as a global commons. There are two main drivers fracturing the Internet. One is regulation and the other is isolationism. Rooted in politics, the Internet is being fractured by regulation and isolationism. Counterbalancing this fracturing is the Distributed Web (DWeb).

Regulation.
Regulation usually involves revenue or internal security. While admirable in intent, regulations cast a chill over the growth and health of the Internet.3  Even well-intentioned regulations become a burden which forces smaller operators to go out of business or to ignore the regulations. Depending on the country involved, activity which was perfectly legal can become illegal by bureaucratic fiat. This acts as a further impetus to drive users to alternative platforms. An example is the European Union (EU) General Data Protection Regulation (GDPR), which came into effect on 25 May 2018. It includes a number of provisions which make it far more difficult to collect data. The GDPR covers not only entities based in the EU but also those who have users in the EU.4  U.S. companies such as Facebook have scrambled to comply so as to maintain access to the EU virtual space.5

Isolation.
China is the leader in efforts to isolate their portion of the internet from outside influence.6  To accomplish this, they have received help from their own tech giants as well as U.S. companies such as Google.7  The Chinese have made it very difficult for outside entities to penetrate the “Great Firewall” while maintaining the ability of the Peoples Liberation Army (PLA) to conduct malign activities across the Internet.8  Recently, Eric Schmidt, the former CEO of Google opined that China would succeed in splitting the Internet in the not too distant future.9

Russia has also proposed a similar strategy, which they would extend to the BRICS (Brazil, Russia, India, China and South Africa). The reason given is the “dominance of the US and a few EU states concerning Internet regulation” which Russia sees as a “serious danger” to its safety, RosBiznesKonsalting (RBK)10  quotes from minutes taken at a meeting of the Russian Security Council. Having its own root servers would make Russia independent of monitors like the International Corporation for Assigned Names and Numbers (ICANN) and protect the country in the event of “outages or deliberate interference.” “Putin sees [the] Internet as [a] CIA tool.”11

Distributed Web (DWeb).
The DWeb is “a peer-to-peer Internet that is free from firewalls, government regulation, and spying.” Admittedly, the DWeb is a difficult problem. However, both the University of Michigan and a private firm, Maidsafe claim to be close to a solution.12  Brewster Kahle, founder of the Internet Archive and organizer of the first Decentralized Web Summit two years ago, recently advocated a “DWeb Camp.” Should a DWeb become a reality, many of the current efforts by governments to control or regulate the Internet would founder.

Operational Response.
Our operational response should involve Special Operations Forces (SOF), Space, and Cyber forces. The creation of splinternets places a premium on the ability to gain physical access to the splinternet’s internal networks. SOF is an ideal force to perform this operation because of their ability to work in politically sensitive and denied environments with or through indigenous populations. Once SOF gains physical access, Space would be the most logical means to send and receive data. Cyber forces would then perform operations within the splinternet.

Conclusion.
Most versions of the future operational environment assume an Internet that is largely accessible to all. Therefore, splinternets are an important ‘alternative future’ to consider. In conjunction with Space and Cyber forces, SOF can play a key role in the operational response to allow the Joint Force to continue to operate against splinternet capable adversaries.

If you enjoyed this post, please see:

– Mr. Simkin‘s previous Mad Scientist Laboratory posts:

Keeping the Edge, and

Sine Pari,

… as well as his winning Call for Ideas presentation The Future ODA (Operational Detachment Alpha) 2035-2050, delivered at the Mad Scientist Bio Convergence and Soldier 2050 Conference, co-hosted with SRI International on 8–9 March 2018 at their Menlo Park campus in California.

– LtCol Jennifer “JJ” Snow‘s blog post Alternet: What Happens When the Internet is No Longer Trusted?

– Dr. Mica Hall‘s blog post The Cryptoruble as a Stepping Stone to Digital Sovereignty

Howard R. Simkin is a Senior Concept Developer in the DCS, G-9 Capability Development & Integration Directorate, U.S. Army Special Operations Command. He has over 40 years of combined military, law enforcement, defense contractor, and government experience. He is a retired Special Forces officer with a wide variety of special operations experience. He is also a proclaimed Mad Scientist.

References:
Baker, Dr. Jessica. “What Does GDPR Mean For You?” Digital Guardian. July 11, 2018. https://digitalguardian.com/blog/what-does-gdpr-mean-for-you (accessed September 14, 2018).

Hoffer, Eric. Reflections on the Human Condition. New York: Harper and Row, 1973.

L.S. “The Economist explains, “What is the splinternet”?” The Economist. November 22, 2016. https://www.economist.com/the-economist-explains/2016/11/22/what-is-the-splinternet (accessed September 14, 2018).

Nash, Charlie. “The Google Tapes: Employees Applauded Company for Taking Bold Stance Against China.” Breitbart. September 13, 2018. https://www.breitbart.com/tech/2018/09/13/the-google-tape-employees-applauded-company-for-taking-bold-stance-against-china/ (accessed September 14, 2018).

Sanger, David E. The Perfect Weapon, War, Sabotage, and Fear in the Cyber Age. New York: Crown (Kindle Edition), 2018.

Sterling, Bruce. “The China Splinternet Model is Winning.” Wired. July 2, 2016. https://www.wired.com/beyond-the-beyond/2016/07/china-splinternet-model-winning/ (accessed September 2018, 2018).

Tangermann, Victor. “With GDPR Decision, Zuckerberg Proves Yet Again He Has Learned Absolutely Nothing From the Cambridge Analytica Scandal.” Futurism. April 4, 2018. https://futurism.com/zuckerberg-gdpr-cambridge-analytica/ (accessed September 14, 2018).

Tanguay, Pierre, Sabrina Dubé-Morneau, and Gaëlle Engelberts. “Splinternets: How Online Balkanization is Creating a Headache for Digital Content Distribution.” CMF Trends. January 31, 2018. https://trends.cmf-fmc.ca/splinternets-how-online-balkanization-is-creating-a-headache-for-digital-content-distribution/ (accessed September 2018, 2018).

End Notes:

1 Tanguay, Pierre, Sabrina Dubé-Morneau, and Gaëlle Engelberts. “Splinternets: How Online Balkanization is Creating a Headache for Digital Content Distribution.” CMF Trends. January 31, 2018. https://trends.cmf-fmc.ca/splinternets-how-online-balkanization-is-creating-a-headache-for-digital-content-distribution/ (accessed September 2018, 2018).

2 L.S. “The Economist explains, “What is the splinternet”?” The Economist. November 22, 2016. https://www.economist.com/the-economist-explains/2016/11/22/what-is-the-splinternet (accessed September 14, 2018).

3 Duckett, Chris. “The race to ruin the internet is upon us”. ZDNet. 23 September 2018. https://www.zdnet.com/article/the-race-to-ruin-the-internet-is-upon-us/ (accessed November 13, 2018).

4 Baker, Dr. Jessica. “What Does GDPR Mean For You?” Digital Guardian. July 11, 2018. https://digitalguardian.com/blog/what-does-gdpr-mean-for-you (accessed September 14, 2018).

5 Tangermann, Victor. “With GDPR Decision, Zuckerberg Proves Yet Again He Has Learned Absolutely Nothing From the Cambridge Analytica Scandal.” Futurism. April 4, 2018. https://futurism.com/zuckerberg-gdpr-cambridge-analytica/ (accessed September 14, 2018).

6 Sterling, Bruce. “The China Splinternet Model is Winning.” Wired. July 2, 2016. https://www.wired.com/beyond-the-beyond/2016/07/china-splinternet-model-winning/ (accessed September 2018, 2018).

7 Nash, Charlie. “The Google Tapes: Employees Applauded Company for Taking Bold Stance Against China.” Breitbart. September 13, 2018. https://www.breitbart.com/tech/2018/09/13/the-google-tape-employees-applauded-company-for-taking-bold-stance-against-china/ (accessed September 14, 2018).

8 Chan, Edward. “Quick Take: The Great Firewall.” Bloomberg News. November 5, 2018. https://www.bloomberg.com/quicktake/great-firewall-of-china (accessed November 13, 2018).

9 Kolodny, Lora. “Former Google CEO predicts the internet will split in two — and one part will be led by China.” CNBC. September 20, 2018. https://www.cnbc.com/2018/09/20/eric-schmidt-ex-google-ceo-predicts-internet-split-china.html (accessed November 13, 2018).

10 The RBK Group or RosBiznesKonsalting is a large Russian media group headquartered in Moscow.

11 “Russia Will Create Its Own Internet.” Cyber Security Intelligence Newsletter. January 26, 2018. https://www.cybersecurityintelligence.com/blog/russia-will-create-its-own-internet-3082.html (accessed November 13, 2018).

12 Perry, Tekla. “The Decentralized Internet of HBO’s “Silicon Valley”? Real-World Teams Say They’ve Already Invented It.” IEEE Spectrum. June 9, 2017. https://spectrum.ieee.org/view-from-the-valley/telecom/internet/hbo-silicon-valleys-decentralized-internet-realworld-teams-say-they-already-invented-it (accessed November 13, 2018).

Disclaimer: This is a USASOC G9 Gray Paper that has already been cleared for unlimited release. Distribution is unlimited.  The views expressed in this blog post are those of the author, and do not necessarily reflect those of the Department of Defense, Department of the Army, U.S. Army Special Operations Command (USASOC), Army Futures Command (AFC), or Training and Doctrine Command (TRADOC).

140. A Closer Look at China’s Strategies for Innovation: Questioning True Intent

[Editor’s Note: Mad Scientist Laboratory is pleased to publish today’s guest blog post by Ms. Cindy Hurst, addressing China’s continued drive for dominance regarding innovative technologies.  The asymmetry in ethics existing between their benign and altruistic publicly stated policies and their whole-of-government commitment to modernization and the development of disruptive technologies will remain a key component of multi-domain competition.]

One of China’s most important initiatives is to become an innovative society — but at what cost? In February, the Center for New American Security published a paper, entitled Understanding China’s AI Strategy: Clues to Chinese Strategic Thinking on Artificial Intelligence and National Security. Its author, Gregory Allen, explains that the Chinese government sees Artificial Intelligence (AI) as a “high strategic priority” and is therefore devoting resources “to cultivate AI expertise and strategic thinking among its national security community.” He further urges careful tracking of China’s progress in AI.

Indeed, it would behoove the West to stay abreast of what China is doing in the areas of AI, and not just militarily, but in all areas since there is a clear overlap of civilian and military applications. According to countless official statements, publications, and strategic plans, such as the 13th Five-Year National Science and Technology Innovation Plan, China has placed great emphasis on developing AI, along with other cutting edge technologies, which it views as “majorly influential disruptive technologies” that are capable of altering “the structure of science and technology, the economy, society, and the ecology, to win a competitive advantage in the new round of industry transformation.” 1

Know your enemy and know yourself and in 100 battles you will not be in peril” is one of the key principles of Sun Tzu. The compelling reasons for China’s goals to become a strong global force can easily be explained by understanding its past history and ancient strategies, which are still studied today. The Middle Kingdom had been touted as having once been a seafaring power with a past of contributing world-class innovation at different points over its 5,000 year history. More recently, during the 19th and 20th centuries, China endured what it refers to as the “century of humiliation” — a period in which it was carved up by Western forces during the Opium Wars and then pummeled by Japanese forces in the 1930s.

After the Communist Party’s defeat of the Kuomintang, who retreated to Taiwan, Communist Party Chairman Mao Zedong proclaimed the establishment of the People’s Republic of China in 1949. Since then, the country has vowed to never again be vulnerable to outside forces. They would press forward, making their own path, suffering bumps and bruises along the way. However, it was the United States’ crushing defeat of Iraqi forces during the Persian Gulf War in 1991 that served as the real wakeup call that China lagged far behind Western forces in military capabilities. Since then, generals working at the Academy of Military Science in Beijing and others have studied every aspect of the U.S. revolution in military affairs, including advances in microprocessors, sensors, communication, and Joint operations.2

In its efforts to try to make some headway in technology, China has been accused of stealing massive amounts of foreign intellectual property over the past few decades. Their methodology has included acquisition and reverse engineering, participating in joint ventures sharing research and development, spying, and hacking into government and corporate computer systems. According to a report by CNBC, one in five North American-based corporations on the CNBC Global CFO Council claimed that Chinese companies had stolen their intellectual property within the last year.3 Such thefts and acquisitions make it easier for China to catch up on technology at a low-cost. While the United States spends billions of dollars in research and development, China also benefits without having to expend similar amounts of capital.

Artificial intelligence, quantum information, and Internet of Things are three examples of disruptive technologies shaping the future and in which China aspires to one day have a large or controlling stake. In his speech delivered at the 19th National Congress of the Communist Party of China in October 2017, President Xi Jinping stated that “innovation is the primary driving force behind development” and “it is the strategic underpinning for building a modernized economy.”4

However, while Xi and other Chinese officials outwardly push for international cooperation in AI technology, their efforts and methods have raised concern among some analysts. China openly promotes international cooperation in research and development. However, one might consider possible alternative intentions in trying to push for international cooperation. For example, in Allen’s article, he explains that Fu Ying, the Vice-Chair of the Foreign Affairs Committee of the National People’s Congress had stated that “we should cooperate to preemptively prevent the threat of AI.” Fu further said that China was interested in “playing a leading role in creating norms to mitigate” the risks. A PLA think-tank scholar reportedly expressed support for “mechanisms that are similar to arms control.”5 How sincere are the Chinese in this sentiment? Should it join forces with foreign states to come up with control mechanisms, would China abide by these mechanisms or act in secret, continuing their forward momentum to gain the edge? After all, if both China and the United States, for example, ended up on an even playing field, it would run counter to China’s objectives, if one subscribes to the concept as outlined by Michael Pillsbury in his book, The Hundred-Year Marathon: China’s Secret Strategy to Replace America as the Global Superpower.

While China’s spoken objectives might be sincere, it is prudent to continually review a few of the ancient strategies/stratagems developed during the warring states period, still studied in China today and applied. Some examples include:

1. Cross the sea without the emperor’s knowledge: Hide your true intentions by using the ruse of fake intentions… until you achieve your real intentions.

2. Kill with a borrowed sword: Use the enemy’s strength against them or the strength of another to conquer your enemy.

3. Hide a dagger behind a smile: charm and ingratiate your enemy until you have gained his trust… and then move against him in secret.

In his article, Allen cites a recent Artificial Intelligence Security White Paper, written by “an influential Chinese government think tank,” calling upon China’s government to “avoid Artificial Intelligence arms races among countries” adding that China will “deepen international cooperation on AI laws and regulations, international rules, and so on…” However, as Allen points out, “China’s behavior of aggressively developing, utilizing, and exporting increasingly autonomous robotic weapons and surveillance AI technology runs counter to the country’s stated goals of avoiding an AI arms race.” China may have good intentions. However, its opaque nature breeds skepticism.

Another interesting point to expand upon and that Allen touched upon in his article are the effects of disruptive technologies on societies. According to a Chinese think tank scholar, “China believes that the United States is likely to spend too much to maintain and upgrade mature systems and underinvest in disruptive new systems that make America’s existing sources of advantage vulnerable and obsolete…” When considering the Chinese stratagem, “Sacrifice the plum tree to preserve the peach tree,” it is easy to argue that China will not be easily swayed from developing disruptive technologies, despite possible repercussions and damaging effects. For example, the development of autonomous systems results in unemployment and a steep learning curve. It is inherent in Chinese culture to sacrifice short-term objectives in order to obtain long-term goals. Sustaining initial, short-term repercussions are necessary before China can achieve some of its long-term production goals. Allen explains, “modernization is a top priority, and there is a general understanding that many of its current platforms and approaches are obsolete and must be replaced regardless.”

Particularly intriguing in Allen’s article is his discussion of SenseTime, which is a “world leader in computer vision AI.” The author states that “China’s government and leadership is enthusiastic about using AI for surveillance.” He goes on to say that one Chinese scholar had told him that he “looks forward to a world in AI” in which it will be “impossible to commit a crime without being caught.” While this may seem like an ideal scenario, given the technology is put into the hands of a level-headed and fair law enforcement agency; should it be turned over to an authoritarian dictatorship, such a technology could prove to be disastrous to private citizens. Government control and scare tactics could further suppress their citizens’ basic rights and freedoms.

In conclusion, while China openly pushes the concept of its modernization efforts as a win-win, peaceful development strategy — a careful study of Chinese strategies that have been around for millennia may point to a different scenario, bringing skepticism into the equation. It would be easy to fall prey to an ideology that preaches peace, mutual development, and mutual respect. However, it is important to ask the following two questions: “Is this real?” and “What, if anything, are their ulterior motives?”

If you enjoyed this post, please see:

China’s Drive for Innovation Dominance

Quantum Surprise on the Battlefield?

Cindy Hurst is a research analyst under contract for the Foreign Military Studies Office, Fort Leavenworth, Kansas. Her focus has been primarily on China, with a recent emphasis on research and development, China’s global expansion efforts, and Chinese military strategy. She has published nearly three dozen major papers and countless articles in a variety of journals, magazines, and online venues.

Disclaimer:  The views expressed in this article are Ms. Hurst’s alone and do not imply endorsement by the U.S. Army Training and Doctrine Command, the U.S. Army, the Department of Defense, or the U.S. Government.  This piece is meant to be thought-provoking and does not reflect the current position of the U.S. Army.


1 “Notice of the State Council Regarding the Issuance of the 13th Five-Year National Science and Technology Innovation Plan, State Council Issuance (2016) No. 43, 28 March 2017, http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.

2 “Neither War Nor Peace,” The Economist, 25 January 2018, https://www.economist.com/special-report/2018/01/25/neither-war-nor-peace.

3 Eric Rosenbaum, “1 in 5 Corporations Say China Has Stolen Their IP within the Last Year: CNBC CFO Survey,” CNBC, 1 March 2019, https://www.cnbc.com/2019/02/28/1-in-5-companies-say-china-stole-their-ip-within-the-last-year-cnbc.html.

4 Xi Jinping, “Secure a Decisive Victory in Building a Moderately Prosperous Society in All Respects and Strive for the Great Success of Socialism with Chinese Characteristics for a New Era,” Transcript of speech delivered at the 19th National Congress of the communist Party of China, 18 October 2017.

5 Gregory Allen, “Understanding China’s AI Strategy,” Center for a New American Security, 6 February 2019, https://www.cnas.org/publications/reports/understanding-chinas-ai-strategy.

130. Trouble in Paradise: The Technological Upheaval of Modern Political and Economic Systems

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish the following post by returning guest blogger and proclaimed Mad Scientist Ms. Marie Murphy, addressing how advances in various technologies have the potential to upset the international order and empower individuals and non-state actors.  Read on to learn who will be the winners and losers in this technological upheaval!]

Access to new and advanced technologies has the potential to upset the current power dynamic of the world. From the proliferation of smartphones to commercially available software and hardware, individuals and states that were previously discounted as threats now have the potential to launch sophisticated attacks against powerful international players. Power will no longer remain in the upper echelons of society, where it is primarily held by national governments, multinational corporations, and national news services. These groups are losing their information dominance as individuals, local authorities, and other organizations now have the ability to access and distribute unfiltered information at their fingertips.1

A historical example of technology altering the balance of power are cassette tapes. Ayatollah Khomeini used cassette tape recordings to deliver sermons and direct the Iranian Revolution when exiled in Paris, while the United States observed the use of cassette tapes by the USSR in the spreading of communist propaganda.2 A new technology in the hands of empowered individuals and states allowed for events to transpire that otherwise would not have been possible with the same speed and effectiveness. Adaptation of technology created new agency for actors to direct movements from thousands of miles away, forever shaping the course of history. A more contemporary example is the role of smartphones and social media in the Arab Spring. These new disruptive technologies enabled the organizing of protests and the broadcasting of videos in real time, eclipsing traditional journalism’s ability to report.3

Near-term Analysis:

Technologically sophisticated international actors, such as the United States and the European Union, will maintain the capacity to manage the growth and use of technology within their own borders without adversely affecting governance. However, the increased availability of these technologies may strain civil/government relations in both developing countries and authoritarian systems.4 Technologies such as smartphones and the ability to instantly transmit data may force governments to be accountable for their actions, especially if their abuses of power are recorded and distributed globally by personal devices. At the same time however, “smart” devices may also be used by governments as instruments of social control, repression, and misinformation.

Technology also affords non-state actors new methods for recruiting and executing operations.  Technology-enabled platforms have allowed these groups to network near instantaneously across borders and around the world in a manner that would have been impossible prior to the advent of the digital age.5 A well-known example is the use of social media platforms by terrorist groups such as al-Qaeda and ISIS for propaganda and recruitment. These groups and others, such as Hezbollah and the political opposition in Venezuela, have deployed drones for both reconnaissance and as lethal weapons.6 The availability of these information age technologies has enabled these groups to garner more power and control than similar organizations could have done in the past, posing a real threat to major international actors.

Distant Future Analysis:

There is an extremely high chance of future political disruption stemming from technological advancement. There are some who predict a non-polar power balance emerging. In this scenario, the world is dominated by dozens of technologically capable actors with various capabilities. “Hyperconnected,” developed states such as Sweden, Finland, and Israel may become greater international players and brokers of technologically backed global power. “Partially-connected” nations, today’s developing world, will face multiple challenges and could possibly take advantage of new opportunities due to the proliferation of technology. Technologically empowered individuals, groups, or neighboring states may have the ability to question or threaten the legitimacy of an otherwise weak government. However, in these “partially-connected” states, technology will serve to break down social barriers to equalize social discourse among all strata of society. Other predictions suggest the dissolution of national boundaries and the creation of an “interconnected state” comprised of different national laws without borders in a virtual space.7

Democracy itself is evolving due to technological innovation. Increasing concerns about the roles of privacy, big data, internet security, and artificial intelligence in the digital age raise the following questions: how much does technology influence and control the lives of people in democratic countries, and what effect does this have on politics? Algorithms control the advertisements on the internet based on users’ search history, the collection and sale of personal data, and “fake news” which affects the opinions of millions.8  While these technologies provide convenience in the daily lives of internet-connected citizens, such as recommending items for purchase on Amazon and other platforms, they also lead to an erosion of public trust, a pillar upon which democracy is founded. Democracies must remain vigilant regarding how emerging technologies influence and affect their people and how governments use technology to interact with its citizens.

The changing geopolitical dynamics of the world is inextricably linked with economic power, and increasing economic power is positively correlated with technological advancement. Power is becoming more diffused as Brazil, Russia, India, China, and South Africa (i.e., the BRICS states), the Philippines, Mexico, Turkey, and others develop stronger economies. States with rising economic power may begin to shun traditional global political and economic institutions in favor of regional institutions and bilateral agreements.9 There will be many more emerging markets competing for market share,10 driving up competition and forcing greater innovation and integration to remain relevant.

One of the major factors of the changing economic landscape is the growth of robotics use. Today these technologies are exclusive to world economic leaders but are likely to proliferate as more technological advancements make them cost-effective for a wider range of industries and companies. The adaptation of artificial intelligence will also dictate the future success of businesses in developed and emerging economies. It is important for governments to consider “retraining programs” for those workers laid off by roboticization and AI domination of their career fields.11 Economically dominant countries of the future will be driven by technology and hold the majority of political power in the political arena. These states will harness these technologies and use them to increase their productivity while training their workforce to participate in a technologically aided market.

The Winners and Losers of the Future:

Winners:

  • Countries with stable governments and emerging economies which are able to adapt to the rapid pace of technological innovation without severe political disruption.
  • Current international powers which invest in the development and application of advanced technologies.

Losers:

  • Countries with fragile governments which can be overpowered by citizens, neighbors, or non-state actors armed with technology and authoritarian regimes who use technology as a tool of repression.
  • Traditional international powers which put themselves at risk of losing political and financial leverage if they only work to maintain the status quo. Those systems that do not adapt will struggle to remain relevant in a world dominated by a greater number of powers who fall into the “winners” category.

Conclusion

Modern power players in the world will have to adapt to the changing role of technology, particularly the influence of technology-empowered individuals. Technology will change how democracies and other political systems operate both domestically and on the world stage. The major international players of today will also have to accept that rising economic powers will gain more influence in the global market as they are more technologically enabled. As power becomes more diluted when states gain equalizing technology, the hegemony of the current powers that lead international institutions will begin to lose relevancy if they do not adapt.

If you enjoyed this post, please also see:

… and Ms. Murphy‘s previous posts:

… and crank up Bob Marley and the Wailers Get Up, Stand Up!

Marie Murphy is a junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is a regular contributor to the Mad Scientist Laboratory; interned at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative during the Summer of 2018; and is currently a Research Fellow for William and Mary’s Project on International Peace and Security.


1 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.” Strategy, A T Kearney, www.middle-east.atkearney.com/strategy/featured-article/-/asset_publisher/KwarGm4gaWhz/content/global-trends-2015-2025-divergence-disruption-and-innovation/10192?inheritRedirect=false&redirect=http://www.middle-east.atkearney.com/strategy/featured-article?p_p_id=101_INSTANCE_KwarGm4gaWhz&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1.

2 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.” Foreign Affairs, Foreign Affairs Magazine, 27 Oct. 2010, www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

3 Duffy, Matt J. “Smartphones in the Arab Spring.” Academia.edu – Share Research, 2011, www.academia.edu/1911044/Smartphones_in_the_Arab_Spring

4 China is a unique case here because it’s a major developer of technology and counter-technology systems which block the use of certain devices, applications, or programs within their borders. But Chinese people do find loopholes and other points of access in the system, defying the government.

5 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.” www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

6 “Drone Terrorism Is Now a Reality, and We Need a Plan to Counter the Threat.” International Security: Fragility, Violence and Conflict, World Economic Forum, 20 Aug. 2018, www.weforum.org/agenda/2018/08/drone-terrorism-is-now-a-reality-and-we-need-a-plan-to-counter-the-threat.

7 Schmidt, Eric, and Jared Cohen. “The Digital Disruption.”  www.foreignaffairs.com/articles/2010-10-16/digital-disruption.

8 Unver, Hamid Akin. “Artificial Intelligence, Authoritarianism and the Future of Political Systems.” SSRN, EDAM Research Reports, 2018, 26 Feb. 2019, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331635.

9 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.”

10 Stowell, Joshua. The Emerging Seven Countries Will Hold Increasing Levels of Global Economic Power by 2050. Global Security Review, 26 Apr. 2018, www.globalsecurityreview.com/will-global-economic-order-2050-look-like/.

11 Laudicina, Paul A, and Erik R Peterson. “Divergence, Disruption, and Innovation: Global Trends 2015–2025.”

129. “The Queue”

[Editor’s Note: Mad Scientist Laboratory is pleased to present our latest edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Mad Scientist Initiative has come across during the previous month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment (OE). We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

Recently ML Cavanaugh asked and answered in a LA Times Op-Ed piece, “Can science fiction help us prepare for 21st Century Warfare?

The Mad Science team answers this question with an emphatic, “YES!

Below is a re-run of our review of Eliot Peper’s argument for business leaders to read more science fiction. His urban planning business case speaks for itself.

For the burgeoning authors among you, submit a story to our Science Fiction Writing Contest 2019 –- you only have two weeks left! — see contest details here.

1.Why Business Leaders Need to Read More Science Fiction,” by Eliot Peper, Harvard Business Review, 24 July 17.

New York City’s Fifth Avenue bustling with horse-drawn traffic on Easter Sunday, 1900 (see if you can spot the horseless carriage!) / Source: Commons Wikimedia

There are no facts about the future and the future is not a linear extrapolation from the present. We inherently understand this about the future, but Leaders oftentimes seek to quantify the unquantifiable. Eliot Peper opens his Harvard Business Review article with a story about one of the biggest urban problems in New York City at the end of the 19th century – it stank!

Horses were producing 45,000 tons of manure a month. The urban planners of 1898 convened a conference to address this issue, but the experts failed to find a solution. More importantly, they could not envision a future only a decade and a half hence, when cars would outnumber horses. The urban problem of the future was not horse manure, but motor vehicle-generated pollution and road infrastructure. All quantifiable data available to the 1898 urban planners only extrapolated to more humans, horses, and manure. It is likely that any expert sharing an assumption about cars over horses would have been laughed out of the conference hall. Flash forward a century and the number one observation from the 9/11 Commission was that the Leaders and experts responsible for preventing such an attack lacked imagination. Story telling and the science fiction genre allow Leaders to imagine beyond the numbers and broaden the assumptions needed to envision possible futures.

2. Challenges to Security in Space, Defense Intelligence Agency, January 2019.

Source: Evan Vucci / AP / REX / Shutterstock

On 19 Feb 19, President Trump signed Space Policy Directive-4 (SPD-4), establishing the Space Force as the nation’s newest military branch. This force will initially reside within the U.S. Air Force, much as the U.S.  Marine Corps resides within the U.S. Navy. Acting Secretary of Defense Patrick Shanahan, as Deputy Secretary of Defense, must now provide the associated draft legislative proposal to the President via the Office of Management and Budget; then it will be submitted to Congress for approval – its specific “details… and how effectively Administration officials defend it on Capitol Hill will determine its fate.

Given what is sure to be a contentious and polarizing congressional debate, the Defense Intelligence Agency’s Challenges to Security in Space provides a useful unclassified reference outlining our near-peer adversaries’ (China and Russia) space strategy, doctrine, and intent; key space and counterspace organizations; and space and counterspace capabilities. These latter capabilities are further broken out into: space launch capabilities; human spaceflight and space exploration; Intelligence, Surveillance, and Reconnaissance (ISR); navigation and communications; and counterspace.

In addition to our near-peer’s space capabilities, Iranian and North Korean space challenges are also addressed. The paper explores these nations’ respective national space launch facilities as venues for testing ballistic missile technologies.

The paper concludes with an outlook assessment addressing the increasing number of spacefaring nations, with “some actors integrat[ing] space and counterspace capabilities into military operations,” and “trends… pos[ing] a challenge to U.S. space dominance and present[ing] new risks for assets on orbit.”

A number of useful appendices are also included, addressing the implications of debris and orbital collisions; counterspace threats illustrating the associated capabilities on a continuum from reversible (e.g., Electronic Warfare and Denial and Deception) to irreversible (e.g., Ground Site Attacks and Nuclear Detonation in Space); and a useful list defining space acronyms.

With the U.S. and our allies’ continued dependence on space domain operations in maintaining a robust deterrence, and failing that, winning on future battlefields, this DIA assessment is an important reference for warfighters and policy makers, alike.

3. Superconduction: Why does it have to be so cold?Vienna University of Technology via ScienceDaily, 20 February 2019.  (Reviewed by Marie Murphy)

One of the major barriers to quantum computing is a rather unexpected one: in order for superconduction to occur, it must be very cold. Superconduction is an electrical current that moves “entirely without resistance” and, as of now, with standard materials superconduction is only possible at -200oC. In quantum computing there are massive amounts of particles moving in interdependent trajectories, and precisely calculating all of them is impossible. Researchers at TU Wien (Technische Universität Wien – Vienna University of Technology) were able to add on to an existing equation that allows for the approximate calculation of these particles in solid matter, not just a vacuum. This new formula may make it easier to develop different superconducting materials and potentially identify materials that could conduct at room temperature.

Quantum computing is heralded as the next big step in the technological revolution and the key to unlocking unthinkable possibilities of human and technological advancement. If there was a way for quantum computing to work at closer to room temperature, then that could lead to a major breakthrough in the technology and the rapid application of quantum computing to the operational environment. There is also a massive first mover advantage in quantum computing technology: the organization that solves the problem first will have unlimited and uncontested use of the technology, and very few people in the world have the technological expertise to quickly replicate the discovery.

4.The Twenty-First Century General, with Dr. Anthony King,” hosted by John Amble, Modern War Institute Podcast, 7 March 2019.

Command: The Twenty-First Century General / Source: Cambridge University Press

In this prescient episode of the Modern War Institute podcast, John Amble interviews Dr. Anthony King (Chair of War Studies in the Politics and International Studies Department at Warwick University in the United Kingdom) about his new book Command: The Twenty-First Century General. Amble and Dr. King have a detailed and informative discussion about the future of command as the world has moved into a digital age and what it’s meant for the battlefield, warfighters, commanders, and even organizational staffs.

One of the more impactful ideas explored in this podcast, in relation to the future of warfare, was the idea of collective decision-making on the part of commanders, as opposed to previous “hero era” individualistic leadership typified by General Patton and Field Marshals Rommel and Montgomery. Command teams (divisional staff, for example) have swelled in size not simply to create meaningless career milestones but due to digital age revolutions that allowed for increasingly complex operations.

With artificial intelligence becoming increasingly pervasive throughout the future operational environment and likely ever-present on future command staffs, Dr. King points out that staffs may not become smaller but actually may increase as operations become even more complex. The changing character of future warfare (especially the emergence of AI) may enable incredible new capabilities in coordination, synchronization, and convergence of effects but adversaries using more simplistic command structures could expose this inherent complexity through speed and decisiveness.

5. Alexa, call the police! Smart assistants should come with a ‘moral AI’ to decide whether to report their owners for breaking the law, experts say,” by Peter Lloyd, Daily Mail.com, 22 February 2019.

Scientists at the University of Bergen in Norway discussed the idea of a “moral A.I.” for smart home assistants, like the Amazon Echo, Google Home, and Apple HomePod at the AAAI / ACM Conference for Artificial Intelligence, Ethics and Society in Hawaii.  Marija Slavkovik, associate professor at the department of information science and media studies “suggested that digital assistants should possess an ethical awareness that at once represents both the owner and the authorities — or, in the case of a minor, their parents.” Recall that previously, police have seized information gathered by smart devices.

Moral A.I. would require home assistants to “decide whether to report their owners for breaking the law,” or to remain silent. “This would let them weigh whether to report illegal activity to the police, effectively putting millions of people under constant surveillance.” Stakeholders “need to be identified and have a say, including when machines shouldn’t be able to listen in. Right now only the manufacturer decides.” At present, neither stakeholders nor consumers are in charge of their own information and companies use our personal information freely, without commensurate compensation.

If developed, brought to market, and installed (presumably willingly) in our homes (or public spaces), is Moral A.I. a human problem?

Yes. Broadly speaking, no place on earth is completely homogeneous; each country has a different culture, language, beliefs, norms, and society. Debating the nuances, the dystopian sounding and murky path of Moral A.I. involves the larger question on how should ethics be incorporated in AI.

Furthermore – should lethal autonomous weapons be used on humans? In his recent post entitled “AI Enhancing EI in War,” MAJ Vincent Dueñas addressed how AI can mitigate a human commander’s cognitive biases and enhance his/her (and their staff’s) decision-making to assist them in commanding, fighting, and winning on future battlefields. Humans are susceptible to cognitive biases and these biases sometimes result in catastrophic outcomes—particularly in the high stress environment of wartime decision-making.  AI offers the possibility of mitigating the susceptibility of negative outcomes in the commander’s decision-making process by enhancing the collective Emotional Intelligence (EI) of the commander and his/her staff.  For now, however, AI is too narrow to carry this out in someone’s home, let alone on the battlefield.

6.SS7 Cellular Network Flaw Nobody Wants To Fix Now Being Exploited To Drain Bank Accounts,” by Karl Bode, Techdirt.com, 11 February 2019.

Signaling System 7 (SS7) is a series of cellular telephone protocols first built in 1975 that allows for telephonic communication around the globe. Within this set of protocols is a massive security vulnerability that has been public knowledge for over a decade. The vulnerability allows a nefarious actor to, among other things, track user location, dodge encryption, and record conversations. What’s more, this can be done while looking like ordinary carrier chatter and, in some cases, can be used to gain access to bank accounts through 2-factor authentication and effectively drain them.

This is significant from a military perspective because, as highlighted within a recent blog post, we have already seen near-peer adversarial states execute attacks through cellphone activity, personal wearable device location data, and social media. These states attempt to degrade soldier morale by launching information operations campaigns targeted at soldier families or the soldiers themselves through text messages, social media, or cell phone calls. The SS7 vulnerability could make these campaigns more successful or easier to execute and allow them to penetrate farther into the personal lives of soldiers than ever before.

Lastly, this vulnerability highlights an enduring trend: legacy communications infrastructure still exists and is still heavily used by civilian and military alike. This infrastructure is old and vulnerable and was designed before cellphones were commonplace. Modernizing this infrastructure around the world would be costly and time consuming and there has been little movement on fixing the vulnerability itself. Despite this vulnerability being known since 2008, is this something that will affect operations going forward? With no intrusion signature, will the Army need to modify existing policy on personal electronic devices for Soldiers and their families?

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future OE, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!