76. “Top Ten” Takeaways from the Learning in 2050 Conference

On 8-9 August 2018, the U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Learning in 2050 Conference with Georgetown University’s Center for Security Studies in Washington, DC.  Leading scientists, innovators, and scholars from academia, industry, and the government gathered to address future learning techniques and technologies that are critical in preparing for Army operations in the mid-21st century against adversaries in rapidly evolving battlespaces.  The new and innovative learning capabilities addressed at this conference will enable our Soldiers and Leaders to act quickly and decisively in a changing Operational Environment (OE) with fleeting windows of opportunity and more advanced and lethal technologies.

We have identified the following “Top 10” takeaways related to Learning in 2050:

1. Many learning technologies built around commercial products are available today (Amazon Alexa, Smart Phones, Immersion tech, Avatar experts) for introduction into our training and educational institutions. Many of these technologies are part of the Army’s concept for a Synthetic Training Environment (STE) and there are nascent manifestations already.  For these technologies to be widely available to the future Army, the Army of today must be prepared to address:

– The collection and exploitation of as much data as possible;

– The policy concerns with security and privacy;

 – The cultural challenges associated with changing the dynamic between learners and instructors, teachers, and coaches; and

– The adequate funding to produce capabilities at scale so that digital tutors or other technologies (Augmented Reality [AR] / Virtual Reality [VR], etc.) and skills required in a dynamic future, like critical thinking/group think mitigation, are widely available or perhaps ubiquitous.

2. Personalization and individualization of learning in the future will be paramount, and some training that today takes place in physical schools will be more the exception, with learning occurring at the point of need. This transformation will not be limited to lesson plans or even just learning styles:

Intelligent tutors, Artificial Intelligence (AI)-driven instruction, and targeted mentoring/tutoring;

– Tailored timing and pacing of learning (when, where, and for what duration best suits the individual learner or group of learners?);

– Collaborative learners will be teams partnering to learn;

Targeted Neuroplasticity Training / Source: DARPA

– Various media and technologies that enable enhanced or accelerated learning (Targeted Neuroplasticity Training (TNT), haptic sensors, AR/VR, lifelong personal digital learning partners, pharmaceuticals, etc.) at scale;

– Project-oriented learning; when today’s high school students are building apps, they are asked “What positive change do you want to have?” One example is an open table for Bully Free Tables. In the future, learners will learn through working on projects;

– Project-oriented learning will lead to a convergence of learning and operations, creating a chicken (learning) or the egg (mission/project) relationship; and

– Learning must be adapted to consciously address the desired, or extant, culture.

Drones Hanger / Source: Oshanin

3. Some jobs and skill sets have not even been articulated yet. Hobbies and recreational activities engaged in by kids and enthusiasts today could become occupations or Military Occupational Specialties (MOS’s) of the future (e.g., drone creator/maintainer, 3-D printing specialist, digital and cyber fortification construction engineer — think Minecraft and Fortnite with real-world physical implications). Some emerging trends in personalized warfare, big data, and virtual nations could bring about the necessity for more specialists that don’t currently exist (e.g., data protection and/or data erasure specialists).

Mechanical Animal / Source: Pinterest

4. The New Human (who will be born in 2032 and is the recruit of 2050) will be fundamentally different from the Old Human. The Chief of Staff of the Army (CSA) in 2050 is currently a young Captain in our Army today. While we are arguably cyborgs today (with integrated electronics in our pockets and on our wrists), the New Humans will likely be cyborgs in the truest sense of the word, with some having embedded sensors. How will those New Humans learn? What will they need to learn? Why would they want to learn something? These are all critical questions the Army will continue to ask over the next several decades.

Source: iLearn

5. Learning is continuous and self-initiated, while education is a point in time and is “done to you” by someone else. Learning may result in a certificate or degree – similar to education – or can lead to the foundations of a skill or a deeper understanding of operations and activity. How will organizations quantify learning in the future? Will degrees or even certifications still be the benchmark for talent and capability?

Source: The Data Feed Toolbox

6. Learning isn’t slowing down, it’s speeding up. More and more things are becoming instantaneous and humans have no concept of extreme speed. Tesla cars have the ability to update software, with owners getting into a veritably different car each day. What happens to our Soldiers when military vehicles change much more iteratively? This may force a paradigm shift wherein learning means tightening local and global connections (tough to do considering government/military network securities, firewalls, vulnerabilities, and constraints); viewing technology as extended brains all networked together (similar to Dr. Alexander Kott’s look at the Internet of Battlefield Things [IoBT]); and leveraging these capabilities to enable Soldier learning at extremely high speeds.

Source: Connecting Universes

7. While there are a number of emerging concepts and technologies to improve and accelerate learning (TNT, extended reality, personalized learning models, and intelligent tutors), the focus, training stimuli, data sets, and desired outcomes all have to be properly tuned and aligned or the Learner could end up losing correct behavior habits (developing maladaptive plasticity), developing incorrect or skewed behaviors (per the desired capability), or assuming inert cognitive biases.

Source: TechCrunch

8. Geolocation may become increasingly less important when it comes to learning in the future. If Apple required users to go to Silicon Valley to get trained on an iPhone, they would be exponentially less successful. But this is how the Army currently trains. The ubiquity of connectivity, the growth of the Internet of Things (and eventually Internet of Everything), the introduction of universal interfaces (think one XBOX controller capable of controlling 10 different types of vehicles), major advances in modeling and simulations, and social media innovation all converge to minimize the importance of teachers, students, mentors, and learners being collocated at the same physical location.

Transdisciplinarity at Work / Source: https://www.cetl.hku.hk

9. Significant questions have to be asked regarding the specificity of training in children at a young age to the point that we may be overemphasizing STEM from an early age and not helping them learn across a wider spectrum. We need Transdisciplinarity in the coming generations.

10. 3-D reconstructions of bases, training areas, cities, and military objectives coupled with mixed reality, haptic sensing, and intuitive controls have the potential to dramatically change how Soldiers train and learn when it comes to not only single performance tasks (e.g., marksmanship, vehicle driving, reconnaissance, etc.) but also in dense urban operations, multi-unit maneuver, and command and control.

Heavy Duty by rOEN911 / Source: DeviantArt

During the next two weeks, we will be posting the videos from each of the Learning in 2050 Conference presentations on the TRADOC G-2 Operational Environment (OE) Enterprise YouTube Channel and the associated slides on our Mad Scientist APAN site — stay connected here at the Mad Scientist Laboratory.

One of the main thrusts in the Mad Scientist lines of effort is harnessing and cultivating the Intellect of the Nation. In this vein, we are asking Learning in 2050 Conference participants (both in person and online) to share their ideas on the presentations and topic. Please consider:

– What topics were most important to you personally and professionally?

– What were your main takeaways from the event?

– What topics did you want the speakers to extrapolate more on?

– What were the implications for your given occupation/career field from the findings of the event?

Your input will be of critical importance to our analysis and products that will have significant impact on the future of the force in design, structuring, planning, and training!  Please submit your input to Mad Scientist at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil.

64. Top Ten Takeaways from the Installations of the Future Conference

On 19-20 June 2018, the U.S. Army Training and Doctrine Command (TRADOC) Mad Scientist Initiative co-hosted the Installations of the Future Conference with the Office of the Assistant Secretary of the Army for Installations, Energy and Environment (OASA (IE&E)) and Georgia Tech Research Institute (GTRI).  Emerging technologies supporting the hyper-connectivity revolution will enable improved training capabilities, security, readiness support (e.g., holistic medical facilities and brain gyms), and quality of life programs at Army installations. Our concepts and emerging doctrine for multi-domain operations recognizes this as increasingly important by including Army installations in the Strategic Support Area. Installations of the Future will serve as mission command platforms to project virtual power and expertise as well as Army formations directly to the battlefield.

We have identified the following “Top 10” takeaways related to our future installations:

Source: Laserfishe

1. Threats and Tensions.Army Installations are no longer sanctuaries” — Mr. Richard G. Kidd IV, Deputy Assistant Secretary of the Army, Strategic Integration. There is a tension between openness and security that will need balancing to take advantage of smart technologies at our Army installations. The revolution in connected devices and the ability to virtually project power and expertise will increase the potential for adversaries to target our installations. Hyper-connectivity increases the attack surface for cyber-attacks and the access to publicly available information on our Soldiers and their families, making personalized warfare and the use of psychological attacks and deep fakes likely.

2. Exclusion vs. Inclusion. The role of and access to future Army installations depends on the balance between these two extremes. The connections between local communities and Army installations will increase potential threat vectors, but resilience might depend on expanding inclusion. Additionally, access to specialized expertise in robotics, autonomy, and information technologies will require increased connections with outside-the-gate academic institutions and industry.

Source: pcmag.com

3. Infrastructure Sensorization.  Increased sensorization of infrastructure runs the risk of driving efficiencies to the point of building in unforeseen risks. In the business world, these efficiencies are profit-driven, with clearer risks and rewards. Use of table top exercises can explore hidden risks and help Garrison Commanders to build resilient infrastructure and communities. Automation can cause cascading failures as people begin to fall “out of the loop.”

4. Army Modernization Challenge.  Installations of the Future is a microcosm of overarching Army Modernization challenges. We are simultaneously invested in legacy infrastructure that we need to upgrade, and making decisions to build new smart facilities. Striking an effective and efficient balance will start with public-private partnerships to capture the expertise that exists in our universities and in industry. The expertise needed to succeed in this modernization effort does not exist in the Army. There are significant opportunities for Army Installations to participate in ongoing consortiums like the “Middle Georgia” Smart City Community and the Global Cities Challenge to pilot innovations in spaces such as energy resilience.

5. Technology is outpacing regulations and policy. The sensorization and available edge analytics in our public space offers improved security but might be perceived as decreasing personal privacy. While we give up some personal privacy when we live and work on Army installations, this collection of data will require active engagement with our communities. We studied an ongoing Unmanned Aerial System (UAS) support concept to detect gunshot incidents in Louisville, KY, to determine the need to involve legislatures, local political leaders, communities, and multiple layers of law enforcement.

6. Synthetic Training Environment. The Installation of the Future offers the Army significant opportunities to divest itself of large brick and mortar training facilities and stove-piped, contractor support-intensive Training Aids, Devices, Simulations, and Simulators (TADSS).  MG Maria Gervais, Deputy Commanding General, Combined Arms Center – Training (DCG, CAC-T), presented the Army’s Synthetic Training Environment (STE), incorporating Virtual Reality (VR)“big box” open-architecture simulations using a One World Terrain database, and reduced infrastructure and contractor-support footprints to improve Learning and Training.  The STE, delivering high-fidelity simulations and the opportunity for our Soldiers and Leaders to exercise all Warfighting Functions across the full Operational Environment with greater repetitions at home station, will complement the Live Training Environment and enhance overall Army readiness.

Source: The Goldwater

7. Security Technologies. Many of the security-oriented technologies (autonomous drones, camera integration, facial recognition, edge analytics, and Artificial Intelligence) that triage and fuse information will also improve our deployed Intelligence, Surveillance, and Reconnaissance (ISR) capabilities. The Chinese lead the world in these technologies today.

Source: TechViz

8. Virtual Prototyping. The U.S. Army Engineer Research and Development Center (ERDC) is developing a computational testbed using virtual prototyping to determine the best investments for future Army installations. The four drivers in planning for Future Installations are:  1) Initial Maneuver Platform (Force Projection); 2) Resilient Installations working with their community partners; 3) Warfighter Readiness; and 4) Cost effectiveness in terms of efficiency and sustainability.

9. Standard Approach to Smart Installations. A common suite of tools is needed to integrate smart technologies onto installations. While Garrison Commanders need mission command to take advantage of the specific cultures of their installations and surrounding communities, the Army cannot afford to have installations going in different directions on modernization efforts. A method is needed to rapidly pilot prototypes and then determine whether and how to scale the technologies across Army installations.

10. “Low Hanging Fruit.” There are opportunities for Army Installations to lead their communities in tech integration. Partnerships in energy savings, waste management, and early 5G infrastructure provide the Army with early adopter opportunities for collaboration with local communities, states, and across the nation. We must educate contracting officers and Government consumers to look for and seize upon these opportunities.

Videos from each of the Installations of the Future Conference presentations are posted here. The associated slides will be posted here within the week on the Mad Scientist All Partners Access Network site.

If you enjoyed this post, check out the following:

• Watch Mr. Richard Kidd IV discuss Installations of the Future on Government Matters.

• Read Mad Scientist Ed Blayney’s takeaways from the Installations of the Future Conference in his article, entitled We need more Mad Scientists in our Smart Cities.

• See the TRADOC G-2 Operational Environment Enterprise’s:

–  The Changing Character of Future Warfare video.

–  Evolving Threats to Army Installations video.

• Review our Call for Ideas winning submissions Trusting Smart Cities: Risk Factors and Implications by Dr. Margaret Loper, and Day in the Life of a Garrison Commander by the team at AT&T Global Public Sector — both are graciously hosted by our colleagues at Small Wars Journal.

• Re-visit our following blog posts: Smart Cities and Installations of the Future: Challenges and Opportunities and Base in a Box.