59. Fundamental Questions Affecting Army Modernization

[Editor’s Note:  The Operational Environment (OE) is the start point for Army Readiness – now and in the Future. The OE answers the question, “What is the Army ready for?”  Without the OE in training and Leader development, Soldiers and Leaders are “practicing” in a benign condition, without the requisite rigor to forge those things essential for winning in a complex, multi-domain battlefield.  Building the Army’s future capabilities, a critical component of future readiness, requires this same start point.  The assumptions the Army makes about the Future OE are the sine qua non start point for developing battlefield systems — these assumptions must be at the forefront of decision-making for all future investments.]

There are no facts about the future. Leaders interested in building future ready organizations must develop assumptions about possible futures and these assumptions require constant scrutiny. Leaders must also make decisions based on these assumptions to posture organizations to take advantage of opportunities and to mitigate risks. Making these decisions is fundamental to building future readiness.

Source: Evan Jensen, ARL

The TRADOC G-2 has made the following foundational assumptions about the future that can serve as launch points for important questions about capability requirements and capabilities under development. These assumptions are further described in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

1. Contested in all domains (air, land, sea, space, and cyber). Increased lethality, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions, further enabled by autonomy, robotics, and Artificial Intelligence (AI) with an increasing potential for overmatch. Adversaries will restrict us to temporary windows of advantage with periods of physical and electronic isolation.

Source: Army Technology

2. Concealment is difficult on the future battlefield. Hiding from advanced sensors — where practicable — will require dramatic reduction of heat, electromagnetic, and optical signatures. Traditional hider techniques such as camouflage, deception, and concealment will have to extend to “cross-domain obscuration” in the cyber domain and the electromagnetic spectrum. Canny competitors will monitor their own emissions in real-time to understand and mitigate their vulnerabilities in the “battle of signatures.” Alternately, “hiding in the open” within complex terrain clutter and near-constant relocation might be feasible, provided such relocation could outpace future recon / strike targeting cycles.   Adversaries will operate among populations in complex terrain, including dense urban areas.

3. Trans-regional, gray zone, and hybrid strategies with both regular and irregular forces, criminal elements, and terrorists attacking our weaknesses and mitigating our advantages. The ensuing spectrum of competition will range from peaceful, legal activities through violent, mass upheavals and civil wars to traditional state-on-state, unlimited warfare.

Source: Science Photo Library / Van Parys Media

4. Adversaries include states, non-state actors, and super-empowered individuals, with non-state actors and super empowered individuals now having access to Weapons of Mass Effect (WME), cyber, space, and Nuclear/Biological/ Chemical (NBC) capabilities. Their operational reach will range from tactical to global, and the application of their impact from one domain into another will be routine. These advanced engagements will also be interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Source: Northrop Grumman

5. Increased speed of human interaction, events and action with democratized and rapidly proliferating capabilities means constant co-evolution between competitors. Recon / Strike effectiveness is a function of its sensors, shooters, their connections, and the targeting process driving decisions. Therefore, in a contest between peer competitors with comparable capabilities, advantage will fall to the one that is better integrated and makes better and faster decisions.

These assumptions become useful when they translate to potential decision criteria for Leaders to rely on when evaluating systems being developed for the future battlefield. Each of the following questions are fundamental to ensuring the Army is prepared to operate in the future.

Source: Lockheed Martin

1. How will this system operate when disconnected from a network? Units will be disconnected from their networks on future battlefields. Capabilities that require constant timing and precision geo-locational data will be prioritized for disruption by adversaries with capable EW systems.

2. What signature does this system present to an adversary? It is difficult to hide on the future battlefield and temporary windows of advantage will require formations to reduce their battlefield signatures. Capabilities that require constant multi-directional broadcast and units with large mission command centers will quickly be targeted and neutralized.

Image credit: Alexander Kott

3. How does this system operate in dense urban areas? The physical terrain in dense urban areas and megacities creates concrete canyons isolating units electronically and physically. Automated capabilities operating in dense population areas might also increase the rate of false signatures, confusing, rather than improving, Commander decision-making. New capabilities must be able to operate disconnected in this terrain. Weapons systems must be able to slew and elevate rapidly to engage vertical targets. Automated systems and sensors will require significant training sets to reduce the rate of false signatures.

Source: Military Embedded Systems

4. How does this system take advantage of open and modular architectures? The rapid rate of technological innovations will offer great opportunities to militaries capable of rapidly integrating prototypes into formations.  Capabilities developed with open and modular architectures can be upgraded with autonomous and AI enablers as they mature. Early investment in closed-system capabilities will freeze Armies in a period of rapid co-evolution and lead to overmatch.

5. How does this capability help win in competition short of conflict with a near peer competitor? Near peer competitors will seek to achieve limited objectives short of direct conflict with the U.S. Army. Capabilities will need to be effective at operating in the gray zone as well as serving as deterrence. They will need to be capable of strategic employment from CONUS-based installations.

If you enjoyed this post, check out the following items of interest:

    • Join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live 11 June 2018 — click here to learn more!

48. Warfare at the Speed of Thought

(Editor’s Note: Mad Scientist Laboratory is pleased to present the second guest blog post by Dr. Richard Nabors, Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), addressing how Augmented and Mixed Reality are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.

Dr. Nabors’ previous guest post addressed how the proliferation of sensors, integrated via the Internet of Battlefield Things [IoBT], will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces.)

Speed has always been and will be a critical component in assuring military dominance. Historically, the military has sought to increase the speed of its jets, ships, tanks, and missiles. However, one of the greatest leaps that has yet to come and is coming is the ability to significantly increase the speed of the decision-making process of the individual at the small unit level.

Source: University of Maryland Institute for Advanced Computer Studies
To maximize individual and small unit initiative to think and act flexibly, Soldiers must receive as much relevant information as possible, as quickly as possible. Integrated sensor technologies can provide situational awareness by collecting and sorting real-time data and sending a fusion of information to the point of need, but that information must be processed quickly in order to be operationally effective. Augmented Reality (AR) and Mixed Reality (MR) are two of the most promising solutions to this challenge facing the military and will eventually make it possible for Soldiers to instantaneously respond to an actively changing environment.

AR and MR function in real-time, bringing the elements of the digital world into a Soldier’s perceived real world, resulting in optimal, timely, and relevant decisions and actions. AR and MR allow for the overlay of information and sensor data into the physical space in a way that is intuitive, serves the point of need, and requires minimal training to interpret. AR and MR will enable the U.S. military to survive in complex environments by decentralizing decision-making from mission command and placing substantial capabilities in Soldiers’ hands in a manner that does not overwhelm them with information.

Source: Tom Rooney III
On a Soldier’s display, AR can render useful battlefield data in the form of camera imaging and virtual maps, aiding a Soldier’s navigation and battlefield perspective. Special indicators can mark people and various objects to warn of potential dangers.
Source: MicroVision
Soldier-borne, palm-size reconnaissance copters with sensors and video can be directed and tasked instantaneously on the battlefield. Information can be gathered by unattended ground sensors and transmitted to a command center, with AR and MR serving as a networked communication system between military leaders and the individual Soldier. Used in this way, AR and MR increase Soldier safety and lethality.

In the near-term, the Army Research and Development (R&D) community is investing in the following areas:


Reliable position tracking devices that self-calibrate for head orientation of head-worn sensors.


• Ultralight, ultrabright, ultra-transparent display eyewear with wide field of view.

Source: CIO Australia

• Three-dimensional viewers with battlefield terrain visualization, incorporating real-time data from unmanned aerial vehicles, etc.




In the mid-term, R&D activities are focusing on:

• Manned vehicles with sensors and processing capabilities for moving autonomously, tasked for Soldier protection.

Robotic assets, tele-operated, semi-autonomous, or autonomous and imbued with intelligence, with limbs that can keep pace with Soldiers and act as teammates.

Source: BAE
• Robotic systems that contain multiple sensors that respond to environmental factors affecting the mission, or have self-deploying camouflage capabilities that stay deployed while executing maneuvers.

• Enhanced reconnaissance through deep-penetration mapping of building layouts, cyber activity, and subterranean infrastructure.

Once AR and MR prototypes and systems have seen widespread use, the far term focus will be on automation that could track and react to a Soldier’s changing situation by tailoring the augmentation the Soldier receives and by coordinating across the unit.

In addition, AR and MR will revolutionize training, empowering Soldiers to train as they fight. Soldiers will be able to use real-time sensor data from unmanned aerial vehicles to visualize battlefield terrain with geographic awareness of roads, buildings, and other structures before conducting their missions. They will be able to rehearse courses of action and analyze them before execution to improve situational awareness. AR and MR are increasingly valuable aids to tactical training in preparation for combat in complex and congested environments.

AR and MR are the critical elements required for integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments. Solving the challenge of how and where to use AR and MR will enable the military to get full value from its investments in complex integrated sensor systems.

For more information on how the convergence of technologies will enhance Soldiers on future battlefields, see:

– The discussion on advanced decision-making in An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, published by our colleagues at Small Wars Journal.

– Dr. James Canton’s presentation from the Mad Scientist Robotics, Artificial Intelligence, & Autonomy Conference at Georgia Tech Research Institute last March.

– Dr. Rob Smith’s Mad Scientist Speaker Series presentation on Operationalizing Big Data, where he addresses the applicability of AR to sports and games training as an analogy to combat training (noting “Serious sport is war minus the shooting” — George Orwell).

Dr. Richard Nabors is Associate Director for Strategic Planning, US Army CERDEC Night Vision and Electronic Sensors Directorate.