85. Benefits, Vulnerabilities, and the Ethics of Soldier Enhancement

[Editor’s Note: The United States Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Bio Convergence and Soldier 2050 Conference with SRI International at their Menlo Park, CA, campus on 8-9 March 2018, where participants discussed the advent of new biotechnologies and the associated benefits, vulnerabilities, and ethics associated with Soldier enhancement for the Army of the Future.  The following post is an excerpt from this conference’s final report.]

Source:  Max Pixel

Advances in synthetic biology likely will enhance future Soldier performance – speed, strength, endurance, and resilience – but will bring with it vulnerabilities, such as genomic targeting, that can be exploited by an adversary and/or potentially harm the individual undergoing the enhancement.

 

Emerging synthetic biology tools – e.g., CRISPR, Talon, and ZFN – present an opportunity to engineer Soldiers’ DNA and enhance their abilities. Bioengineering is becoming easier and cheaper as a bevy of developments are reducing biotechnology transaction costs in gene reading, writing, and editing. [1] Due to the ever-increasing speed and lethality of the future battlefield, combatants will need cognitive and physical enhancement to survive and thrive.

Cognitive enhancement could make Soldiers more lethal, more decisive, and perhaps more resilient. Using neurofeedback, a process that allows a user to see their brain activity in real-time, one can identify ideal brain states, and use them to enhance an individual’s mental performance. Through the mapping and presentation of identified expert brains, novices can rapidly improve their acuity after just a few training sessions. [2] Further, there are studies being conducted that explore the possibility of directly emulating those expert brain states with non-invasive EEG caps that could improve performance almost immediately. [3]  Dr. Amy Kruse, the Chief Scientific Officer at the Platypus Institute, referred to this phenomenon as “sitting on a gold mine of brains.”

There is also the potential to change and improve Soldier’s physical attributes. Scientists can develop drugs, specific dietary plans, and potentially use genetic editing to improve speed, strength, agility, and endurance.

Source: Andrew Herr, CEO Helicase

In order to fully leverage the capability of human performance enhancement, Andrew Herr, CEO of Helicase and an Adjunct Fellow at CNAS, suggested that human performance R&D be moved out of the medical field and become its own research area due to its differing objectives and the convergence between varying technologies.

Soldiers, Airmen, Marines, and Sailors are already trying to enhance themselves with commercial products – often containing unknown or unsafe ingredients – so it is incumbent on the U.S. military to, at the very least, help those who want to improve.

However, a host of new vulnerabilities, at the genetic level, accompany this revolutionary leap in human evolution. If one can map the human genome and more thoroughly scan and understand the brain, they can target genomes and brains in the same ways. Soldiers could become incredibly vulnerable at the genomic level, forcing the Army to not only protect Soldiers using body armor and armored vehicles, but also protect their identities, genomes, and physiologies.

Adversaries will exploit all biological enhancements to gain competitive advantage over U.S. forces. Targeted genome editing technology such as CRISPR will enable adversarial threats to employ super-empowered Soldiers on the battlefield and target specific populations with bioweapons. U.S. adversaries may use technologies recklessly to achieve short term gains with no consideration of long range effects. [4] [5]

There are numerous ethical questions that come with the enhancement of Soldiers such as the moral acceptability of the Army making permanent enhancements to Soldiers, the responsibility for returning transitioning Soldiers to a “baseline human,” and the general definition of what a “baseline human” is legally defined as.

Transhumanism H+ symbol by Antonu / Source:  https://commons.wikimedia.org/wiki/File:Transhumanism_h%2B.svg

By altering, enhancing, and augmenting the biology of the human Soldier, the United States Army will potentially enter into uncharted ethical territory. Instead of issuing items to Soldiers to complement their physical and cognitive assets, by 2050, the U.S. Army may have the will and the means to issue them increased biological abilities in those areas. The future implications and the limits or thresholds for enhancement have not yet been considered. The military is already willing to correct the vision of certain members – laser eye surgery, for example – a practice that could be accurately referred to as human enhancement, so discretely defining where the threshold lies will be important. It is already known that other countries, and possible adversaries, are willing to cross the line where we are not. Russia, most recently, was banned from competition in the 2018 Winter Olympics for widespread performance-enhancing drug violations that were believed to be supported by the Russian Government. [6] Those drugs violate the spirit of competition in the Olympics, but no such spirit exists in warfare.

Another consideration is whether or not the Soldier enhancements are permanent. By enhancing Soldiers’ faculties, the Army is, in fact, enhancing their lethality or their ability to defeat the enemy. What happens with these enhancements—whether the Army can or should remove them— when a Soldier leaves the Army is an open question. As stated previously, the Army is willing and able to improve eyesight, but does not revert that eyesight back to its original state after the individual has separated. Some possible moral questions surrounding Soldier enhancement include:

• If the Army were to increase a Soldier’s stamina, visual acuity, resistance to disease, and pain tolerance, making them a more lethal warfighter, is it incumbent upon the Army to remove those enhancements?

• If the Soldier later used those enhancements in civilian life for nefarious purposes, would the Army be responsible?

Answers to these legal questions are beyond the scope of this paper, but can be considered now before the advent of these new technologies becomes widespread.

Image by Leonardo da Vinci / Source: Flickr

If the Army decides to reverse certain Soldier enhancements, it likely will need to determine the definition of a “baseline human.” This would establish norms for features, traits, and abilities that can be permanently enhanced and which must be removed before leaving service. This would undoubtedly involve both legal and moral challenges.

 

The complete Mad Scientist Bio Convergence and Soldier 2050 Final Report can be read here.

To learn more about the ramifications of Soldier enhancement, please go to:

– Dr. Amy Kruse’s Human 2.0 podcast, hosted by our colleagues at Modern War Institute.

– The Ethics and the Future of War panel discussion, facilitated by LTG Jim Dubik (USA-Ret.) from Day 2 (26 July 2017) of the Mad Scientist Visualizing Multi Domain Battle in 2030-2050 Conference at Georgetown University.


[1] Ahmad, Zarah and Stephanie Larson, “The DNA Utility in Military Environments,” slide 5, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018.
[2] Kruse, Amy, “Human 2.0 Upgrading Human Performance,” Slide 12, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018
[3]https://www.frontiersin.org/articles/10.3389/fnhum.2016.00034/full
[4] https://www.technologyreview.com/the-download/610034/china-is-already-gene-editing-a-lot-of-humans/
[5] https://www.c4isrnet.com/unmanned/2018/05/07/russia-confirms-its-armed-robot-tank-was-in-syria/
[6] https://www.washingtonpost.com/sports/russia-banned-from-2018-olympics-following-doping-allegations/2017/12/05/9ab49790-d9d4-11e7-b859-fb0995360725_story.html?noredirect=on&utm_term=.d12db68f42d1

68. Bio Convergence and Soldier 2050 Conference Final Report

[Editor’s Note: The U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Bio Convergence and Soldier 2050 Conference with SRI International on 8–9 March 2018 at their Menlo Park campus in California. This conference explored bio convergence, what the Army’s Soldier of 2050 will look like, and how they will interact and integrate with their equipment. The following post is an excerpt from this conference’s final report.]

Source: U.S. Army photo by SPC Joshua P. Morris

While the technology and concepts defining warfare have continuously and rapidly transformed, the primary actor in warfare – the human – has remained largely unchanged. Soldiers today may be physically larger, more thoroughly trained, and better equipped than their historical counterparts, but their capability and performance abilities remain very similar.

These limitations in human performance, however, may change over the next 30 years, as advances in biotechnology and human performance likely will expand the boundaries of what is possible for humans to achieve. We may see Soldiers – not just their equipment – with superior vision, enhanced cognitive abilities, disease/virus resistance, and increased strength, speed, agility, and endurance. As a result, these advances could provide the Soldier with an edge to survive and thrive on the hyperactive, constantly changing, and increasingly lethal Multi-Domain Battlespace.

Source: The Guardian and Lynsey Irvine/Getty

In addition to potentially changing the individual physiology and abilities of the future Soldier, there are many technological innovations on the horizon that will impact human performance. The convergence of these technologies – artificial intelligence (AI), robotics, augmented reality, brain-machine interface, nanotechnologies, and biological and medical improvements to the human – is referred to as bio convergence. Soldiers of the future will have enhanced capabilities due to technologies that will be installed, instilled, and augmented. This convergence will also make the Army come to terms on what kinds of bio-converged technologies will be accepted in new recruits.

The conference generated the following key findings:

Source: RodMartin.org

• The broad advancement of biotechnologies will provide wide access to dangerous and powerful bioweapons and human enhancements. The low cost and low expertise entry point into gene editing, human performance enhancement, and bioweapon production has spurred a string of new explorations into this arena by countries with large defense budgets (e.g.,  China), non-state criminal and terrorist organizations (e.g., ISIS), and even super-empowered individuals willing to subject their bodies to experimental and risky treatments.

Source: Shutterstock

• Emerging synthetic biology tools (e.g., CRISPR, Talon, and ZFN) present an opportunity to engineer Soldiers’ DNA and enhance their performance, providing  greater  speed, strength, endurance, and resilience.  These tools, however, will also create new vulnerabilities, such as genomic targeting, that can be exploited by an adversary and/or potentially harm the individual undergoing enhancement.  Bioengineering is becoming easier and cheaper as a bevy of developments are reducing biotechnology transaction costs in gene reading, writing, and editing.  Due to the ever-increasing speed and lethality of the future battlefield, combatants will need cognitive and physical enhancement to survive and thrive.

Source: Getty Images

• Ensuring that our land forces are ready to meet future challenges requires optimizing biotechnology and neuroscience advancements.  Designer viruses and diseases will be highly volatile, mutative, and extremely personalized, potentially challenging an already stressed Army medical response system and its countermeasures.  Synthetic biology provides numerous applications that will bridge capability gaps and enable future forces to fight effectively. Future synthetic biology defense applications are numerous and range from sensing capabilities to rapidly developed vaccines and therapeutics.

Source: Rockwell Collins / Aviation Week

• Private industry and academia have become the driving force behind innovation. While there are some benefits to this – such as shorter development times – there are also risks. For example, investments in industry are mainly driven by market demand which can lead to a lack of investment in areas that are vital to National Defense but have low to no consumer demand. In academia, a majority of graduate students in STEM fields are foreign nationals, comprising over 80% of electrical and petroleum engineering programs. The U.S. will need to find a way to maintain its technological superiority even when most of the expertise eventually leaves the country.

Source: World Health Organization

• The advent of new biotechnologies will give rise to moral, regulatory, and legal challenges for the Army of the Future, its business practices, recruiting requirements, Soldier standards, and structure. The rate of technology development in the synthetic biology field is increasing rapidly. Private individuals or small start-ups with minimal capital can create a new organism for which there is no current countermeasure and the development of one will likely take years. This potentiality leads to the dilemma of swiftly creating effective policy and regulation that addresses these concerns, while not stifling creativity and productivity in the field for those conducting legitimate research. Current regulation may not be sufficient, and bureaucratic inflexibility prevents quick reactive and proactive change. Our adversaries may not move as readily to adopt harsher regulations in the bio-technology arena. Rather than focusing on short-term solutions, it may be beneficial to take a holistic approach centered in a world where bio-technology is interacting with everyday life. The U.S. may have to work from a relative “disadvantage,” using safe and legal methods of enhancement, while our adversaries may choose to operate below our defined legal threshold.

Bio Convergence is incredibly important to the Army of the Future because the future Soldier is the Bio. The Warrior of tomorrow’s Army will be given more responsibility, will be asked to do more, will be required to be more capable, and will face more challenges and complexities than ever before. These Soldiers must be able to quickly adapt, change, connect to and disconnect from a multitude of networks – digital and otherwise – all while carrying out multiple mission-sets in an increasingly disrupted, degraded, and arduous environment marred with distorted reality, information warfare, and attacks of a personalized nature.

For additional information regarding this conference:

• Review the Lessons Learned from the Bio Convergence and Soldier 2050 Conference preliminary assessment.

• Read the entire Mad Scientist Bio Convergence and Soldier 2050 Conference Final Report.

• Watch the conference’s video presentations.

• See the associated presentations’ briefing slides.

• Check out the associated “Call for Ideas” writing contest finalist submissions, hosted by our colleagues at Small Wars Journal.

 

36. Lessons Learned from the Bio Convergence and Soldier 2050 Conference

(Editor’s Note: Mad Scientist successfully facilitated the Bio Convergence and Soldier 2050 Conference on 8-9 March 2018 with our co-sponsor, SRI International, at their Silicon Valley campus in Menlo Park, California. With over 400 live and virtual participants, our first West Coast conference brought together World class expertise in biology and the tech convergences that will have a significant impact on the changing character of future conflict.)

Bioengineering is becoming easier and cheaper as a suite of developments are reducing biotechnology transaction costs in gene reading, writing, and editing. The Internet of Living Things (IoLT), operating across space and time, and the integration of bioengineering tools (e.g., Genome editing tools such as CRISPR, Talon, ZFN; molecular printers; and robotic strain engineering platforms), big data, high-powered computing, and artificial intelligence are facilitating this revolution. The resultant explosion in knowledge regarding the human body and the brain offers phenomenal opportunities to improve Soldier lethality and survivability. This will be accomplished through improved cognitive and physical skills, as well as maintaining the critical role of human judgement with the ever increasing machine speed we will find on the future battlefield.

1) Prototyping: Innovation has shifted from government demand signals and funding to the incredibly fast paced innovation in the private sector. Emerging products that enhance physical (e.g., Exoskeletons) and cognitive abilities (e.g., Pharmaceuticals) are almost entirely in the commercial sector. The military must determine what is applicable to warfighting and integrate from the commercial space to the defense sector. Prototyping and experimentation will be critical.

2) Personalized Warfare: The mapping of the human genome and the ongoing Human Brain Project offer unprecedented advances in medicine and the neurosciences, but also major vulnerabilities to Soldiers and the homeland. With advanced biological technology evolution comes a host of moral challenges, security vulnerabilities, and new threat vectors. In the future, protecting one’s genomic information will require safeguards similar to how we currently protect our digital identities. We will be more vulnerable to advanced bioweapons and information warfare available to states and non-state organizations.

3) Customization: Advances in biology offer much greater customization in medicine which could improve how quickly our Soldiers learn and how they handle stress and anxiety associated with combat zones. Human 2.0 will have direct Warfighter applications, providing Soldiers with sensory enhancements, human-machine teaming, brains plugged into the Internet of Battle Things (IoBT), and uploadable / downloadable memories. Customization of battlefield medical care will be enabled by advanced diagnostics worn by Soldiers (uniforms and equipment) and eventually embedded. In other countries, we can expect to see the customization of humans with genome editing children to increase height, improve intelligence, and expand creativity.

4) Competition: The democratization of this technology cannot be understated. We will compete with states, non-state groups, and super-empowered individuals who will have access to a full range of human enhancement capabilities and genetic editing tools. China is at parity with the US in this space, but more willing to take technologies to clinical trials.

5) Ethics: The full range of bio tools will be available in the US. They will initially be approved because of their disease curing properties and the ability to improve quality of life for an aging population. They will then be normed into our population. We can expect to see a Soldier enter a recruiting station after some kind of physical enhancement in the next decade, if not sooner. In the Deep Future, the concept of personhood will be challenged.

Mad Scientist is producing a range of products to transfer what we learned from the Bio Convergence and Soldier 2050 Conference out to the Army. We will have videos of the conference presentations posted online here within 10 days, as well as several podcasts posted at Modern War Institute, starting on 28 March 2018. The Bio Convergence and Soldier 2050 Conference Final Report will be posted here within 45 days.

Note that the associated SciTech Futures Bio Convergence Game remains open until 16 March 2018 — share your ideas on-line about the future, collaborate with (and challenge) other players, and bid on the most compelling concepts in this online marketplace.

Read our Mad Scientist Soldier 2050 Call for Ideas finalists’ submissions here, graciously hosted by our colleagues at Small Wars Journal.