89. “The Queue”

[Editor’s Note:  Mad Scientist Laboratory is pleased to present our September edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the past month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

 

1. Can you tell a fake video from a real one? and How hard is it to make a believable deepfake? by Tim Leslie, Nathan Hoad, and Ben Spraggon, Australian Broadcast Corporation (ABC) News, 26 and 27 September 2018, respectively.

and

Deep Video Portraits by Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias Nießner, Patrick Perez, Christian Richardt, Michael Zollhöfer, and Christian Theobalt, YouTube, 17 May 2018.

Mad Scientist has previously sounded the alarm regarding the advent and potential impact of “DeepFakes” – deceptive files created using artificial neural networks and graphics processors that yield nearly undetectably fake imagery and videos. When distributed via Social Media, these files have the potential to “go viral” — duping, deceiving, and manipulating whole populations of viewers.

ABC’s first news piece provides several video samples, enabling you to test your skills in trying to detect which of the videos provided are real or fake. ABC then goes on to warn that “We are careening toward an infocalypse,” where we may soon find ourselves in living in “A world without truth”.

Source: ABC News

In their second piece, ABC delves into the step-by-step mechanics of how DeepFakes are created, using former Australian PM Malcolm Turnbull as a use case, and posits placing this fabricated imagery into different, possibly compromising, scenes, manipulating reality for a credulous public.

The Deep Video Portraits YouTube video (snippets of which were used to illustrate both of the aforementioned ABC news pieces) was presented at the Generations SIGGRAPH conference, convened in Vancouver, BC, on 12-16 August 2018. In conjunction with the ABC articles, the combined narration and video in Deep Video Portraits provide a comprehensive primer on how photo realistic, yet completely synthetic (i.e., fictional) re-animations can be accomplished using source and target videos.

Source: Deep Video Portraits – SIGGRAPH 2018 via YouTube /
Christian Theobalt

When combined with the ubiquity of Social Media, these public domain AI algorithms (e.g., FakeApp, DerpFakes, DeepFakes) are democratizing an incredibly disruptive capability. The U.S. must develop and implement means (e.g., education) to “inoculate” its citizenry and mitigate this potentially devastating Gray Zone weapon.

Attacking an adversary’s most important center of gravity — the spirit of its people — no longer requires massive bombing runs or reams of propaganda. All it takes is a smartphone and a few idle seconds. And anyone can do it.” — P.W. Singer and Emerson T. Brooking in LikeWar – The Weaponization of Social Media

 

2.The first “social network” of brains lets three people transmit thoughts to each other’s heads,” by Emerging Technology from the arXiv, MIT Technology Review, 29 September 2018.

In 2015, scientists at University of Washington in Seattle connected two people via a brain to brain interface. The connected individuals were able to play a 20 questions game. Now these scientists have announced the first group brain to brain network. They call the network the “BrainNet” and the individuals were able to play a collaborative Tetris-like game.

Source: BrainNet: A Multi-Person Brain-to-Brain Interface for
Direct Collaboration Between Brains / https://arxiv.org/pdf/1809.08632.pdf

To date, our future operational environment has described the exploding Internet of Things and even the emerging concept of an Internet of Battle Things. The common idea here is connecting things – sensors, weapons, and AI to a human in the or on the loop. The idea of adding the brain to this network opens incredible opportunities and vulnerabilities. We should start asking ourselves questions about this idea: 1) Could humans control connected sensors and weapons with thought alone, 2) Could this be a form of secure communications in the future, and 3) Could the brain be hacked and what vulnerabilities does this add? (Read Battle of the Brain) There are many more questions, but for now maybe we should broaden our ideas about connectivity to the Internet of Everything and Everyone.

 

3.Scientists get funding to grow neural networks in petri dishes,” Lehigh University, 14 September 2018.

An overview of running image recognition on living neuron testbed / Source: Xiaochen Guo / Lehigh University

The future of computing may not necessarily be silicon or quantum-based — it may be biological! The National Science Foundation (NSF) recently awarded an interdisciplinary team of biologists and computer engineers $500,000. This is in support of Understanding the Brain and the BRAIN Initiative, a coordinated research effort that seeks to accelerate the development of new neurotechnologies. The intent is to help computer engineers develop new ways to think about the design of solid state machines, and may influence other brain-related research using optogenetics, a biological technique that uses light to control cells —  “spike train stimuli” — similar to a two-dimensional bar code. The encoding of the spike train will then be optically applied to a group of networked in vitro neurons with optogenetic labels. This hybrid project could lead to a better understanding of how organic computers and brains function.  This suggests a radically different vision of future computing where, potentially, everything from buildings to computers could be grown in much the same way that we “grow” plants or animals today.

 

4.These “Robotic Skins” Turn Everyday Objects into Robots,” by Rachael Lallensack, Smithsonian.com, 19 September 2018, reviewed by Ms. Marie Murphy.

Source: Yale via Smithsonian.com

A team of roboticists out of Yale University published a report announcing the development of OmniSkins, pliable material with embedded sensors that can animate ordinary, inert objects. OmniSkins turn ordinary objects into robots on contact. These removable sheets can be reused and reconfigured for a variety of functions, from making foam tubes crawl like worms to creating a device which can grab and hold onto objects out of static foam arms. Initially developed for NASA, demonstrations reveal that OmniSkins can make a stuffed animal walk when wrapped around its legs and correct the posture of a person when embedded in their shirt. While these are fun examples, the realistic military applications are vast and varied. OmniSkins could represent a new development in performance-enhancing exoskeletons, enabling them to be lighter and more flexible. These sheets can turn ordinary objects into useful machines in a matter of minutes and can be modified with cameras or other sensors to fit the needs of the mission.

 

5.Movement-enhancing exoskeletons may impair decision making,” by Jennifer Chu,  MIT, 5 October 2018.

PowerWalk / Source: Bionic Power Inc. via MIT

Researchers from MIT have discovered that the use of exoskeletons to enhance speed, power, and endurance could have a negative effect on attention, decision-making, and cognition. The researchers found that 7 out of 12 subjects actually performed worse on cognitive tasks while wearing an exoskeleton through an obstacle course. The researchers tested them on several cognitive tasks from responding to visual signals to following their squad leader at a defined distance. They concluded that more than half of the subjects wearing the exoskeleton showed a marked decline in reaction time to the various tests. This presents an interesting challenge for technology developers. Does a positive solution in one area negatively affect another, seemingly unrelated, area? Would the subjects in the test have performed better if they had prolonged training with the exoskeletons as opposed to a few days? If so, this presents an additional burden and training demand on Soldiers and the Army. Will a trade study involving not just physical measures, but cognitive ones now need to be integrated into all new Army technology developments and what does this do to the development timeline?

 

6.Researchers Create “Spray On” 2-D Antennas,” by Michael Koziol, IEEE Spectrum, 21 September 2018.

Drexel’s MXene “Antenna Spray Paint” / Source: YouTube via IEEE Spectrum

Researchers from Drexel University have developed a novel solution to reducing the size and weight of traditional antennas. Using a metal like titanium or molybdenum, bonded with carbides or nitrides called MXene, they were able to produce a spray-on antenna solution. By dissolving the MXene in water, and using a commercial off-the-shelf spray gun, one can rapidly design, customize, and deploy a working antenna. The spray-on antenna is 100nm thick (versus a traditional copper antenna that is 3,000nm) and has a higher conductivity than carbon nanotubes – a previous solution to the small and thin antenna problem.  On a hyperactive battlefield where Soldiers may need on-demand solutions in a compressed timeline, MXene spray-on antennas may be a potential game changer. How much time, materials, and processing can be saved in an operational environment if a Soldier can quickly produce a low profile antenna to a custom specification? What does this mean for logistics if repair parts for antennas no longer need to be shipped from outside the theater of operations?

 

7.NASA’s Asteroid-Sampling Spacecraft Begins Its Science Work Today,” by Mike Wall, Space.com, 11 September 2018.

NASA Infographic on the OSIRIS-REx Mission / Source: https://www.space.com/11808-nasa-asteroid-mission-osiris-rex-1999-rq36-infographic.html

NASA’s OSIRIS-REx (short for Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer) spacecraft commenced studying near-Earth asteroid Bennu’s dust plumes from afar on 11 September 2018. Once the probe achieves orbit around the ~500m-wide space rock on 31 December 2018, it will further explore that body’s dust, dirt, and gravel. Then, in mid-2020, OSIRIS-REx will swoop down to the surface to collect and return a sample of material to Earth in a special return capsule. While this piece represents very cool extraterrestrial science, it is also significant for what it bodes for the future Operational Environment, Multi-Dimensional Operations in the Space Domain, and our newly established Space Force.

“The $800 million OSIRIS-REx mission will … contribute to planetary-defense efforts. For example, the probe’s observations should help researchers better understand the forces that shape potentially dangerous asteroids’ paths through space… (Bennu itself is potentially hazardous; there’s a very small chance that it could hit Earth in the late 22nd century.)”

OSIRIS-REx is not the only probe sampling asteroids – Japan’s Hayabus2 spacecraft is preparing to touch down on the asteroid Ryugu this month. NASA has estimated the total value of resources locked in asteroids is equivalent to $100 Billion for every man, woman, and child on Earth.

This century’s new space race to capitalize on and exploit our solar system’s heretofore untapped mineral wealth, while defending critical space assets, will demand that the U.S. budgets for, develops, and maintains future space-based capabilities (initially unmanned, but eventually manned, as required by mission) to protect and defend our national and industrial space interests.

 

8.Soldiers who obliterate enemy fighters with drones will be guided on the morality of their actions by specially trained army chaplains,” by Roy Tingle, Daily Mail Online, 25 September 2018.

Source: Defense Visual Information Distribution Service (DIVIDS)

In possibly an all-time record for the worst news article title, it has been revealed that the British Army is training ethicists to teach soldiers about the morality of killing with drones. Chaplains will spend one year studying and obtaining a Master’s degree in Ethics at Cardiff University so that they can instruct officers on the moral dilemmas involved in killing an enemy from thousands of miles away. Officials have long been concerned about the emotional trauma suffered by drone pilots, as well as the risk that they will be more likely to use deadly force if the confrontation is being played out on a computer screen. This is about the speed of future combat and the decisive action that will be needed on the battlefield in the future. War will remain a human endeavor, but our Soldiers will be stressed to exercise judgement and fight at the ever increasing machine speed. The Army must be prepared to enter new ethical territory and make difficult decisions about the creation and employment of cutting edge technologies. While the Army holds itself to a high ethical standard, new converging technologies may come at an ethical cost. Updating guidance, policy, and law must keep up with what is employed on the battlefield. Many of these ethical dilemmas and questions lack definite answers and are ethical considerations that most of our future adversaries are unlikely to consider.

If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at:  usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

65. “The Queue”

[Editor’s Note:  Now that another month has flown by, Mad Scientist Laboratory is pleased to present our June edition of “The Queue” – a monthly post listing the most compelling articles, books, podcasts, videos, and/or movies that the U.S. Army’s Training and Doctrine Command (TRADOC) Mad Scientist Initiative has come across during the past month. In this anthology, we address how each of these works either informs or challenges our understanding of the Future Operational Environment. We hope that you will add “The Queue” to your essential reading, listening, or watching each month!]

Source: KUO CHENG LIAO

1. Collaborative Intelligence: Humans and AI are Joining Forces, by H. James Wilson and Paul R. Daugherty, Harvard Business Review, July – August 2018.

 

Source: OpenAI

A Team of AI Algorithms just crushed Expert Humans in a Complex Computer Game, by Will Knight, MIT Technology Review, June 25, 2018.

I know — I cheated and gave you two articles to read. These “dueling” articles demonstrate the early state of our understanding of the role of humans in decision-making. The Harvard Business Review article describes findings where human – Artificial Intelligence (AI) partnerships take advantage of the leadership, teamwork, creativity, and social skills of humans with the speed, scalability, and quantitative capabilities of AI. This is basically the idea of “centaur” chess which has been prevalent in discussions of human and AI collaboration. Conversely, the MIT Technology Review article describes the ongoing work to build AI algorithms that are incentivized to collaborate with other AI teammates. Could it be that collaboration is not a uniquely human attribute? The ongoing work on integration of AI into the workforce and in support of CEO decision-making could inform the Army’s investment strategy for AI. Julianne Gallina, one of our proclaimed Mad Scientists, described a future where everyone would have an entourage and Commanders would have access to a “Patton in the Pocket.” How the human operates on or in the loop and how Commanders make decisions at machine speed will be informed by this research. In August, the Mad Scientist team will conduct a conference focused on Learning in 2050 to further explore the ideas of human and AI teaming with intelligent tutors and mentors.

Source: Doubleday

2. Origin: A Novel, by Dan Brown, Doubleday, October 3, 2017, reviewed by Ms. Marie Murphy.

Dan Brown’s famous symbologist Robert Langdon returns to avenge the murder of his friend, tech developer and futurist Edmund Kirsch. Killed in the middle of presenting what he advertised as a life-changing discovery, Langdon teams up with Kirsch’s most faithful companion, his AI assistant Winston, in order to release Edmund’s presentation to the public. Winston is able to access Kirsch’s entire network, give real-time directions, and make decisions based on ambiguous commands — all via Kirsch’s smartphone. However, this AI system doesn’t appear to know Kirsch’s personal password, and can only enable Langdon in his mission to find it. An omnipresent and portable assistant like Winston could greatly aid future warfighters and commanders. Having this scope of knowledge on command is beneficial, but future AI will be able to not only regurgitate data, but present the Soldier with courses of action analyses and decision options based on the data. Winston was also able to mimic emotion via machine learning, which can reduce Soldier stress levels and present information in a humanistic manner. Once an AI has been attached to a Soldier for a period of time, it can learn the particular preferences and habits of that Soldier, and make basic or routine decisions and assumptions for that individual, anticipating their needs, as Winston does for Kirsch and Langdon.

Source: Getty Images adapted by CNAS

3. Technology Roulette: Managing Loss of Control as Many Militaries Pursue Technological Superiority, by Richard Danzig, Center for a New American Security, 30 May 2018.

Mad Scientist Laboratory readers are already familiar with the expression, “warfare at machine speed.” As our adversaries close the technology gap and potentially overtake us in select areas, there is clearly a “need for speed.”

“… speed matters — in two distinct dimensions. First, autonomy can increase decision speed, enabling the U.S. to act inside an adversary’s operations cycle. Secondly, ongoing rapid transition of autonomy into warfighting capabilities is vital if the U.S. is to sustain military advantage.” — Defense Science Board (DSB) Report on Autonomy, June 2016 (p. 3).

In his monograph, however, author and former Clinton Administration Secretary of the Navy Richard Danzig contends that “superiority is not synonymous with security;” citing the technological proliferation that almost inevitably follows technological innovations and the associated risks of unintended consequences resulting from the loss of control of military technologies. Contending that speed is a form of technological roulette, former Secretary Danzig proposes a control methodology of five initiatives to help mitigate the associated risks posed by disruptive technologies, and calls for increased multilateral planning with both our allies and opponents. Unfortunately, as with the doomsday scenario played out in Nevil Shute’s novel On the Beach, it is “… the little ones, the Irresponsibles…” that have propagated much of the world’s misery in the decades following the end of the Cold War. It is the specter of these Irresponsible nations, along with non-state actors and Super-Empowered Individuals, experimenting with and potentially unleashing disruptive technologies, who will not be contained by any non-proliferation protocols or controls. Indeed, neither will our near-peer adversaries, if these technologies promise to offer a revolutionary, albeit fleeting, Offset capability.

U.S. Vice Chairman of the Joint Chiefs of Staff Air Force Gen. Paul Selva, Source: Alex Wong/Getty Images

4. The US made the wrong bet on radiofrequency, and now it could pay the price, by Aaron Metha, C4ISRNET, 21 Jun 2018.

This article illustrates how the Pentagon’s faith in its own technology drove the Department of Defense to trust it would maintain dominance over the electromagnetic spectrum for years to come.  That decision left the United States vulnerable to new leaps in technology made by our near-peers. GEN Paul Selva, Vice Chairman of the Joint Chiefs of Staff, has concluded that the Pentagon must now keep up with near-peer nations and reestablish our dominance of electronic warfare and networking (spoiler alert – we are not!).  This is an example of a pink flamingo (a known, known), as we know our near-peers have surpassed us in technological dominance in some cases.  In looking at technological forecasts for the next decade, we must ensure that the U.S. is making the right investments in Science and Technology to keep up with our near-peers. This article demonstrates that timely and decisive policy-making will be paramount in keeping up with our adversaries in the fast changing and agile Operational Environment.

Source: MIT CSAIL

5. MIT Device Uses WiFi to ‘See’ Through Walls and Track Your Movements, by Kaleigh Rogers, MOTHERBOARD, 13 June 2018.

Researchers at MIT have discovered a way to “see” people through walls by tracking WiFi signals that bounce off of their bodies. Previously, the technology limited fidelity to “blobs” behind a wall, essentially telling you that someone was present but no indication of behavior. The breakthrough is using a trained neural network to identify the bouncing signals and compare those with the shape of the human skeleton. This is significant because it could give an added degree of specificity to first responders or fire teams clearing rooms. The ability to determine if an individual on the other side of the wall is potentially hostile and holding a weapon or a non-combatant holding a cellphone could be the difference between life and death. This also brings up questions about countermeasures. WiFi signals are seemingly everywhere and, with this technology, could prove to be a large signature emitter. Will future forces need to incorporate uniforms or materials that absorb these waves or scatter them in a way that distorts them?

Source: John T. Consoli / University of Maryland

6. People recall information better through virtual reality, says new UMD study, University of Maryland, EurekaAlert, 13 June 2018.

A study performed by the University of Maryland determined that people will recall information better when seeing it first in a 3D virtual environment, as opposed to a 2D desktop or mobile screen. The Virtual Reality (VR) system takes advantage of what’s called “spatial mnemonic encoding” which allows the brain to not only remember something visually, but assign it a place in three-dimensional space which helps with retention and recall. This technique could accelerate learning and enhance retention when we train our Soldiers and Leaders. As the VR hardware becomes smaller, lighter, and more affordable, custom mission sets, or the skills necessary to accomplish them, could be learned on-the-fly, in theater in a compressed timeline. This also allows for education to be distributed and networked globally without the need for a traditional classroom.

Source: Potomac Books

7. Strategy Strikes Back: How Star Wars Explains Modern Military Conflict, edited by Max Brooks, John Amble, ML Cavanaugh, and Jaym Gates; Foreword by GEN Stanley McChrystal, Potomac Books, May 1, 2018.

This book is fascinating for two reasons:  1) It utilizes one of the greatest science fiction series (almost a genre unto itself) in order to brilliantly illustrate some military strategy concepts and 2) It is chock full of Mad Scientists as contributors. One of the editors, John Amble, is a permanent Mad Scientist team member, while another, Max Brooks, author of World War Z, and contributor, August Cole, are officially proclaimed Mad Scientists.

The book takes a number of scenes and key battles in Star Wars and uses historical analogies to help present complex issues like civil-military command structure, counterinsurgency pitfalls, force structuring, and battlefield movement and maneuver.

One of the more interesting portions of the book is the concept of ‘droid armies vs. clone soldiers and the juxtaposition of that with the future testing of manned-unmanned teaming (MUM-T) concepts. There are parallels in how we think about what machines can and can’t do and how they think and learn.

 
If you read, watch, or listen to something this month that you think has the potential to inform or challenge our understanding of the Future Operational Environment, please forward it (along with a brief description of why its potential ramifications are noteworthy to the greater Mad Scientist Community of Action) to our attention at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil — we may select it for inclusion in our next edition of “The Queue”!

45. Envisioning Future Operational Environment Possibilities through Story Telling

“The only way of discovering the limits of the possible is to venture a little way past them, into the impossible.” — Sir Arthur C. Clarke, 20th Century British science fiction writer, futurist, and inventor








In envisioning Future Operational Environment possibilities, the Mad Scientist Initiative employs the following techniques:

Crowdsourcing: Gathering ideas, thoughts, and concepts from a wide variety of interested individuals assists us in diversifying thoughts and challenging conventional assumptions

Edge Cases: Examining what is at the extreme possible regarding new and emerging technologies allows us to contextualize the future

Historical Analogy: Comparing past events to current and future possibilities allows us to imagine the transformational and sometimes radical changes the Army of the Future may experience

Story Telling: Creative fictional writing and narrative building that helps us explore how technologies are employed and operationalized

While each of these techniques have their own unique merits, Mad Scientist has found that Story Telling serves us especially well in facilitating the exploration of future possibilities. As Mr. Peter David addresses in his Small Wars Journal article entitled “Science Fiction vs. Science Funding: Comparing What We Imagine to What We Invent,” well-written science fiction provides us with more than just a litany of speculative scientific and technological advances. It takes these advances and wickers them seamlessly within an engaging plot. Characters actually employ these advances, enabling us to visualize their effects on both the individual and society as a whole.

In November 2016, Mad Scientist launched its first Science Fiction Writing Competition with the topic “Warfare in 2030 to 2050.” We sought out unconventional thinkers and solicited their unique perspectives — we were not disappointed! With over 150 submissions from authors in 10 different countries around the globe, the diversity of input provided us with a wide variety of thoughts and ideas about warfare and the Future Operational Environment. Through the art of Story Telling, the Army was able to visualize the known, probable, and possible challenges and opportunities that the future holds.

Mad Scientist singled out Mr. Mathison Hall‘s short story entitled “Patrolling the Infosphere” for recognition at our Mad Scientist Visualizing Multi Domain Battle 2030-2050 Conference, co-sponsored by Georgetown University in Washington, D.C., on 25-26 July 2017. The following is an excerpt from his winning submission:

I step into my exoskeleton, my link-suit hooking into the inside of the exoskel. “All systems charged and functional. Left knee joint operating at partial strength, but combat ready,” the exoskel’s voice calmly reports. They hit my knee hard three patrols ago. The contractor jury-rigged it to function…partially. I can still run up to forty-miles-an-hour and jump to the third floor windows, but the outside of the joint started vibrating and pulling oddly to the right on patrol this morning. It’ll be fun trying to hoof it in a one-hundred and fifty-five pound exoskel plus another sixty pounds of gear, weapons, and ammo with my own knee power on the left side if that thing gives out.

Angels, let’s go, I think to myself. My two synched drones lift off the charging shelf and lock into my exoskel’s shoulders. The suit hums softly and each step clinks lightly as I line up with the rest of the squad for our final pre-combat checks.

Staff Sergeant Nguyen’s exoskel head turns and looks over us. I can see her face through the clear polymer face shield. She has a sly smile. I’ve got to hand it to her, she loves patrolling.

“Second squad online and ready,” her voice projects over our intercoms.

“Copy second squad. We have a good synch here in the company operations center. Information operations and intel are both online and monitoring. Your Cyber Force bubbas are up and running ready to save your hides. Air Force drones are airborne and you’ve got priority of fires from one Navy railgun. No news feeds right now. There’s at least one Russian cube-sat up there watching our sector, but it’s not projecting over any social media yet. We’ve let Fort Meade know, and they should have it down soon. Tell us when you’re ready to step and we’ll start chatting.”

That’s my drinking buddy, Coder Second Class Hawkins, for you. He never passes up a chance to say in fifty words what can be said in ten. Makes him a good drinking buddy, especially when he gets going. I like to give him crap for being the only Cyber Force hacker deployed in our sector. His whole service spends most of their careers stateside. But no one doubts that they’re the main effort.

Chatting…damn. He and his reach-back squad in Maryland are going to start lighting up the news feeds and social media soon. Lucia’s going to be pissed. I bet she’s watching right now from Fayetteville. Let’s see, how many hours ahead of the East Coast are we? Five? She probably hasn’t left for work at the intel fusion cell on base yet. Probably at home getting Cindy ready for school and watching #DCo3dBCT82ndAirborne right now, monitoring the Russian cube-sat feed and our chatter at the same time. I bet Fort Meade gets the cube-sat down right about the time we’re wrapping up our patrol, as usual.

“Second squad ready to step.” Staff Sergeant Nguyen.

“Copy, second squad. The public affairs specialist is up and transmitting. We’ve got a foothold into the local internet exchange point, and we’ve got good visual on the whole town from the drones. No abnormal activity. Go ahead and step.”

We leave the tent, the nine of us stepping into the scorching sunlight as two Chinese field hackers march across the courtyard in their suits. Their suits’ exoskels look suspiciously like ours…same design and functions and almost the same weapons systems. Suits look a little sleeker and newer; less used. Two headless mules, our ammo, water, and gear resupply drones, fall in behind us, their legs moving rhythmically and spider-like as their LIDAR sensors navigate the terrain in front of them and keep them locked on to us 20 yards to our rear. They follow us like four-legged mechanical spiders, crawling across the dusty, crumbling streets between our company’s firm base and the center of town…


Video envisioning the world described in Mr. Mathison Hall’s “Patrolling the Infosphere.”

You can read the rest of Mr. Hall’s winning entry, as well as 22 other submissions from this contest at Science Fiction: Visioning the Future of Warfare 2030-2050.

Watch Mr. Hall’s presentation entitled “Patrolling the Infosphere” at the Mad Scientist Visualizing Multi Domain Battle 2030-2050 Conference.

Mad Scientist Laboratory has also explored the benefits of Story Telling in the televisual arts in Dr. Peter Emanuel’s guest blog post.

Harvard Business Review and MIT Technology Review have both realized the merits of Science Fiction; as Mr. Eliot Peper notes in his article in HBR:

“Exploring fictional futures frees our thinking from false constraints. It challenges us to wonder whether we’re even asking the right questions. It forces us to recognize that sometimes imagination is more important than analysis.”

For additional examples of how Story Telling provides us with provocative and unique insights into future possibilities regarding warfare and the Future Operational Environment, read the finalists from our recent Soldier 2050 Call for Ideas, hosted by our colleagues at Small Wars Journal.