90. “The Tenth Man” — War’s Changing Nature in an AI World

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish yet another in our series of “The Tenth Man” posts (read our previous posts here and here). This Devil’s Advocate or contrarian approach serves as a form of alternative analysis and is a check against group think and mirror imaging.  The Mad Scientist Laboratory offers it as a platform for the contrarians in our network to share their alternative perspectives and analyses regarding the Future Operational Environment. Today’s post is by guest blogger Dr. Peter Layton, challenging the commonly held belief of the persistent and abiding nature of war.]

There’s a debate underway about the nature of war. Some say it’s immutable, others say hogwash; ironically both sides quote Clausewitz for support.[i] Interestingly, Secretary of Defense Mattis, once an ‘immutable’ defender, has now declared he’s not sure anymore, given recent Artificial intelligence (AI) developments.[ii]

 

At the core of the immutable case is the belief that war has always been violent, chaotic, destructive, and murderous – and will thus always be so. Buried within this is the view that wars are won by infantry occupying territory; as Admiral Wylie opined “the ultimate determinant in war is a man on the scene with a gun.”[iii] It is the clash of infantry forces that is decisive, with both sides experiencing the deadly violence of war in a manner that would have been comprehendible by Athenian hoplites 2,500 years ago.

Technology though really has changed this. Firstly, the lethality of modern weapons has emptied out the battlefield.[iv] What can be ‘seen’ by sensors of diverse types can be targeted by increasingly precise direct and indirect fires. The Russo-Ukraine war in the Donbas hints that in future wars between state-based military forces, tactical units will need to remain unseen to survive and that they will now ‘occupy’ territory principally through long-range firepower.[v] Secondly, Phillip Meilinger makes a strong case that drone crews firing missiles at insurgents from 3,000 miles away or navies blockading countries and staving their people into submission do not experience war the same as those hoplite infantry did years ago.[vi] The experience of violence in some wars has become one-sided, while wars are now increasingly waged against civilians well behind any defensive front lines.

Source: Griffith Asia Institute

AI may deepen both trends. AI has the potential to sharply enhance the defense continuing to empty out the battlefield, turning it into a no-man’s zone where automated systems and semi-autonomous devices wage attrition warfare.[vii]   If both sides have intelligent machines, war may become simply a case of machines being violent to other machines. In a re-run of World War One, strategic stalemate would seem the likely outcome with neither side able to win meaningful battlefield victories.[viii]

If so, the second aspect of war’s changing nature comes into play. If a nation’s borders cannot be penetrated and its critical centers of gravity attacked using kinetic means, perhaps non-kinetic means are the offensive style of the future.  Indeed, World War One’s battlefield stalemate was resolved as the naval blockade caused significant civilian starvation and the collapse of the homefront.

The application of information warfare by strategic competitors against the US political system hints at new cyber techniques that AI may greatly enhance.[ix] Instead of destroying another’s capabilities and national infrastructures, they might be exploited and used as bearers to spread confusion and dissent amongst the populace. In this century, starvation may not be necessary to collapse the homefront; AI may offer more efficacious methods. War may no longer be violent and murderous but it may still be as Clausewitz wrote a “true political instrument.”[x] Secretary Mattis may be right; perhaps war’s nature is not immutable but rather ripe for our disruption and innovation.

If you enjoyed this guest post, please also read proclaimed Mad Scientist Dr. Lydia Kostopoulos’ paper addressing this topic, entitled War is Having an Identity Crisis, hosted by our colleagues at Small Wars Journal.

Dr. Peter Layton is a Visiting Fellow at the Griffith Asia Institute, Griffith University. A former RAAF Group Captain, he has extensive defense experience, including in the Pentagon and at National Defense University. He holds a doctorate in grand strategy. He is the author of the book ‘Grand Strategy.’

 


[i] For the immutable, see Rob Taber (2018), Character vs. Nature of Warfare: What We Can Learn (Again) from Clausewitz, Mad Scientist Laboratory, 27 August 2018.  For the mutable, see Phillip S. Meilinger (2010), The Mutable Nature of War, Air & Space Power Journal, Winter 2010, pp 25-28. For Clausewitz (both sides), see Dr. A.J. Echevarria II (2012), Clausewitz and Contemporary War: The Debate over War’s Nature, 2nd Annual Terrorism & Global Security Conference 2012.

[ii] Aaron Mehta (2018), AI makes Mattis question ‘fundamental’ beliefs about war, C4ISRNET, 17 February 2018.

[iii] J.C. Wylie (1967), Military Strategy: A General Theory of Power Control, New Brunswick, Rutgers University Press, p. 85.

[iv] James J Schneider (1987), The theory of the empty battlefield, The RUSI Journal, Vol. 132, Issue 3, pp. 37-44.

[v] Brandon Morgan (2018), Artillery in Tomorrow’s Battlefield: Maximizing the Power of the King of Battle, Modern War Institute, 25 September 2018.

[vi] The Mutable Nature of War: The Author Replies, Air & Space Power Journal, Summer 2011, pp 21-22.  And also: Phillip S. Meilinger (2010), The Mutable Nature of War, Air & Space Power Journal, Winter 2010, pp 25-28.

[vii] Peter Layton (2018), Our New Model Robot Armies, Small Wars Journal, 7 August 2018.

[viii] Peter Layton (2018), Algorithm Warfare: Applying Artificial Intelligence to Warfighting, Canberra: Air Power Development Centre, pp. 31-32.

[ix] Renee Diresta (2018), The Information War Is On. Are We Ready For It? , Wired, 3 August.

[x] Carl Von Clausewitz, On War, Edited and Translated by Michael Howard and Peter Paret (1984), Princeton: Princeton University Press, p.87.

88. Biostorm: A Story of Future War

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the following excerpt from Anthony DeCapite‘s short story of the same title.  This story was written, based on ideas developed in the SciTech Futures Technology Foresight Game:  Bio Convergence and the Soldier of 2050.  This game was conducted by the University of Southern California’s Institute for Creative Technologies, and supported by the SciTech Futures Technology Effort under the Office of the Deputy Assistant Secretary of the Army (Research & Technology). The views and opinions of authors expressed herein do not necessarily state or reflect official views or policies of the United States Army.]

THE YEAR IS 2042…

The US and its remaining NATO allies are engaged in a limited war with the Mektigfolk, an ultra-nationalist techno-state that emerged from northern Europe during the reactionary upheavals that swept the continent in 2026.

The US has deployed a Joint Task Force to protect crucial rare-earth mining operations on a vast ice sheet in the Barents Sea.

Captain Steven Park and his infantry company, of the 10th Mountain Division, must protect an engineering detachment that will build a Combat Outpost around the Strand, a deep-sea mining facility.

Art Credit:  Daniel Brewer

It was good to be outside the wire. As Alpha Company commander, Captain Steven Park had been stuck within the confines of FOB Nordau for weeks while his Platoon Leaders got to go tramping around the ice shelf, conducting recon and planting sensors.

Not today. Nordau was 150 klicks behind them. Park had his company in a wedge formation, protecting the elements of 7th Engineer Battalion that followed them in a column. Their mission: to provide security for 7th Engineers while they built a Combat Outpost at their destination, a mining facility known as the Strand.

The Strand perched on the edge of the shelf, overlooking the Barents Sea. Right in the Mektig’s backyard. Beneath the facility was a treasure trove of a Rare Earth Element crucial in military guidance-and-control systems. With China throttling the global REE market, securing viable sources had become a NATO priority. [i]

Park couldn’t care less about REEs. He had trained host nation security forces and got in firefights with irregular fighters, but he had never faced a near-peer threat before. America had not done so in almost a century. Park was eager to prove his company was up to the task.

The long distance and extreme cold of the mission meant that every one of his Soldiers was packed in a Stryker, JLTV, or mounted on a snowmobile. The boys and girls of the 7th filled bulldozers, heavy equipment transports, and cargo trucks. From the view of their ISR quadcopter drone – the ‘Buzzard’ – the mass of vehicles looked like a deformed caterpillar inching across a white desert.

Park had shunned his JLTV seat and chosen a snowmobile, wanting to brave the same cold that his rifle squads faced here at the head of the caterpillar. There had been no sign of enemies for the entire movement, though their Buzzard, with its array of sensors, had detected a group of sea lions two klicks from the right flank. The latest intel said the nearest Mektig unit was 200 klicks southeast, moving to fortify Franz Josef.

“Six, this is One-Six.” Lieutenant Rowe, leader of First Platoon, was on the hook for him. “Buzzard’s detecting multiple objects descending toward us. Got the Javelins on it.”

“Copy.” Park switched to the formation-wide channel: “Company, prepare for air-to-surface attack.”

The formation dispersed and exposed Soldiers piled into skinned vehicles. Park jumped off his snowmobile and SPC Logan helped him into a Stryker.

Art Credit:  Scott Carter

Park turned on the Augmented Reality display built into his HUD goggles, and a Picture-In-Picture materialized in the top right corner of his vision. It showed a computerized dome view of the airspace over their formation, with metadata: 24 spherical objects dropping like stones. [ii]
Park switched to optical view and zoomed in – softball-sized aluminum bomblets.

“Incoming!” The shout was repeated over the hook and echoed across the icy landscape.

Pff-pff-pff! Instead of exploding, the bomblets impacted in the snow. Then, there was a hiss, and green-brown mist erupted from the bomblets, enveloping the entire formation.

Shouts of “Gas-gas-gas!” crackled over the hook and Park’s Soldiers took out and put on their gas masks. Park tightened the straps on his own, securing it. Still, his nostrils filled with a rotten egg smell. Park felt no effects, and the bio-feedback readout in his HUD showed his Soldiers breathing normally. It wasn’t a chemical attack, at least not the kind Park feared.

First, 7th Engineer’s dozer ground to a halt in the ice. Then, the Stryker he was in stopped.

“Keep moving. We need to clear this gas.” Park ordered.

“It’s not me, sir! The engine died.” The driver replied.

Park heard a squeal of brakes, then there was a horrendous crunch of metal as something slammed into them, knocking Park’s helmeted head into SPC Logan’s.

Park used his AR PIP to get the bird’s eye view. A heavy equipment transport had slammed into his Stryker, and all around, vehicles were slipping and sliding to a stop.

“That gas attack disabled all the vehicles!”

“Prepare for contact,” Park said.

Moments later, the pops of small-arms fire fulfilled his prophecy, echoing from the rear.

“Contact rear!” In his HUD’s PIP, Park saw a platoon-sized element of dismounted Mektig fighters firing on the rear of his formation. Park ran out of the immobilized Stryker.

“Defensive formation! 3rd and 4th squad, on me!” Park said, and led them against the ambushers, using vehicles as cover. At this point, that was all they were good for.

Shoof! An enemy RPG hit a JLTV, sending hot metal skittering across the ice.

He heard the hollow pings of rounds hitting a Stryker, and the shouts of “Contact!” that followed, but the sounds came from the front of the formation. The Mektigs had them in a pincer attack.

Bastards came here to wipe us out, Park thought, but kept that bitter realization from the hook.

“Focus fire missions on lead element attackers. We’re closer to the objective than to Nordau. We gotta break through,” he ordered.

Park tried to hail FOB Nordau for a QRF and MEDEVAC, but could not get through. He tried to call for air support next, and again could not get through. The enemy was jamming them – all they had was the company frequency, and that was crackling with casualty reports from his PLs.

An RPG exploded a few yards from Park, lifting a snowmobile off the ground and ripping Sergeant Jones apart.

 

 

Jones. It hit Park like a punch in the gut, a sickening jolt that threatened to overwhelm him.

Smoke, steam, and the green-brown mist obscured the area.

Park tapped his HUD for the Buzzard’s view, activating multispectral imaging in the AR view, allowing him to see everything on the battlefield, through haze and ice and flesh.

SGT Meadows, in the Stryker Fire Support Vehicle, beat Park to the punch, designating a target that appeared instantly in every Soldier’s AR HUD, and another team in a Stryker mortar carrier launched three rounds in swift succession, pounding the attackers at the front end. SGT Meadows designated another target, and mortar rounds, grenades, and .50 caliber bullets ripped into that arm of the pincer. Then, in concert with his AR-enabled Soldiers, Park pushed back the other arm of the pincer, the attackers at the rear. There was no time to waste, and he got on the hook with his leaders:

“Account for your team, give me SITREPS, and get ready to double time to the objective.”

If you enjoyed this excerpt, Mr. DeCapite‘s full length article may be read at SciTech Futures, or at Small Wars Journal.

Also see Mr. Frank Prautzsch‘s guest blog post, Our Arctic—The World’s Pink Flamingo and Black Swan Bird Sanctuary, addressing the coming competition for Arctic resources.

The SciTech Futures Technology Foresight Game: Bio Convergence and the Soldier of 2050 was facilitated in conjunction with the Mad Scientist Bio Convergence and Soldier 2050 Conference, co-sponsored by SRI International at their campus at Menlo Park CA, on 8-9 March 2018.  Read this Conference’s final report here, including Annex 3 documenting the comprehensive results of the SciTech Futures Technology Foresight Game.

Click here to learn more about USC ICT’s SciTech Futures Technology Effort and engage with their next Technology Foresight exercise.

Anthony DeCapite is a writer and creative content manager at USC ICT. He served in the Marine Corps as a Combat Videographer and Video Chief, and was honorably discharged as a Sergeant (E-5). A graduate of USC’s Writing for Screen and Television Program, he uses his Marine Corps experiences and creative chops to write and produce compelling experiences.


ANNOTATED ENDNOTES

[i] Beneath the facility was a treasure trove of a Rare Earth Element… With China throttling the global REE market, securing viable sources had become a NATO priority.

Rare Earth Minerals: Developing a Comprehensive Approach Could Help DOD Better Manage National Security Risks in the Supply Chain,” GAO-16-161, Government Accountability Office Report, February 2016.

China can’t control the market in rare earth elements because they aren’t all that rare,” James Vincent, The Verge, April 27, 2018, accessed July 12, 2018.

As of this writing, China produces approximately 90 percent of the world’s supply of rare earth minerals. Rare earth elements are “easy to find” but “difficult to produce” (Vincent). This story posits a future in which the viable veins of certain REEs are scarce, a reasonable projection given the ever-growing global demand for new electronic devices.

[ii] Park turned on the Augmented Reality display built into his HUD goggles, and a Picture-In-Picture materialized in the top right corner of his vision.

SciTech Futures Technology Foresight Game: Bio convergence and the Soldier of 2050,” Office of the Deputy Assistant Secretary of the Army (Research and Technology), June 11-16, 2018, accessed July 12, 2018.

In the SciTech Futures Technology Foresight Game, players were asked to invest virtual money “on behalf of” the U.S. Army, potential future adversaries, and society at large. Augmented Reality / Virtual Reality was a Top 10 idea by investment for the US Army. The player who submitted the idea, ghorstkj, noted that AR/VR needs to be a in the hands of Soldiers for maximum utility, instead of simply being fielded in a Tactical Operations Center or remaining highly developed in the commercial space.

Sydney J Freedberg Jr. “HUD 3.0: Army to test Augmented Reality for Infantry in 18 Months,” Breaking Defense, March 29, 2018, accessed July 12, 2018.

The US Army is developing AR-enabled HUDs for Infantry Soldiers as of this writing.

87. LikeWar — The Weaponization of Social Media

[Editor’s Note: Regular readers will note that one of our enduring themes is the Internet’s emergence as a central disruptive innovation. With the publication of proclaimed Mad Scientist P.W. Singer and co-author Emerson T. Brooking’s LikeWar – The Weaponization of Social Media, Mad Scientist Laboratory addresses what is arguably the most powerful manifestation of the internet — Social Media — and how it is inextricably linked to the future of warfare. Messrs. Singer and Brooking’s new book is essential reading if today’s Leaders (both in and out of uniform) are to understand, defend against, and ultimately wield the non-kinetic, yet violently manipulative effects of Social Media.]

“The modern internet is not just a network, but an ecosystem of 4 billion souls…. Those who can manipulate this swirling tide, steer its direction and flow, can…. accomplish astonishing evil. They can foment violence, stoke hate, sow falsehoods, incite wars, and even erode the pillars of democracy itself.”

As noted in The Operational Environment and the Changing Character of Future Warfare, Social Media and the Internet of Things have spawned a revolution that has connected “all aspects of human engagement where cognition, ideas, and perceptions, are almost instantaneously available.” While this connectivity has been a powerfully beneficial global change agent, it has also amplified human foibles and biases. Authors Singer and Brookings note that humans by nature are social creatures that tend to gravitate into like-minded groups. We “Like” and share things online that resonate with our own beliefs. We also tend to believe what resonates with us and our community of friends.

Whether the cause is dangerous (support for a terrorist group), mundane (support for a political party), or inane (belief that the earth is flat), social media guarantees that you can find others who share your views and even be steered to them by the platforms’ own algorithms… As groups of like-minded people clump together, they grow to resemble fanatical tribes, trapped in echo chambers of their own design.”

Weaponization of Information

The advent of Social Media less than 20 years ago has changed how we wage war.

Attacking an adversary’s most important center of gravity — the spirit of its people — no longer requires massive bombing runs or reams of propaganda. All it takes is a smartphone and a few idle seconds. And anyone can do it.”

Nation states and non-state actors alike are leveraging social media to manipulate like-minded populations’ cognitive biases to influence the dynamics of conflict. This continuous on-line fight for your mind represents “not a single information war but thousands and potentially millions of them.”

 

LikeWar provides a host of examples describing how contemporary belligerents are weaponizing Social Media to augment their operations in the physical domain. Regarding the battle to defeat ISIS and re-take Mosul, authors Singer and Brookings note that:

Social media had changed not just the message, but the dynamics of conflict. How information was being accessed, manipulated, and spread had taken on new power. Who was involved in the fight, where they were located, and even how they achieved victory had been twisted and transformed. Indeed, if what was online could swing the course of a battle — or eliminate the need for battle entirely — what, exactly, could be considered ‘war’ at all?

Even American gang members are entering the fray as super-empowered individuals, leveraging social media to instigate killings via “Facebook drilling” in Chicago or “wallbanging” in Los Angeles.

And it is only “a handful of Silicon Valley engineers,” with their brother and sister technocrats in Beijing, St. Petersburg, and a few other global hubs of Twenty-first Century innovation that are forging and then unleashing the code that is democratizing this virtual warfare.

Artificial Intelligence (AI)-Enabled Information Operations

Seeing is believing, right? Not anymore! Previously clumsy efforts to photo-shop images and fabricate grainy videos and poorly executed CGI have given way to sophisticated Deepfakes, using AI algorithms to create nearly undetectable fake images, videos, and audio tracks that then go viral on-line to dupe, deceive, and manipulate. This year, FakeApp was launched as free software, enabling anyone with an artificial neural network and a graphics processor to create and share bogus videos via Social Media. Each Deepfake video that:

“… you watch, like, or share represents a tiny ripple on the information battlefield, privileging one side at the expense of others. Your online attention and actions are thus both targets and ammunition in an unending series of skirmishes.”

Just as AI is facilitating these distortions in reality, the race is on to harness AI to detect and delete these fakes and prevent “the end of truth.”

If you enjoyed this post:

– Listen to the accompanying playlist composed by P.W. Singer while reading LikeWar.

– Watch P.W. Singer’s presentation on Meta Trends – Technology, and a New Kind of Race from Day 2 of the Mad Scientist Strategic Security Environment in 2025 and Beyond Conference at Georgetown University, 9 August 2016.

– Read more about virtual warfare in the following Mad Scientist Laboratory blog posts:

— MAJ Chris Telley’s Influence at Machine Speed: The Coming of AI-Powered Propaganda

— COL(R) Stefan J. Banach’s Virtual War – A Revolution in Human Affairs (Parts I and II)

— Mad Scientist Intiative’s Personalized Warfare

— Ms. Marie Murphy’s Virtual Nations: An Emerging Supranational Cyber Trend

— Lt Col Jennifer Snow’s Alternet: What Happens When the Internet is No Longer Trusted?

85. Benefits, Vulnerabilities, and the Ethics of Soldier Enhancement

[Editor’s Note: The United States Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Bio Convergence and Soldier 2050 Conference with SRI International at their Menlo Park, CA, campus on 8-9 March 2018, where participants discussed the advent of new biotechnologies and the associated benefits, vulnerabilities, and ethics associated with Soldier enhancement for the Army of the Future.  The following post is an excerpt from this conference’s final report.]

Source:  Max Pixel

Advances in synthetic biology likely will enhance future Soldier performance – speed, strength, endurance, and resilience – but will bring with it vulnerabilities, such as genomic targeting, that can be exploited by an adversary and/or potentially harm the individual undergoing the enhancement.

 

Emerging synthetic biology tools – e.g., CRISPR, Talon, and ZFN – present an opportunity to engineer Soldiers’ DNA and enhance their abilities. Bioengineering is becoming easier and cheaper as a bevy of developments are reducing biotechnology transaction costs in gene reading, writing, and editing. [1] Due to the ever-increasing speed and lethality of the future battlefield, combatants will need cognitive and physical enhancement to survive and thrive.

Cognitive enhancement could make Soldiers more lethal, more decisive, and perhaps more resilient. Using neurofeedback, a process that allows a user to see their brain activity in real-time, one can identify ideal brain states, and use them to enhance an individual’s mental performance. Through the mapping and presentation of identified expert brains, novices can rapidly improve their acuity after just a few training sessions. [2] Further, there are studies being conducted that explore the possibility of directly emulating those expert brain states with non-invasive EEG caps that could improve performance almost immediately. [3]  Dr. Amy Kruse, the Chief Scientific Officer at the Platypus Institute, referred to this phenomenon as “sitting on a gold mine of brains.”

There is also the potential to change and improve Soldier’s physical attributes. Scientists can develop drugs, specific dietary plans, and potentially use genetic editing to improve speed, strength, agility, and endurance.

Source: Andrew Herr, CEO Helicase

In order to fully leverage the capability of human performance enhancement, Andrew Herr, CEO of Helicase and an Adjunct Fellow at CNAS, suggested that human performance R&D be moved out of the medical field and become its own research area due to its differing objectives and the convergence between varying technologies.

Soldiers, Airmen, Marines, and Sailors are already trying to enhance themselves with commercial products – often containing unknown or unsafe ingredients – so it is incumbent on the U.S. military to, at the very least, help those who want to improve.

However, a host of new vulnerabilities, at the genetic level, accompany this revolutionary leap in human evolution. If one can map the human genome and more thoroughly scan and understand the brain, they can target genomes and brains in the same ways. Soldiers could become incredibly vulnerable at the genomic level, forcing the Army to not only protect Soldiers using body armor and armored vehicles, but also protect their identities, genomes, and physiologies.

Adversaries will exploit all biological enhancements to gain competitive advantage over U.S. forces. Targeted genome editing technology such as CRISPR will enable adversarial threats to employ super-empowered Soldiers on the battlefield and target specific populations with bioweapons. U.S. adversaries may use technologies recklessly to achieve short term gains with no consideration of long range effects. [4] [5]

There are numerous ethical questions that come with the enhancement of Soldiers such as the moral acceptability of the Army making permanent enhancements to Soldiers, the responsibility for returning transitioning Soldiers to a “baseline human,” and the general definition of what a “baseline human” is legally defined as.

Transhumanism H+ symbol by Antonu / Source:  https://commons.wikimedia.org/wiki/File:Transhumanism_h%2B.svg

By altering, enhancing, and augmenting the biology of the human Soldier, the United States Army will potentially enter into uncharted ethical territory. Instead of issuing items to Soldiers to complement their physical and cognitive assets, by 2050, the U.S. Army may have the will and the means to issue them increased biological abilities in those areas. The future implications and the limits or thresholds for enhancement have not yet been considered. The military is already willing to correct the vision of certain members – laser eye surgery, for example – a practice that could be accurately referred to as human enhancement, so discretely defining where the threshold lies will be important. It is already known that other countries, and possible adversaries, are willing to cross the line where we are not. Russia, most recently, was banned from competition in the 2018 Winter Olympics for widespread performance-enhancing drug violations that were believed to be supported by the Russian Government. [6] Those drugs violate the spirit of competition in the Olympics, but no such spirit exists in warfare.

Another consideration is whether or not the Soldier enhancements are permanent. By enhancing Soldiers’ faculties, the Army is, in fact, enhancing their lethality or their ability to defeat the enemy. What happens with these enhancements—whether the Army can or should remove them— when a Soldier leaves the Army is an open question. As stated previously, the Army is willing and able to improve eyesight, but does not revert that eyesight back to its original state after the individual has separated. Some possible moral questions surrounding Soldier enhancement include:

• If the Army were to increase a Soldier’s stamina, visual acuity, resistance to disease, and pain tolerance, making them a more lethal warfighter, is it incumbent upon the Army to remove those enhancements?

• If the Soldier later used those enhancements in civilian life for nefarious purposes, would the Army be responsible?

Answers to these legal questions are beyond the scope of this paper, but can be considered now before the advent of these new technologies becomes widespread.

Image by Leonardo da Vinci / Source: Flickr

If the Army decides to reverse certain Soldier enhancements, it likely will need to determine the definition of a “baseline human.” This would establish norms for features, traits, and abilities that can be permanently enhanced and which must be removed before leaving service. This would undoubtedly involve both legal and moral challenges.

 

The complete Mad Scientist Bio Convergence and Soldier 2050 Final Report can be read here.

To learn more about the ramifications of Soldier enhancement, please go to:

– Dr. Amy Kruse’s Human 2.0 podcast, hosted by our colleagues at Modern War Institute.

– The Ethics and the Future of War panel discussion, facilitated by LTG Jim Dubik (USA-Ret.) from Day 2 (26 July 2017) of the Mad Scientist Visualizing Multi Domain Battle in 2030-2050 Conference at Georgetown University.


[1] Ahmad, Zarah and Stephanie Larson, “The DNA Utility in Military Environments,” slide 5, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018.
[2] Kruse, Amy, “Human 2.0 Upgrading Human Performance,” Slide 12, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018
[3]https://www.frontiersin.org/articles/10.3389/fnhum.2016.00034/full
[4] https://www.technologyreview.com/the-download/610034/china-is-already-gene-editing-a-lot-of-humans/
[5] https://www.c4isrnet.com/unmanned/2018/05/07/russia-confirms-its-armed-robot-tank-was-in-syria/
[6] https://www.washingtonpost.com/sports/russia-banned-from-2018-olympics-following-doping-allegations/2017/12/05/9ab49790-d9d4-11e7-b859-fb0995360725_story.html?noredirect=on&utm_term=.d12db68f42d1

82. Bias and Machine Learning

[Editor’s Note:  Today’s post poses four central questions to our Mad Scientist community of action regarding bias in machine learning and the associated ramifications for artificial intelligence, autonomy, lethality, and decision-making on future warfighting.]

We thought that we had the answers, it was the questions we had wrong” – Bono, U2

Source: www.vpnsrus.com via flickr

As machine learning and deep learning algorithms become more commonplace, it is clear that the utopian ideal of a bias-neutral Artificial Intelligence (AI) is exactly just that. These algorithms have underlying biases embedded in their coding, imparted by their human programmers (either consciously or unconsciously). These algorithms can develop further biases during the machine learning and training process.  Dr. Tolga Bolukbasi, Boston University, recently described algorithms as not being capable of distinguishing right from wrong, unlike humans that can judge their actions, even when they act against ethical norms. For algorithms, data is the ultimate determining factor.

Realizing that algorithms supporting future Intelligence, Surveillance, and Reconnaissance (ISR) networks and Commander’s decision support aids will have inherent biases — what is the impact on future warfighting? This question is exceptionally relevant as Soldiers and Leaders consider the influence of biases in man-machine relationships, and their potential ramifications on the battlefield, especially with regard to the rules of engagement (i.e., mission execution and combat efficiency versus the proportional use of force and minimizing civilian casualties and collateral damage).

It is difficult to make predictions, particularly about the future.” This quote has been attributed to anyone ranging from Mark Twain to Niels Bohr to Yogi Berra. Point prediction is a sucker’s bet. However, asking the right questions about biases in AI is incredibly important.

The Mad Scientist Initiative has developed a series of questions to help frame the discussion regarding what biases we are willing to accept and in what cases they will be acceptable. Feel free to share your observations and questions in the comments section of this blog post (below) or email them to us at:  usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil.

1) What types of bias are we willing to accept? Will a so-called cognitive bias that forgoes a logical, deliberative process be allowable? What about a programming bias that is discriminative towards any specific gender(s), ethnicity(ies), race(s), or even age(s)?

2) In what types of systems will we accept biases? Will machine learning applications in supposedly non-lethal warfighting functions like sustainment, protection, and intelligence be given more leeway with regards to bias?

3) Will the biases in machine learning programming and algorithms be more apparent and/or outweigh the inherent biases of humans-in-the-loop? How will perceived biases affect trust and reliance on machine learning applications?

4) At what point will the pace of innovation and introduction of this technology on the battlefield by our adversaries cause us to forego concerns of bias and rapidly field systems to gain a decisive Observe, Orient, Decide, and Act (OODA) loop and combat speed advantage on the Hyperactive Battlefield?

For additional information impacting on this important discussion, please see the following:

An Appropriate Level of Trust… blog post

Ethical Dilemmas of Future Warfare blog post

Ethics and the Future of War panel discussion video

81. “Maddest” Guest Blogger!

[Editor’s Note: Since its inception last November, the Mad Scientist Laboratory has enabled us to expand our reach and engage global innovators from across industry, academia, and the Government regarding emergent disruptive technologies and their individual and convergent impacts on the future of warfare. For perspective, our blog has accrued almost 60K views by over 30K visitors from around the world!

Our Mad Scientist Community of Action continues to grow — in no small part due to the many guest bloggers who have shared their provocative, insightful, and occasionally disturbing visions of the future. Almost half (36 out of 81) of the blog posts published have been submitted by guest bloggers. We challenge you to contribute your ideas!

In particular, we would like to recognize Mad Scientist Mr. Sam Bendett by re-posting his submission entitled “Russian Ground Battlefield Robots: A Candid Evaluation and Ways Forward,” originally published on 25 June 2018. This post generated a record number of visits and views during the past six month period. Consequently, we hereby declare Sam to be the Mad Scientist Laboratory’s “Maddest” Guest Blogger! for the latter half of FY18. In recognition of his achievement, Sam will receive much coveted Mad Scientist swag.

While Sam’s post revealed the many challenges Russia has experienced in combat testing the Uran-9 Unmanned Ground Vehicle (UGV) in Syria, it is important to note that Russia has designed, prototyped,  developed, and operationally tested this system in a combat environment, demonstrating a disciplined and proactive approach to innovation.  Russia is learning how to integrate robotic lethal ground combat systems….

Enjoy re-visiting Sam’s informative post below, noting that many of the embedded links are best accessed using non-DoD networks.]

Russia’s Forpost UAV (licensed copy of IAI Searcher II) in Khmeimim, Syria; Source: https://t.co/PcNgJ811O8

Russia, like many other nations, is investing in the development of various unmanned military systems. The Russian defense establishment sees such systems as mission multipliers, highlighting two major advantages: saving soldiers’ lives and making military missions more effective. In this context, Russian developments are similar to those taking place around the world. Various militaries are fielding unmanned systems for surveillance, intelligence, logistics, or attack missions to make their forces or campaigns more effective. In fact, the Russian military has been successfully using Unmanned Aerial Vehicles (UAVs) in training and combat since 2013. It has used them with great effect in Syria, where these UAVs flew more mission hours than manned aircraft in various Intelligence, Surveillance, and Reconnaissance (ISR) roles.

Russia is also busy designing and testing many unmanned maritime and ground vehicles for various missions with diverse payloads. To underscore the significance of this emerging technology for the nation’s armed forces, Russian Defense Minister Sergei Shoigu recently stated that the serial production of ground combat robots for the military “may start already this year.”

Uran-9 combat UGV at Victory Day 2018 Parade in Red Square; Source: independent.co.uk

But before we see swarms of ground combat robots with red stars emblazoned on them, the Russian military will put these weapons through rigorous testing in order to determine if they can correspond to battlefield realities. Russian military manufacturers and contractors are not that different from their American counterparts in sometimes talking up the capabilities of their creations, seeking to create the demand for their newest achievement before there is proof that such technology can stand up to harsh battlefield conditions. It is for this reason that the Russian Ministry of Defense (MOD) finally established several centers such as Main Research and Testing Center of Robotics, tasked with working alongside the defense-industrial sector to create unmanned military technology standards and better communicate warfighters’ needs.  The MOD is also running conferences such as the annual “Robotization of the Armed Forces” that bring together military and industry decision-makers for a better dialogue on the development, growth, and evolution of the nation’s unmanned military systems.

Uran-9 Combat UGV, Source: nationalinterest.org

This brings us to one of the more interesting developments in Russian UGVs. Then Russian Deputy Defense Minister Borisov recently confirmed that the Uran-9 combat UGV was tested in Syria, which would be the first time this much-discussed system was put into combat. This particular UGV is supposed to operate in teams of three or four and is armed with a 30mm cannon and 7.62 mm machine guns, along with a variety of other weapons.

Just as importantly, it was designed to operate at a distance of up to three kilometers (3000 meters or about two miles) from its operator — a range that could be extended up to six kilometers for a team of these UGVs. This range is absolutely crucial for these machines, which must be operated remotely. Russian designers are developing operational electronics capable of rendering the Uran-9 more autonomous, thereby moving the operators to a safer distance from actual combat engagement. The size of a small tank, the Uran-9 impressed the international military community when first unveiled and it was definitely designed to survive battlefield realities….

Uran-9; Source: Defence-Blog.com

However, just as “no plan survives first contact with the enemy,” the Uran-9, though built to withstand punishment, came up short in its first trial run in Syria. In a candid admission, Andrei P. Anisimov, Senior Research Officer at the 3rd Central Research Institute of the Ministry of Defense, reported on the Uran-9’s critical combat deficiencies during the 10th All-Russian Scientific Conference entitled “Actual Problems of Defense and Security,” held in April 2018. In particular, the following issues came to light during testing:

• Instead of its intended range of several kilometers, the Uran-9 could only be operated at distance of “300-500 meters among low-rise buildings,” wiping out up to nine-tenths of its total operational range.

• There were “17 cases of short-term (up to one minute) and two cases of long-term (up to 1.5 hours) loss of Uran-9 control” recorded, which rendered this UGV practically useless on the battlefield.

• The UGV’s running gear had problems – there were issues with supporting and guiding rollers, as well as suspension springs.

• The electro-optic stations allowed for reconnaissance and identification of potential targets at a range of no more than two kilometers.

• The OCH-4 optical system did not allow for adequate detection of adversary’s optical and targeting devices and created multiple interferences in the test range’s ground and airspace.

Uran-9 undergoing testing; Source: YouTube

• Unstable operation of the UGV’s 30mm automatic cannon was recorded, with firing delays and failures. Moreover, the UGV could fire only when stationary, which basically wiped out its very purpose of combat “vehicle.”

• The Uran-9’s combat, ISR, and targeting weapons and mechanisms were also not stabilized.

On one hand, these many failures are a sign that this much–discussed and much-advertised machine is in need of significant upgrades, testing, and perhaps even a redesign before it gets put into another combat situation. The Russian military did say that it tested nearly 200 types of weapons in Syria, so putting the Uran-9 through its combat paces was a logical step in the long development of this particular UGV. If the Syrian trial was the first of its kind for this UGV, such significant technical glitches would not be surprising.

However, the MOD has been testing this Uran-9 for a while now, showing videos of this machine at a testing range, presumably in Russia. The truly unexpected issue arising during operations in Syria had to do with the failure of the Uran-9 to effectively engage targets with its cannon while in motion (along with a number of other issues). Still, perhaps many observers bought into the idea that this vehicle would perform as built – tracks, weapons, and all. A closer examination of the publicly-released testing video probably foretold some of the Syrian glitches – in this particular one, Uran-9 is shown firing its machine guns while moving, but its cannon was fired only when the vehicle was stationary. Another interesting aspect that is significant in hindsight is that the testing range in the video was a relatively open space – a large field with a few obstacles around, not the kind of complex terrain, dense urban environment encountered in Syria. While today’s and future battlefields will range greatly from open spaces to megacities, a vehicle like the Uran-9 would probably be expected to perform in all conditions. Unless, of course, Syrian tests would effectively limit its use in future combat.

Russian Soratnik UGV

On another hand, so many failures at once point to much larger issues with the Russian development of combat UGVs, issues that Anisimov also discussed during his presentation. He highlighted the following technological aspects that are ubiquitous worldwide at this point in the global development of similar unmanned systems:

• Low level of current UGV autonomy;

• Low level of automation of command and control processes of UGV management, including repairs and maintenance;

• Low communication range, and;

• Problems associated with “friend or foe” target identification.

Judging from the Uran-9’s Syrian test, Anisimov made the following key conclusions which point to the potential trajectory of Russian combat UGV development – assuming that other unmanned systems may have similar issues when placed in a simulated (or real) combat environment:

• These types of UGVs are equipped with a variety of cameras and sensors — and since the operator is presumably located a safe distance from combat, he may have problems understanding, processing, and effectively responding to what is taking place with this UGV in real-time.

• For the next 10-15 years, unmanned military systems will be unable to effectively take part in combat, with Russians proposing to use them in storming stationary and well-defended targets (effectively giving such combat UGVs a kamikaze role).

• One-time and preferably stationary use of these UGVs would be more effective, with maintenance and repair crews close by.

• These UGVs should be used with other military formations in order to target and destroy fortified and firing enemy positions — but never on their own, since their breakdown would negatively impact the military mission.

The presentation proposed that some of the above-mentioned problems could be overcome by domestic developments in the following UGV technology and equipment areas:

• Creating secure communication channels;

• Building miniaturized hi-tech navigation systems with a high degree of autonomy, capable of operating with a loss of satellite navigation systems;

• Developing miniaturized and effective ISR components;

• Integrating automated command and control systems, and;

• Better optics, electronics and data processing systems.

According to Anisimov’s report, the overall Russian UGV and unmanned military systems development arch is similar to the one proposed by the United States Army Capabilities Integration Center (ARCIC):  the gradual development of systems capable of more autonomy on the battlefield, leading to “smart” robots capable of forming “mobile networks” and operating in swarm configurations. Such systems should be “multifunctional” and capable of being integrated into existing armed forces formations for various combat missions, as well as operate autonomously when needed. Finally, each military robot should be able to function within existing and future military technology and systems.

Source: rusmilitary.wordpress.com

Such a candid review and critique of the Uran-9 in Syria, if true, may point to the Russian Ministry of Defense’s attitude towards its domestic manufacturers. The potential combat effectiveness of this UGV was advertised for the past two years, but its actual performance fell far short of expectations. It is a sign for developers of other Russian unmanned ground vehicles – like Soratnik, Vihr, and Nerehta — since it displays the full range of deficiencies that take place outside of well-managed testing ranges where such vehicles are currently undergoing evaluation. It also brought to light significant problems with ISR equipment — this type of technology is absolutely crucial to any unmanned system’s successful deployment, and its failures during Uran-9 tests exposed a serious combat weakness.

It is also a useful lesson for many other designers of domestic combat UGVs who are seeking to introduce similar systems into existing order of battle. It appears that the Uran-9’s full effectiveness can only be determined at a much later time if it can perform its mission autonomously in the rapidly-changing and complex battlefield environment. Fully autonomous operation so far eludes its Russian developers, who are nonetheless still working towards achieving such operational goals for their combat UGVs. Moreover, Russian deliberations on using their existing combat UGV platforms in one-time attack mode against fortified adversary positions or firing points, tracking closely with ways that Western military analysts are thinking that such weapons could be used in combat.

Source: Nikolai Novichkov / Orbis Defense

The Uran-9 is still a test bed and much has to take place before it could be successfully integrated into current Russian concept of operations. We could expect more eye-opening “lessons learned” from its and other UGVs potential deployment in combat. Given the rapid proliferation of unmanned and autonomous technology, we are already in the midst of a new arms race. Many states are now designing, building, exporting, or importing various technologies for their military and security forces.

To make matters more interesting, the Russians have been public with both their statements about new technology being tested and evaluated, and with the possible use of such weapons in current and future conflicts. There should be no strategic or tactical surprise when military robotics are finally encountered in future combat.

Source: Block13
by djahal; Diviantart.com

For another perspective on Russian military innovation, please read Mr. Ray Finch’s guest post The Tenth Man” — Russia’s Era Military Innovation Technopark.

Samuel Bendett is a Research Analyst at the CNA Corporation and a Russia Studies Fellow at the American Foreign Policy Council. He is an official Mad Scientist, having presented and been so proclaimed at a previous Mad Scientist Conference.  The views expressed here are his own.

79. Character vs. Nature of Warfare: What We Can Learn (Again) from Clausewitz

[Editor’s Note: Mad Scientist Laboratory is pleased to present the following post by guest blogger LTC Rob Taber, U.S. Army Training and Doctrine Command (TRADOC) G-2 Futures Directorate, clarifying the often confused character and nature of warfare, and addressing their respective mutability.]

No one is arguing that warfare is not changing. Where people disagree, however, is whether the nature of warfare, the character of warfare, or both are changing.

Source:  Office of the Director of National Intelligence

Take, for example, the National Intelligence Council’s assertion in “Global Trends: Paradox of Progress.” They state, “The nature of conflict is changing. The risk of conflict will increase due to diverging interests among major powers, an expanding terror threat, continued instability in weak states, and the spread of lethal, disruptive technologies. Disrupting societies will become more common, with long-range precision weapons, cyber, and robotic systems to target infrastructure from afar, and more accessible technology to create weapons of mass destruction.”[I]

Additionally, Brad D. Williams, in an introduction to an interview he conducted with Amir Husain, asserts, “Generals and military theorists have sought to characterize the nature of war for millennia, and for long periods of time, warfare doesn’t dramatically change. But, occasionally, new methods for conducting war cause a fundamental reconsideration of its very nature and implications.”[II] Williams then cites “cavalry, the rifled musket and Blitzkrieg as three historical examples”[III] from Husain and General John R. Allen’s (ret.) article, “On Hyperwar.”

Unfortunately, the NIC and Mr. Williams miss the reality that the nature of war is not changing, and it is unlikely to ever change. While these authors may have simply interchanged “nature” when they meant “character,” it is important to be clear on the difference between the two and the implications for the military. To put it more succinctly, words have meaning.

The nature of something is the basic make up of that thing. It is, at core, what that “thing” is. The character of something is the combination of all the different parts and pieces that make up that thing. In the context of warfare, it is useful to ask every doctrine writer’s personal hero, Carl Von Clausewitz, what his views are on the matter.

Source: Tetsell’s Blog. https://tetsell.wordpress.com/2014/10/13/clausewitz/

He argues that war is “subjective,”[IV]an act of policy,”[V] and “a pulsation of violence.”[VI] Put another way, the nature of war is chaotic, inherently political, and violent. Clausewitz then states that despite war’s “colorful resemblance to a game of chance, all the vicissitudes of its passion, courage, imagination, and enthusiasm it includes are merely its special characteristics.”[VII] In other words, all changes in warfare are those smaller pieces that evolve and interact to make up the character of war.

The argument that artificial intelligence (AI) and other technologies will enable military commanders to have “a qualitatively unsurpassed level of situational awareness and understanding heretofore unavailable to strategic commander[s][VIII] is a grand claim, but one that has been made many times in the past, and remains unfulfilled. The chaos of war, its fog, friction, and chance will likely never be deciphered, regardless of what technology we throw at it. While it is certain that AI-enabled technologies will be able to gather, assess, and deliver heretofore unimaginable amounts of data, these technologies will remain vulnerable to age-old practices of denial, deception, and camouflage.

 

The enemy gets a vote, and in this case, the enemy also gets to play with their AI-enabled technologies that are doing their best to provide decision advantage over us. The information sphere in war will be more cluttered and more confusing than ever.

Regardless of the tools of warfare, be they robotic, autonomous, and/or AI-enabled, they remain tools. And while they will be the primary tools of the warfighter, the decision to enable the warfighter to employ those tools will, more often than not, come from political leaders bent on achieving a certain goal with military force.

Drone Wars are Coming / Source: USNI Proceedings, July 2017, Vol. 143 / 7 /  1,373

Finally, the violence of warfare will not change. Certainly robotics and autonomy will enable machines that can think and operate without humans in the loop. Imagine the future in which the unmanned bomber gets blown out of the sky by the AI-enabled directed energy integrated air defense network. That’s still violence. There are still explosions and kinetic energy with the potential for collateral damage to humans, both combatants and civilians.

Source: Lockheed Martin

Not to mention the bomber carried a payload meant to destroy something in the first place. A military force, at its core, will always carry the mission to kill things and break stuff. What will be different is what tools they use to execute that mission.

To learn more about the changing character of warfare:

– Read the TRADOC G-2’s The Operational Environment and the Changing Character of Warfare paper.

– Watch The Changing Character of Future Warfare video.

Additionally, please note that the content from the Mad Scientist Learning in 2050 Conference at Georgetown University, 8-9 August 2018, is now posted and available for your review:

– Read the Top Ten” Takeaways from the Learning in 2050 Conference.

– Watch videos of each of the conference presentations on the TRADOC G-2 Operational Environment (OE) Enterprise YouTube Channel here.

– Review the conference presentation slides (with links to the associated videos) on the Mad Scientist All Partners Access Network (APAN) site here.

LTC Rob Taber is currently the Deputy Director of the Futures Directorate within the TRADOC G-2. He is an Army Strategic Intelligence Officer and holds a Master of Science of Strategic Intelligence from the National Intelligence University. His operational assignments include 1st Infantry Division, United States European Command, and the Defense Intelligence Agency.

Note:  The featured graphic at the top of this post captures U.S. cavalrymen on General John J. Pershing’s Punitive Expedition into Mexico in 1916.  Less than two years later, the United States would find itself fully engaged in Europe in a mechanized First World War.  (Source:  Tom Laemlein / Armor Plate Press, courtesy of Neil Grant, The Lewis Gun, Osprey Publishing, 2014, page 19)

_______________________________________________________

[I] National Intelligence Council, “Global Trends: Paradox of Progress,” January 2017, https://www.dni.gov/files/documents/nic/GT-Full-Report.pdf, p. 6.
[II] Brad D. Williams, “Emerging ‘Hyperwar’ Signals ‘AI-Fueled, machine waged’ Future of Conflict,” Fifth Domain, August 7, 2017, https://www.fifthdomain.com/dod/2017/08/07/emerging-hyperwar-signals-ai-fueled-machine-waged-future-of-conflict/.
[III] Ibid.
[VI] Carl Von Clausewitz, On War, ed. Michael Howard and Peter Paret (Princeton: Princeton University Press, 1976), 85.
[V] Ibid, 87.
[VI] Ibid.
[VII] Ibid, 86.
[VIII] John Allen, Amir Hussain, “On Hyper-War,” Fortuna’s Corner, July 10, 2017, https://fortunascorner.com/2017/07/10/on-hyper-war-by-gen-ret-john-allenusmc-amir-hussain/.

78. The Classified Mind – The Cyber Pearl Harbor of 2034

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the following post by guest blogger Dr. Jan Kallberg, faculty member, United States Military Academy at West Point, and Research Scientist with the Army Cyber Institute at West Point. His post serves as a cautionary tale regarding our finite intellectual resources and the associated existential threat in failing to protect them!]

Preface: Based on my experience in cybersecurity, migrating to a broader cyber field, there have always been those exceptional individuals that have an unreplicable ability to see the challenge early on, create a technical solution, and know how to play it in the right order for maximum impact. They are out there – the Einsteins, Oppenheimers, and Fermis of cyber. The arrival of Artificial Intelligence increases our reliance on these highly capable individuals – because someone must set the rules, the boundaries, and point out the trajectory for Artificial Intelligence at initiation.

Source: https://thebulletin.org/2017/10/neuroscience-and-the-new-weapons-of-the-mind/

As an industrialist society, we tend to see technology and the information that feeds it as the weapons – and ignore the few humans that have a large-scale direct impact. Even if identified as a weapon, how do you make a human mind classified? Can we protect these high-ability individuals that in the digital world are weapons, not as tools but compilers of capability, or are we still focused on the tools? Why do we see only weapons that are steel and electronics and not the weaponized mind as a weapon?  I believe firmly that we underestimate the importance of Applicable Intelligence – the ability to play the cyber engagement in the optimal order.  Adversaries are often good observers because they are scouting for our weak spots. I set the stage for the following post in 2034, close enough to be realistic and far enough for things to happen when our adversaries are betting that we rely more on a few minds than we are willing to accept.

Post:  In a not too distant future, 20th of August 2034, a peer adversary’s first strategic moves are the targeted killings of less than twenty individuals as they go about their daily lives:  watching a 3-D printer making a protein sandwich at a breakfast restaurant; stepping out from the downtown Chicago monorail; or taking a taste of a poison-filled retro Jolt Cola. In the gray zone, when the geopolitical temperature increases, but we are still not at war yet, our adversary acts quickly and expedites a limited number of targeted killings within the United States of persons whom are unknown to mass media, the general public, and have only one thing in common – Applicable Intelligence (AI).

The ability to apply is a far greater asset than the technology itself. Cyber and card games have one thing in common, the order you play your cards matters. In cyber, the tools are publicly available, anyone can download them from the Internet and use them, but the weaponization of the tools occurs when used by someone who understands how to play the tools in an optimal order. These minds are different because they see an opportunity to exploit in a digital fog of war where others don’t or can’t see it. They address problems unburdened by traditional thinking, in new innovative ways, maximizing the dual-purpose of digital tools, and can create tangible cyber effects.

It is the Applicable Intelligence (AI) that creates the procedures, the application of tools, and turns simple digital software in sets or combinations as a convergence to digitally lethal weapons. This AI is the intelligence to mix, match, tweak, and arrange dual purpose software. In 2034, it is as if you had the supernatural ability to create a thermonuclear bomb from what you can find at Kroger or Albertson.

Sadly we missed it; we didn’t see it. We never left the 20th century. Our adversary saw it clearly and at the dawn of conflict killed off the weaponized minds, without discretion, and with no concern for international law or morality.

These intellects are weapons of growing strategic magnitude. In 2034, the United States missed the importance of these few intellects. This error left them unprotected.

All of our efforts were instead focusing on what they delivered, the application and the technology, which was hidden in secret vaults and only discussed in sensitive compartmented information facilities. Therefore, we classify to the highest level to ensure the confidentiality and integrity of our cyber capabilities. Meanwhile, the most critical component, the militarized intellect, we put no value to because it is a human. In a society marinated in an engineering mindset, humans are like desk space, electricity, and broadband; it is a commodity that is input in the production of the technical machinery. The marveled technical machinery is the only thing we care about today, 2018, and as it turned out in 2034 as well.

We are stuck in how we think, and we are unable to see it coming, but our adversaries see it. At a systematic level, we are unable to see humans as the weapon itself, maybe because we like to see weapons as something tangible, painted black, tan, or green, that can be stored and brought to action when needed. As the armory of the war of 1812, as the stockpile of 1943, and as the launch pad of 2034. Arms are made of steel, or fancier metals, with electronics – we failed in 2034 to see weapons made of corn, steak, and an added combative intellect.

General Nakasone stated in 2017, “Our best ones [coders] are 50 or 100 times better than their peers,” and continued “Is there a sniper or is there a pilot or is there a submarine driver or anyone else in the military 50 times their peer? I would tell you, some coders we have are 50 times their peers.” In reality, the success of cyber and cyber operations is highly dependent not on the tools or toolsets but instead upon the super-empowered individual that General Nakasone calls “the 50-x coder.”

Manhattan Project K-25 Gaseous Diffusion Process Building, Oak Ridge, TN / Source: atomicarchive.com

There were clear signals that we could have noticed before General Nakasone pointed it out clearly in 2017. The United States’ Manhattan Project during World War II had at its peak 125,000 workers on the payroll, but the intellects that drove the project to success and completion were few. The difference with the Manhattan Project and the future of cyber is that we were unable to see the human as a weapon, being locked in by our path dependency as an engineering society where we hail the technology and forget the importance of the humans behind it.

J. Robert Oppenheimer – the militarized intellect behind the  Manhattan Project / Source: Life Magazine

America’s endless love of technical innovations and advanced machinery reflects in a nation that has celebrated mechanical wonders and engineered solutions since its creation. For America, technical wonders are a sign of prosperity, ability, self-determination, and advancement, a story that started in the early days of the colonies, followed by the intercontinental railroad, the Panama Canal, the manufacturing era, the moon landing, and all the way to the autonomous systems, drones, and robots. In a default mindset, there is always a tool, an automated process, a software, or a set of technical steps that can solve a problem or act.

The same mindset sees humans merely as an input to technology, so humans are interchangeable and can be replaced. In 2034, the era of digital conflicts and the war between algorithms with engagements occurring at machine speed with no time for leadership or human interaction, it is the intellects that design and understand how to play it. We didn’t see it.

In 2034, with fewer than twenty bodies piled up after targeted killings, resides the Cyber Pearl Harbor. It was not imploding critical infrastructure, a tsunami of cyber attacks, nor hackers flooding our financial systems, but instead traditional lead and gunpowder. The super-empowered individuals are gone, and we are stuck in a digital war at speeds we don’t understand, unable to play it in the right order, and with limited intellectual torque to see through the fog of war provided by an exploding kaleidoscope of nodes and digital engagements.

Source: Shutterstock

If you enjoyed this post, read our Personalized Warfare post.

Dr. Jan Kallberg is currently an Assistant Professor of Political Science with the Department of Social Sciences, United States Military Academy at West Point, and a Research Scientist with the Army Cyber Institute at West Point. He was earlier a researcher with the Cyber Security Research and Education Institute, The University of Texas at Dallas, and is a part-time faculty member at George Washington University. Dr. Kallberg earned his Ph.D. and MA from the University of Texas at Dallas and earned a JD/LL.M. from Juridicum Law School, Stockholm University. Dr. Kallberg is a certified CISSP, ISACA CISM, and serves as the Managing Editor for the Cyber Defense Review. He has authored papers in the Strategic Studies Quarterly, Joint Forces Quarterly, IEEE IT Professional, IEEE Access, IEEE Security and Privacy, and IEEE Technology and Society.

76. “Top Ten” Takeaways from the Learning in 2050 Conference

On 8-9 August 2018, the U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Learning in 2050 Conference with Georgetown University’s Center for Security Studies in Washington, DC.  Leading scientists, innovators, and scholars from academia, industry, and the government gathered to address future learning techniques and technologies that are critical in preparing for Army operations in the mid-21st century against adversaries in rapidly evolving battlespaces.  The new and innovative learning capabilities addressed at this conference will enable our Soldiers and Leaders to act quickly and decisively in a changing Operational Environment (OE) with fleeting windows of opportunity and more advanced and lethal technologies.

We have identified the following “Top 10” takeaways related to Learning in 2050:

1. Many learning technologies built around commercial products are available today (Amazon Alexa, Smart Phones, Immersion tech, Avatar experts) for introduction into our training and educational institutions. Many of these technologies are part of the Army’s concept for a Synthetic Training Environment (STE) and there are nascent manifestations already.  For these technologies to be widely available to the future Army, the Army of today must be prepared to address:

– The collection and exploitation of as much data as possible;

– The policy concerns with security and privacy;

 – The cultural challenges associated with changing the dynamic between learners and instructors, teachers, and coaches; and

– The adequate funding to produce capabilities at scale so that digital tutors or other technologies (Augmented Reality [AR] / Virtual Reality [VR], etc.) and skills required in a dynamic future, like critical thinking/group think mitigation, are widely available or perhaps ubiquitous.

2. Personalization and individualization of learning in the future will be paramount, and some training that today takes place in physical schools will be more the exception, with learning occurring at the point of need. This transformation will not be limited to lesson plans or even just learning styles:

Intelligent tutors, Artificial Intelligence (AI)-driven instruction, and targeted mentoring/tutoring;

– Tailored timing and pacing of learning (when, where, and for what duration best suits the individual learner or group of learners?);

– Collaborative learners will be teams partnering to learn;

Targeted Neuroplasticity Training / Source: DARPA

– Various media and technologies that enable enhanced or accelerated learning (Targeted Neuroplasticity Training (TNT), haptic sensors, AR/VR, lifelong personal digital learning partners, pharmaceuticals, etc.) at scale;

– Project-oriented learning; when today’s high school students are building apps, they are asked “What positive change do you want to have?” One example is an open table for Bully Free Tables. In the future, learners will learn through working on projects;

– Project-oriented learning will lead to a convergence of learning and operations, creating a chicken (learning) or the egg (mission/project) relationship; and

– Learning must be adapted to consciously address the desired, or extant, culture.

Drones Hanger / Source: Oshanin

3. Some jobs and skill sets have not even been articulated yet. Hobbies and recreational activities engaged in by kids and enthusiasts today could become occupations or Military Occupational Specialties (MOS’s) of the future (e.g., drone creator/maintainer, 3-D printing specialist, digital and cyber fortification construction engineer — think Minecraft and Fortnite with real-world physical implications). Some emerging trends in personalized warfare, big data, and virtual nations could bring about the necessity for more specialists that don’t currently exist (e.g., data protection and/or data erasure specialists).

Mechanical Animal / Source: Pinterest

4. The New Human (who will be born in 2032 and is the recruit of 2050) will be fundamentally different from the Old Human. The Chief of Staff of the Army (CSA) in 2050 is currently a young Captain in our Army today. While we are arguably cyborgs today (with integrated electronics in our pockets and on our wrists), the New Humans will likely be cyborgs in the truest sense of the word, with some having embedded sensors. How will those New Humans learn? What will they need to learn? Why would they want to learn something? These are all critical questions the Army will continue to ask over the next several decades.

Source: iLearn

5. Learning is continuous and self-initiated, while education is a point in time and is “done to you” by someone else. Learning may result in a certificate or degree – similar to education – or can lead to the foundations of a skill or a deeper understanding of operations and activity. How will organizations quantify learning in the future? Will degrees or even certifications still be the benchmark for talent and capability?

Source: The Data Feed Toolbox

6. Learning isn’t slowing down, it’s speeding up. More and more things are becoming instantaneous and humans have no concept of extreme speed. Tesla cars have the ability to update software, with owners getting into a veritably different car each day. What happens to our Soldiers when military vehicles change much more iteratively? This may force a paradigm shift wherein learning means tightening local and global connections (tough to do considering government/military network securities, firewalls, vulnerabilities, and constraints); viewing technology as extended brains all networked together (similar to Dr. Alexander Kott’s look at the Internet of Battlefield Things [IoBT]); and leveraging these capabilities to enable Soldier learning at extremely high speeds.

Source: Connecting Universes

7. While there are a number of emerging concepts and technologies to improve and accelerate learning (TNT, extended reality, personalized learning models, and intelligent tutors), the focus, training stimuli, data sets, and desired outcomes all have to be properly tuned and aligned or the Learner could end up losing correct behavior habits (developing maladaptive plasticity), developing incorrect or skewed behaviors (per the desired capability), or assuming inert cognitive biases.

Source: TechCrunch

8. Geolocation may become increasingly less important when it comes to learning in the future. If Apple required users to go to Silicon Valley to get trained on an iPhone, they would be exponentially less successful. But this is how the Army currently trains. The ubiquity of connectivity, the growth of the Internet of Things (and eventually Internet of Everything), the introduction of universal interfaces (think one XBOX controller capable of controlling 10 different types of vehicles), major advances in modeling and simulations, and social media innovation all converge to minimize the importance of teachers, students, mentors, and learners being collocated at the same physical location.

Transdisciplinarity at Work / Source: https://www.cetl.hku.hk

9. Significant questions have to be asked regarding the specificity of training in children at a young age to the point that we may be overemphasizing STEM from an early age and not helping them learn across a wider spectrum. We need Transdisciplinarity in the coming generations.

10. 3-D reconstructions of bases, training areas, cities, and military objectives coupled with mixed reality, haptic sensing, and intuitive controls have the potential to dramatically change how Soldiers train and learn when it comes to not only single performance tasks (e.g., marksmanship, vehicle driving, reconnaissance, etc.) but also in dense urban operations, multi-unit maneuver, and command and control.

Heavy Duty by rOEN911 / Source: DeviantArt

During the next two weeks, we will be posting the videos from each of the Learning in 2050 Conference presentations on the TRADOC G-2 Operational Environment (OE) Enterprise YouTube Channel and the associated slides on our Mad Scientist APAN site — stay connected here at the Mad Scientist Laboratory.

One of the main thrusts in the Mad Scientist lines of effort is harnessing and cultivating the Intellect of the Nation. In this vein, we are asking Learning in 2050 Conference participants (both in person and online) to share their ideas on the presentations and topic. Please consider:

– What topics were most important to you personally and professionally?

– What were your main takeaways from the event?

– What topics did you want the speakers to extrapolate more on?

– What were the implications for your given occupation/career field from the findings of the event?

Your input will be of critical importance to our analysis and products that will have significant impact on the future of the force in design, structuring, planning, and training!  Please submit your input to Mad Scientist at: usarmy.jble.tradoc.mbx.army-mad-scientist@mail.mil.