98. Making the Future More Personal: The Oft-Forgotten Human Driver in Future’s Analysis

[Editor’s Note:  Mad Scientist Laboratory is pleased to publish today’s post by returning guest blogger Mr. Ian Sullivan, addressing the paramount disruptor — people and ideas.  While emergent technologies facilitate the possibility of change, the catalyst, or change agent, remains the human with the revolutionary idea or concept that employs these new tools in an innovative way to bring about change in the character of future warfare.]

 

There is a passage in Erich Maria Remarque’s All Quiet on the Western Front that has always colored my views on the future.  In it, Alfred Kropp, the thoughtful school pal of main character Paul Bäumer, is having a discussion with his friend about a war that has metastasized from a youthful, joyous adventure into a numbingly horrific slog.

 

War weary German Soldiers / Source: Imperial War Museum

But what I would like to know,” says Albert, “is whether there would not have been a war if the Kaiser had said No.”

I’m sure there would,” I [Paul] interject, “he was against it from the first.”

Well if not him alone, then perhaps if twenty or thirty people in the world had said No.”

That’s probable,” I agree, “but they damned well said Yes.”

Ruminating on the First World War, a conflict that most leaders of the day thought would be over in a few weeks, but one that futurists should have realized would become something else altogether, Alfred and Paul hit upon a salient point. European armies met for a battle they could not imagine. Generals versed in Napoleon suddenly faced a true industrial age war.   Sure, there were signs hinting at what could come. The post-Gettysburg U.S. Civil War, for example, offered a glimpse of this type of fight, as did the Franco-Prussian War, and even the Second Anglo-Boer War.

A German Gotha heavy bomber biplane in flight

In a total war, pitting society against society, where the battlefield was dominated by rapid-firing artillery, machine guns, and chemical warfare; where whole societies were pitted against each other to match the industrial requirements of the war, to sustain and reconstitute fighting forces; and where the civilian populations were directly targeted by naval blockades, aerial bombardment,

German Imperial Navy U-Boat enforcing a naval blockade against allied shipping

and other deprivations, it is easy to see the critical role that technology played. However, Alfred and Paul remind us that no matter how much technology advances, or how it shapes the world, the most significant, relevant, and system-altering changes come not from technology, but from people and the ideas and beliefs that shape their behaviors and enable decisions.

The world of today, looking forward, is at least reminiscent of the pre-Great War period. Technology is advancing rapidly; indeed, it is advancing so fast that changes in the way we live, create, think, and prosper are occurring at a dizzying pace. New and converged technologies have led us to question what shape society will take, and dramatic changes which were once only the province of science fiction seemingly become science fact at a swift clip. Information technology, artificial intelligence, quantum computing, robotics, additive manufacturing, and other technological advances have increased or soon will further expand the speed of human interaction. These technologies already have changed society, and will continue to do so as they mature, spawn convergences, and lead to the creation of a new series of technological wonders. TRADOC’s “Operational Environment and the Changing Character of Future Warfare” asserts the future is governed by two drivers; the rapid societal change spurred by these technological advances and the changes these advances will have on the character of warfare. But this assessment may be incomplete, or perhaps it is too deterministic in nature, because at the end of the day, there is a third driver, and it deals with people and ideas.

The latter part of the Nineteenth and early part of the Twentieth Centuries also were dominated by advances in technology. We saw industrialization on a massive scale, the development of internal combustion engines, aviation, telephony, the widespread use of railroads, and other remarkable changes. Alfred and Paul must have thought that the pace of human interaction was increasing exponentially. Yet, while these technologies clearly had societal impacts, they were not transformational on their own. Indeed, they served only to reinforce the power structures that stemmed from the end of the Enlightenment and the reaction to the French Revolution and Napoleon. For as much as society changed, for as much as sub-groups were empowered, as much as super-empowered individuals” like Andrew Carnegie, John D. Rockefeller, Henry Ford, or the Krupp family garnered influence and even some power, it was a handful of individuals – Alfred postulated 20 or 30 – who made the decision to go to war in 1914.

The Kaiser (second from left) chatting with his staff while on field maneuvers, prior to World War I

And in spite of the technological advances of the era, it was the thought processes and ideals generated – a time when Marxism, nationalism, imperialism, social Darwinism, and existentialism, among other schools of thought were developed and refined – that influenced these 20 or 30 individuals who held in their hands the fate of the world in August 1914, and the multitudes of others who would see the war that transpired to the end.

So again, why is this important to the futurist? Because we see technological marvels and focus on their impact, noting that they will drive change that will compel society to follow. Technology is exciting, and its prospects are wondrous. It can and will drive change. But it does not drive change alone; ideas and people still play a role. The spark that caused the First World War,

The assassination of Archduke Franz Ferdinand of Austria, heir presumptive to the Austro-Hungarian throne, and his wife Sophie, Duchess of Hohenberg, on 28 June 1914 in Sarajevo by Gavrilo Princip

Gavrilo Princip’s assassination of Archduke Franz Ferdinand, was lit by one man but driven by Princip’s exposure to nationalism. The Russian Revolution, triggered as a popular reaction against the war and the ruling Romanov dynasty certainly was guided by ideology across many spectrums. Idealism also went hand-in-hand with the American perception of World War I, as a nation geared up in a spasm of Wilsonian idealism to “make the world safe for democracy” and to fight “a war to end all wars.” In the end it was the convergence of ideas, human decision-making, and technology that drove change, in this case, the onset of World War I.

A casual glance at newspaper, or more likely, scanning news notifications on your smart phone, shows us a world that is in large part driven by thought, ideal, and belief. In spite of technology, the speed of human interaction, and global connectivity, we see a retrenchment of globalization and an assertion of nationalism and regionalism around the globe. Whether it be China’s expansionist “One-Belt, One-Road Initiative,” Russia’s adventurism in the Near Abroad and Syria, Brexit in the UK, or a renewed focus on “America-First” from Washington, a renewed sense of nationalism is evident worldwide. Additionally, autocratic regimes are experiencing something of a resurgence; Kim Jong Un in North Korea, Vladimir Putin in Russia, and even a Saudi Royal Family that is now under suspicion of murdering a journalist. We’ve also seen China putting up walls on Internet accessibility and a focus by state actors on crafting narratives aimed at influencing subsections of populations and fostering dissent within rival nations. Individuals too, like Princip before them, also can play a role.

Mohamed Bouazizi’s self-immolation in protest of Tunisian police heavy-handedness ignited the Arab Spring in 2011

The Arab Spring, for example, was sparked by one man in Tunisia with a grievance, but soon went viral on Social Media and led to a significant change in the Middle East. In these cases, technology may serve not as a driver, but instead as an enabler of the human driver.

 

As a futurist, I am concerned when so much of our effort focuses on one aspect of change, in this case, technology. I have attended many events focusing on the future, read a number of authors who focus on the radical changes AI or quantum computing will have on society, and seen many very similar interpretations of the way the future will unfold. Indeed, views of the future are coalescing around technological innovation compelling broader societal changes. It is clear that technology is a driver that needs to be studied.

But it is equally important to understand what drives thought and belief, and how these can be shaped and influenced, for both good and nefarious purposes. My intention in starting with Remarque was not to force a dystopian or deterministic view of the future. Nor am I falling back on George Santayana’s observation about a failure to learn history. History is important, as it shows us how events unfolded, and allows us to understand how problems developed; however, I do not believe we are doomed to repeat August 1914. But I do believe that we need to spend as much time looking at the intellectual, emotional, and even popular Zeitgeist to understand how people view the world and make decisions in light of all of the changes that technology is bringing around us. We need to learn not only what is happening, but must ask ourselves the hard “why?” and “so what?” questions, lest we be unable to understand and warn our leaders during some crisis in August 2028.

If you enjoyed reading this post, please also see:

Lessons Learned in Assessing the Operational Environment, by Ian Sullivan.

Character vs. Nature of Warfare: What We Can Learn (Again) from Clausewitz, by LTC Rob Taber.

Ian Sullivan is the Assistant G-2, ISR and Futures, at Headquarters, TRADOC.

93. The Changing Dynamics of Innovation

[Editor’s Note:   As observed by Mr. Ian Sullivan in his Lessons Learned in Assessing the Operational Environment post earlier this year:

The rapid innovation, development, and fielding of new technologies promises to radically enhance our abilities to live, create, think, and prosper. The accelerated pace of human interaction and widespread connectivity through the Internet of Things (IoT), and the concept of convergence are also factors affecting these trends. Convergence of societal trends and technologies will create new capabilities or societal implications that are greater than the sum of their individual parts, and at times are unexpected.”

Rapid innovations in key technologies and their convergence will continue to accelerate the changing character of future warfare.  Mad Scientist Laboratory has tracked these trends in innovation, both at home and within our strategic competitors (see:  Era Military Innovation Technopark and National Military-Civil Fusion Innovation Demonstration Zones).

Falcon 9 made history in 2012 when it delivered Dragon into the correct orbit for rendezvous with the International Space Station, making SpaceX the first commercial company ever to visit the station / Source: https://www.spacex.com/galleries

With the advent of the Twenty-First Century, there has been a steady shift in who is driving innovation within the U.S.  The private company SpaceX made history in 2012 when its Falcon 9 and Dragon became the first commercial rocket and spacecraft in history to deliver cargo to the International Space Station and safely return cargo to Earth, a feat previously achieved only by national governments.

The following post explores the changing dynamics in innovation, and is excerpted from the Mad Scientist Bio Convergence and Soldier 2050 Conference Final Report — Enjoy!]

The dramatic shift in the funding, driving, and demand signals of innovation from the U.S. Government to the commercial sector will lead to a critical need for agile prototyping and experimentation in the military, focusing on niche areas of interest to the Government.

In the past, Government funding has accelerated many technologies that are now not only commonplace, but almost necessary for modern life. Research and Development that led to the creation of GPS, the microchip, the touch screen, and the internet was funded, in-part, by the Government.  Recent data from the National Institutes of Health (NIH) has shown that there now is an inverse relationship between how novel a concept is and the amount of Government funding it receives.  There has also been a decrease in Government R&D spending as a percentage of overall GDP. These two trends have led to a stifling of Government-driven innovation and exploration of new technologies.

https://www.aaas.org/page/historical-trends-federal-rd

Private industry and academia are now the driving force behind innovation.  While there are some benefits to this – such as shorter development times – there are also risks. For example, investments in industry are mainly driven by market demand which can lead to a lack of investment in areas that are vital to National Defense, but have low to no consumer demand. In academia, a majority of graduate students in STEM fields are foreign nationals, comprising over 80% of electrical and petroleum engineering programs. The U.S. will need to find a way to maintain its technological superiority, even when most of the expertise eventually leaves the country.

In order to compete with our strategic competitors, Government funding of research in academia and increased funding for the more novel, higher risk proposals could prove beneficial. In the private sector, Government investment in areas vital to National Defense, as well as areas of market failure, is crucial.

A successful example of this cooperation and investment between the Government and private industry is Tesla, Inc. The United States Department of Energy loaned $465 million to Tesla from the 2007 Advanced Technology Vehicles Manufacturing Loan Program. Tesla not only innovated a variety of technologies in electric and autonomous automobiles, but also in power generation and storage – all areas of military interest.  In order to drive innovation, particularly in areas with small markets (e.g., like explosives research), or very novel, high risk technologies (e.g., Directed Energy Weapons), the Army should continue these types of investments.

If you enjoyed this post about innovation, please read the following Mad Scientist Laboratory blog posts:

Fundamental Questions Affecting Army Modernization

Four Elements of Future Innovation

Prototype Warfare

Mission Engineering and Prototype Warfare: Operationalizing Technology Faster to Stay Ahead of the Threat

85. Benefits, Vulnerabilities, and the Ethics of Soldier Enhancement

[Editor’s Note: The United States Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Bio Convergence and Soldier 2050 Conference with SRI International at their Menlo Park, CA, campus on 8-9 March 2018, where participants discussed the advent of new biotechnologies and the associated benefits, vulnerabilities, and ethics associated with Soldier enhancement for the Army of the Future.  The following post is an excerpt from this conference’s final report.]

Source:  Max Pixel

Advances in synthetic biology likely will enhance future Soldier performance – speed, strength, endurance, and resilience – but will bring with it vulnerabilities, such as genomic targeting, that can be exploited by an adversary and/or potentially harm the individual undergoing the enhancement.

 

Emerging synthetic biology tools – e.g., CRISPR, Talon, and ZFN – present an opportunity to engineer Soldiers’ DNA and enhance their abilities. Bioengineering is becoming easier and cheaper as a bevy of developments are reducing biotechnology transaction costs in gene reading, writing, and editing. [1] Due to the ever-increasing speed and lethality of the future battlefield, combatants will need cognitive and physical enhancement to survive and thrive.

Cognitive enhancement could make Soldiers more lethal, more decisive, and perhaps more resilient. Using neurofeedback, a process that allows a user to see their brain activity in real-time, one can identify ideal brain states, and use them to enhance an individual’s mental performance. Through the mapping and presentation of identified expert brains, novices can rapidly improve their acuity after just a few training sessions. [2] Further, there are studies being conducted that explore the possibility of directly emulating those expert brain states with non-invasive EEG caps that could improve performance almost immediately. [3]  Dr. Amy Kruse, the Chief Scientific Officer at the Platypus Institute, referred to this phenomenon as “sitting on a gold mine of brains.”

There is also the potential to change and improve Soldier’s physical attributes. Scientists can develop drugs, specific dietary plans, and potentially use genetic editing to improve speed, strength, agility, and endurance.

Source: Andrew Herr, CEO Helicase

In order to fully leverage the capability of human performance enhancement, Andrew Herr, CEO of Helicase and an Adjunct Fellow at CNAS, suggested that human performance R&D be moved out of the medical field and become its own research area due to its differing objectives and the convergence between varying technologies.

Soldiers, Airmen, Marines, and Sailors are already trying to enhance themselves with commercial products – often containing unknown or unsafe ingredients – so it is incumbent on the U.S. military to, at the very least, help those who want to improve.

However, a host of new vulnerabilities, at the genetic level, accompany this revolutionary leap in human evolution. If one can map the human genome and more thoroughly scan and understand the brain, they can target genomes and brains in the same ways. Soldiers could become incredibly vulnerable at the genomic level, forcing the Army to not only protect Soldiers using body armor and armored vehicles, but also protect their identities, genomes, and physiologies.

Adversaries will exploit all biological enhancements to gain competitive advantage over U.S. forces. Targeted genome editing technology such as CRISPR will enable adversarial threats to employ super-empowered Soldiers on the battlefield and target specific populations with bioweapons. U.S. adversaries may use technologies recklessly to achieve short term gains with no consideration of long range effects. [4] [5]

There are numerous ethical questions that come with the enhancement of Soldiers such as the moral acceptability of the Army making permanent enhancements to Soldiers, the responsibility for returning transitioning Soldiers to a “baseline human,” and the general definition of what a “baseline human” is legally defined as.

Transhumanism H+ symbol by Antonu / Source:  https://commons.wikimedia.org/wiki/File:Transhumanism_h%2B.svg

By altering, enhancing, and augmenting the biology of the human Soldier, the United States Army will potentially enter into uncharted ethical territory. Instead of issuing items to Soldiers to complement their physical and cognitive assets, by 2050, the U.S. Army may have the will and the means to issue them increased biological abilities in those areas. The future implications and the limits or thresholds for enhancement have not yet been considered. The military is already willing to correct the vision of certain members – laser eye surgery, for example – a practice that could be accurately referred to as human enhancement, so discretely defining where the threshold lies will be important. It is already known that other countries, and possible adversaries, are willing to cross the line where we are not. Russia, most recently, was banned from competition in the 2018 Winter Olympics for widespread performance-enhancing drug violations that were believed to be supported by the Russian Government. [6] Those drugs violate the spirit of competition in the Olympics, but no such spirit exists in warfare.

Another consideration is whether or not the Soldier enhancements are permanent. By enhancing Soldiers’ faculties, the Army is, in fact, enhancing their lethality or their ability to defeat the enemy. What happens with these enhancements—whether the Army can or should remove them— when a Soldier leaves the Army is an open question. As stated previously, the Army is willing and able to improve eyesight, but does not revert that eyesight back to its original state after the individual has separated. Some possible moral questions surrounding Soldier enhancement include:

• If the Army were to increase a Soldier’s stamina, visual acuity, resistance to disease, and pain tolerance, making them a more lethal warfighter, is it incumbent upon the Army to remove those enhancements?

• If the Soldier later used those enhancements in civilian life for nefarious purposes, would the Army be responsible?

Answers to these legal questions are beyond the scope of this paper, but can be considered now before the advent of these new technologies becomes widespread.

Image by Leonardo da Vinci / Source: Flickr

If the Army decides to reverse certain Soldier enhancements, it likely will need to determine the definition of a “baseline human.” This would establish norms for features, traits, and abilities that can be permanently enhanced and which must be removed before leaving service. This would undoubtedly involve both legal and moral challenges.

 

The complete Mad Scientist Bio Convergence and Soldier 2050 Final Report can be read here.

To learn more about the ramifications of Soldier enhancement, please go to:

– Dr. Amy Kruse’s Human 2.0 podcast, hosted by our colleagues at Modern War Institute.

– The Ethics and the Future of War panel discussion, facilitated by LTG Jim Dubik (USA-Ret.) from Day 2 (26 July 2017) of the Mad Scientist Visualizing Multi Domain Battle in 2030-2050 Conference at Georgetown University.


[1] Ahmad, Zarah and Stephanie Larson, “The DNA Utility in Military Environments,” slide 5, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018.
[2] Kruse, Amy, “Human 2.0 Upgrading Human Performance,” Slide 12, presented at Mad Scientist Bio Convergence and the Soldier 2050 Conference, 8 March 2018
[3]https://www.frontiersin.org/articles/10.3389/fnhum.2016.00034/full
[4] https://www.technologyreview.com/the-download/610034/china-is-already-gene-editing-a-lot-of-humans/
[5] https://www.c4isrnet.com/unmanned/2018/05/07/russia-confirms-its-armed-robot-tank-was-in-syria/
[6] https://www.washingtonpost.com/sports/russia-banned-from-2018-olympics-following-doping-allegations/2017/12/05/9ab49790-d9d4-11e7-b859-fb0995360725_story.html?noredirect=on&utm_term=.d12db68f42d1

84. Quantum Surprise on the Battlefield?

[Editor’s Note:  In the following guest blog post, Mad Scientist Elsa B. Kania addresses quantum technology and the potential ramifications should the People’s Republic of China (PRC) win the current race in fielding operational quantum capabilities].

If China were to succeed in realizing the full potential of quantum technology, the Chinese People’s Liberation Army (PLA) might have the capability to offset core pillars of U.S. military power on the future battlefield.  Let’s imagine the worst-case (or, for China, best-case) scenarios.

The Chinese military and government could leverage quantum cryptography and communications to enable “perfect security” for its most sensitive information and communications. The PLA may look to employ ‘uncrackable’ quantum key distribution (QKD), which involves the provably secure exchange of keys in quantum states, over fiber optic networks for secure command and control, while extending the range of its quantum networks to more far-flung units or even ships at sea, through an expanding constellation of quantum satellites.

If China were to ‘go dark’ to U.S. intelligence capabilities as a result, then a new level of uncertainty could complicate U.S. calculus and assessments, while exacerbating the risks of surprise or misperception in a crisis or conflict scenario.

China’s massive investments in quantum computing could succeed someday in the decadal marathon towards a fully functional and universal quantum computer.

Liaoning Exercise in the West Pacific / Source: Flickr by rhk111

If developed in secret or operational sooner than expected, then these immense computing capabilities could be unleashed to break public key cryptography. Such asymmetric cryptography, which today is quite prevalent and integral to the security of our information technology ecosystem, relies upon the difficulty of prime factorization, a task beyond the capabilities of today’s classical computers but that could be cracked by a future quantum computer. The impact could be analogous to the advantage that the U.S. achieved through the efforts of American code-breakers ahead of the Battle of Midway.

Although there will be options available for ‘quantum-proof’ encryption, the use of public key cryptography could remain prevalent in older military and government information systems, such as legacy satellites. Moreover, any data previously collected while encrypted could be rapidly decrypted and exploited, exposing perhaps decades of sensitive information. Will the U.S. military and government take this potential security threat seriously enough to start the transition to quantum-resistant alternatives?

Future advances in quantum computing could be game changers for intelligence and information processing. In a new era in which data is a critical resource, the ability to process it rapidly is at a premium. In theory, quantum computing could also accelerate the development of artificial intelligence towards a closer approximation to “superintelligence,” provoking concerns of unexpected, by some accounts even existential, risks and powerful capabilities.

PLA Navy Kilo-Class Submarine / Source: Took-ranch at English Wikipedia https://commons.wikimedia.org/w/index.php?curid=12184725

Meanwhile, based on active efforts in the Chinese defense industry, the next generation of Chinese submarines could be equipped with a ‘quantum compass’ to enable greater precision in positioning and independence from space-based navigation systems, while perhaps also leveraging quantum communications underwater for secure control and covert coordination.

The PLA might realize its ambitions to develop quantum radar that could be the “nemesis” of U.S. stealth fighters and bolster Chinese missile defense. This “offset” technology could overcome the U.S. military’s advantage in stealth. Similarly, the ‘spooky’ sensitivity in detection enabled by techniques such as ghost imaging and quantum remote sensing could enhance PLA ISR capabilities.

In the aggregate, could China’s future advances in these technologies change the balance of power in the Indo-Pacific?

Su-27 Flanker fighter / Source: DoD photo by Staff Sgt. D. Myles Cullen

For China, the potential to disrupt paradigms of information dominance through quantum computing and cryptography, while perhaps undermining U.S. advantages in stealth technologies through quantum radar and sensing, and even more actively contesting the undersea domain, could create a serious challenge to U.S. military-technological predominance.

Perhaps, but this imagining of impactful military applications of quantum technology is far from a reality today. For the time being, these technologies still confront major constraints and limitations in their development.

It seems unlikely that quantum cryptography will ever enable truly perfect security, given the perhaps inevitable human and engineering challenges, along with remaining vulnerabilities to exploitation.

At present, quantum computing, while approaching the symbolic milestone of “quantum supremacy,” faces a long road ahead, due to challenges of scaling and error correction.

Certain quantum devices, for sensing, metrology, and positioning, may be quite useful but could enable fairly incremental, evolutionary improvements relative to the full range of alternatives.

There are also reasons to consider critically when Chinese official media discloses (especially in English) oft-hyped advances such as in quantum radar – since reporting on such apparent progress could be variously intended for purposes of signaling or perhaps even misdirection.

National Institute of Standards and Technology (NIST) neutral-atom quantum processors — prototype devices which designers are trying to develop into full-fledged quantum computers  https://www.flickr.com/photos/usnistgov/5940500587/

Although China’s advances and ambitions should be taken quite seriously – particularly considering the talent and resources evidently mobilized to advance these objectives – the U.S. military may also be well postured to leverage quantum technology on the future battlefield.

 

Inevitably, the timeframe for the actual operationalization of these technologies is challenging to evaluate, especially because a significant proportion of the relevant research may be occurring in secret.

For that reason, it is also difficult to determine with confidence whether the U.S. or China is truly leading in the advancement of various disciplines of quantum science.

Moreover, beyond concerns of competition between the U.S. and China, exciting research is occurring worldwide, from Canada and Europe to Australia, often with tech companies and start-ups at the forefront of the development and commercialization of these technologies.

Looking forward, the trajectory of this second quantum revolution will play out over decades to come. Future successes will require sustained investments, such as those China is actively pursuing in the range of tens of billions.

As the Chinese military and defense industry start testing and experimenting with quantum technology, the U.S. military should also explore further the potential – and evaluate the limitations – of these capabilities, including through deepening public-private partnership.

As China challenges American leadership in innovation, the U.S. military and government should recognize the real risks of future surprises that could result from truly ‘made in China’ innovation, while also taking full advantage of the opportunities to impose surprise upon strategic competitors.

The above blog post is based on the recently published Center for a New American Security (CNAS) report entitled Quantum Hegemony? – China’s Ambitions and the Challenges to U.S. Innovation Leadership, co-authored by Ms. Elsa Kania and  Mr. John Costello.  Mad Scientist believes that this report is the best primer on the current state of quantum technology.  Note that quantum science – communication, computing, and sensing – was previously addressed by the Mad Scientist Laboratory as a Pink Flamingo.

Ms. Kania was proclaimed an official Mad Scientist following her presentation on PLA Human-Machine Integration at the Bio Convergence and Soldier 2050 Conference at SRI International, Menlo Park, 8-9 March 2018.  Her podcast from this event, China’s Quest for Enhanced Military Technology, is hosted by Modern War Institute.

Disclaimer: The views expressed in this article belong to the author alone and do not represent the Department of Defense, the U.S. Army, or the U.S. Army Training and Training Doctrine Command.

Ms. Kania is an Adjunct Fellow with the Technology and National Security Program at CNAS.

72. First Salvo on “Learning in 2050” – Continuity and Change

[Editor’s Note: The U.S. Army Training and Doctrine Command (TRADOC) G-2 is co-hosting the Mad Scientist Learning in 2050 Conference with Georgetown University’s Center for Security Studies on 8-9 August 2018 in Washington, DC.  In advance of this conference, Mad Scientist Laboratory is pleased to present today’s post addressing what is necessary to truly transform Learning in 2050 by returning guest blogger Mr. Nick Marsella.  Read Mr. Marsella’s previous two posts addressing Futures Work at Part I and Part II]

Only a handful of years ago, a conference on the topic of learning in 2050 would spur discussions on needed changes in the way we formally educate and train people to live successful lives and be productive citizens.[I] Advocates in K-12 would probably argue for increasing investment in schools, better technology, and increased STEM education. Higher educators would raise many of the same concerns, pointing to the value of the “the academy” and its universities as integral to the nation’s economic, security, and social well-being by preparing the nation’s future leaders, innovators, and scientists.

Yet, times have changed. “Learning in 2050” could easily address how education and training must meet the required immediate learning needs of the individual and for supporting “lifelong learning” in a very changing and competitive world.[II] The conference could also address how new discoveries in learning and the cognitive sciences will inform the education and training fields, and potentially enhance individual abilities to learn and think.[III] “Learning in 2050” could also focus on how organizational learning will be even more important than today – spelling the difference between bankruptcy and irrelevancy – or for military forces – victory or defeat. We must also address how to teach people to learn and organize themselves for learning.[IV]

Lastly, a “Learning in 2050” conference could also focus on machine learning and how artificial intelligence will transform not only the workplace, but have a major impact on national security.[V] Aside from understanding the potential and limitations of this transformative technology, increasingly we must train and educate people on how to use it to their advantage and understand its limitations for effective “human – machine teaming.” We must also provide opportunities to use fielded new technologies and for individuals to learn when and how to trust it.[VI]

All of these areas would provide rich discussions and perhaps new insights. But just as LTG (ret) H.R. McMaster warned us about thinking about the challenges in future warfare, we must first acknowledge the continuities for this broad topic of “Learning in 2050” and its implications for the U.S. Army.[VII] Until the Army is replaced by robots or knowledge and skills are uploaded directly into the brain as shown in the “Matrix” — learning involves humans and the learning process and the Army’s Soldiers and its civilian workforce [not discounting organizational or machine learning].

Source: U.S. Army https://www.army.mil/article/206197/army_researchers_looking_to_neurostimulation_to_enhance_accelerate_soldiers_abilities

While much may change in the way the individual will learn, we must recognize that the focus of “Learning in 2050” is on the learner and the systems, programs/schools, or technologies adopted in the future must support the learner. As Herbert Simon, one of the founders of cognitive science and a Nobel laureate noted: “Learning results from what the student does and thinks and only from what the student does and thinks. The teacher can advance learning only by influencing what the student does to learn.”[VIII] To the Army’s credit, the U.S. Army Learning Concept for Training and Education 2020-2040 vision supports this approach by immersing “Soldiers and Army civilians in a progressive, continuous, learner-centric, competency-based learning environment,” but the danger is we will be captured by technology, procedures, and discussions about the utility and need for “brick and mortar schools.”[IX]

Learning results from what the student does and thinks and only from what the student does and thinks.

Learning is a process that involves changing knowledge, belief, behavior, and attitudes and is entirely dependent on the learner as he/she interprets and responds to the learning experience – in and out of the classroom.[X] Our ideas, concepts, or recommendations to improve the future of learning in 2050 must either:  improve student learning outcomes, improve student learning efficiency by accelerating learning, or improve the student’s motivation and engagement to learn.

“Learning in 2050” must identify external environmental factors which will affect what the student may need to learn to respond to the future, and also recognize that the generation of 2050 will be different from today’s student in values, beliefs, attitudes, and acceptance of technology.[XI] Changes in the learning system must be ethical, affordable, and feasible. To support effective student learning, learning outcomes must be clearly defined – whether a student is participating in a yearlong professional education program or a five-day field training exercise – and must be understood by the learner.[XII]

We must think big. For example, Professor of Cognition and Education at Harvard’s Graduate School of Education, Howard Gardner postulated that to be successful in the 21st Century requires the development of the “disciplined mind, the synthesizing mind, the creative mind, the respectful mind, and the ethical mind.”[XIII]

Approaches, processes, and organization, along with the use of technology and other cognitive science tools, must focus on the learning process. Illustrated below is the typical officer career timeline with formal educational opportunities sprinkled throughout the years.[XIV] While some form of formal education in “brick and mortar” schools will continue, one wonders if we will turn this model on its head – with more upfront education; shorter focused professional education; more blended programs combining resident/non-resident instruction; and continual access to experts, courses, and knowledge selected by the individual for “on demand” learning. Today, we often use education as a reward for performance (i.e., resident PME); in the future, education must be a “right of the Profession,” equally provided to all (to include Army civilians) – necessary for performance as a member of the profession of arms.

Source: DA Pam 600-3, Commissioned Officer Professional Development and Career Management, December 2014, p.27

The role of the teacher will change. Instructors will become “learning coaches” to help the learner identify gaps and needs in meaningful and dynamic individual learning plans. Like the Army’s Master Fitness Trainer whom advises and monitors a unit’s physical readiness, we must create in our units “Master Learning Coaches,” not simply a training specialist who manages the schedule and records. One can imagine technology evolving to do some of this as the Alexa’s and Siri’s of today become the AI tutors and mentors of the future. We must also remember that any system or process for learning in 2050 must fit the needs of multiple communities: Active Army, Army National Guard, and Army Reserve forces, as well as Army civilians.

Just as the delivery of instruction will change, the assessment of learning will change as well. Simulations and gaming should aim to provide an “Enders’ Game” experience, where reality and simulation are indistinguishable. Training systems should enable individuals to practice repeatedly and as Vince Lombardi noted – “Practice does not make perfect. Perfect practice makes perfect.” Experiential learning will reinforce classroom, on-line instruction, or short intensive courses/seminars through the linkage of “classroom seat time” and “field time” at the Combat Training Centers, Warfighter, or other exercises or experiences.

Tell me and I forget; teach me and I may remember; involve me and I learn.  Benjamin Franklin[XV]

Of course, much will have to change in terms of policies and the way we think about education, training, and learning. If one moves back in time the same number of years that we are looking to the future – it is the year 1984. How much has changed since then?

While in some ways technology has transformed the learning process – e.g., typewriters to laptops; card catalogues to instant on-line access to the world’s literature from anywhere; and classes at brick and mortar schools to Massive Open Online Courses (MOOCs), and blended and on-line learning with Blackboard. Yet, as Mark Twain reportedly noted – “if history doesn’t repeat itself – it rhymes” and some things look the same as they did in 1984, with lectures and passive learning in large lecture halls – just as PowerPoint lectures are ongoing today for some passively undergoing PME.

If “Learning in 2050” is to be truly transformative – we must think differently. We must move beyond the industrial age approach of mass education with its caste systems and allocation of seats. To be successful in the future, we must recognize that our efforts must center on the learner to provide immediate access to knowledge to learn in time to be of value.

Nick Marsella is a retired Army Colonel and is currently a Department of the Army civilian serving as the Devil’s Advocate/Red Team for Training and Doctrine Command. ___________________________________________________________________

[I] While the terms “education” and “training” are often used interchangeably, I will use the oft quoted rule – training is about skills in order to do a job or perform a task, while education is broader in terms of instilling general competencies and to deal with the unexpected.

[II] The noted futurist Alvin Toffler is often quoted noting: “The illiterate of the 21st Century are not those who cannot read and write but those who cannot learn, unlearn, and relearn.”

[III] Sheftick, G. (2018, May 18). Army researchers look to neurostimulation to enhance, accelerate Soldier’s abilities. Retrieved from: https://www.army.mil/article/206197/army_researchers_looking_to_neurostimulation_to_enhance_accelerate_soldiers_abilities

[IV] This will become increasing important as the useful shelf life of knowledge is shortening. See Zao-Sanders, M. (2017). A 2×2 matrix to help you prioritize the skills to learn right now. Harvard Business Review. Retrieved from: https://hbr.org/2017/09/a-2×2-matrix-to-help-you-prioritize-the-skills-to-learn-right-now  — so much to learn, so little time.

[V] Much has been written on AI and its implications. One of the most recent and interesting papers was recently released by the Center for New American Security in June 2018. See: Scharre, P. & Horowitz, M.C. (2018). Artificial Intelligence: What every policymaker needs to know. Retrieved from: https://www.cnas.org/publications/reports/artificial-intelligence-what-every-policymaker-needs-to-know
For those wanting further details and potential insights see: Executive Office of the President, National Science and Technology Council, Committee on Technology Report, Preparing for the Future of Artificial Intelligence, October 2016.

[VI] Based on my anecdotal experiences, complicated systems, such as those found in command and control, have been fielded to units without sufficient training. Even when fielded with training, unless in combat, proficiency using the systems quickly lapses. See: Mission Command Digital Master Gunner, May 17, 2016, retrieved from https://www.army.mil/standto/archive_2016-05-17. See Freedberg, S. Jr. Artificial Stupidity: Fumbling the Handoff from AI to Human Control. Breaking Defense. Retrieved from: https://breakingdefense.com/2017/06/artificial-stupidity-fumbling-the-handoff/

[VII] McMaster, H.R. (LTG) (2015). Continuity and Change: The Army Operating Concept and Clear Thinking about Future War. Military Review.

[VIII] Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C. & Norman, M. K. (2010). How learning works: 7 research-based principles for smart teaching. San Francisco, CA: Jossey-Bass, p. 1.

[IX] U.S. Army Training and Doctrine Command. TRADOC Pamphlet 525-8-2. The U.S. Army Learning Concept for Training and Education 2020-2040.

[X] Ambrose, et al., p.3.

[XI] For example, should machine language be learned as a foreign language in lieu of a traditional foreign language (e.g., Spanish) – given the development of automated machine language translators (AKA = the Universal Translator)?

[XII] The point here is we must clearly understand what we want the learner to learn and adequately define it and insure the learner knows what the outcomes are. For example, we continually espouse that we want leaders to be critical thinkers, but I challenge the reader to find the definitive definition and expected attributes from being a critical thinker given ADRP 6-22, Army Leadership, FM 6-22 Army Leadership, and ADRP 5 and 6 describe it differently. At a recent higher education conference of leaders, administrators and selected faculty, one member succinctly put it this way to highlight the importance of student’s understanding expected learning outcomes: “Teaching students without providing them with learning outcomes is like giving a 500 piece puzzle without an image of what they’re assembling.”

[XIII] Gardner, H. (2008). Five Minds for the Future. Boston, MA: Harvard Business Press. For application of Gardner’s premise see Marsella, N.R. (2017). Reframing the Human Dimension: Gardner’s “Five Minds for the Future.” Journal of Military Learning. Retrieved from: https://www.armyupress.army.mil/Journals/Journal-of-Military-Learning/Journal-of-Military-Learning-Archives/April-2017-Edition/Reframing-the-Human-Dimension/

[XIV] Officer education may differ due to a variety of factors but the normal progression for Professional Military Education includes: Basic Officer Leader Course (BOLC B, to include ROTC/USMA/OCS which is BOLC A); Captains Career Course; Intermediate Level Education (ILE) and Senior Service College as well as specialty training (e.g., language school), graduate school, and Joint schools. Extracted from previous edition of DA Pam 600-3, Commissioned Office Professional Development and Career Management, December 2014, p.27 which is now obsolete. Graphic is as an example. For current policy, see DA PAM 600-3, dated 26 June 2017. .

[XV] See https://blogs.darden.virginia.edu/brunerblog/

68. Bio Convergence and Soldier 2050 Conference Final Report

[Editor’s Note: The U.S. Army Training and Doctrine Command (TRADOC) co-hosted the Mad Scientist Bio Convergence and Soldier 2050 Conference with SRI International on 8–9 March 2018 at their Menlo Park campus in California. This conference explored bio convergence, what the Army’s Soldier of 2050 will look like, and how they will interact and integrate with their equipment. The following post is an excerpt from this conference’s final report.]

Source: U.S. Army photo by SPC Joshua P. Morris

While the technology and concepts defining warfare have continuously and rapidly transformed, the primary actor in warfare – the human – has remained largely unchanged. Soldiers today may be physically larger, more thoroughly trained, and better equipped than their historical counterparts, but their capability and performance abilities remain very similar.

These limitations in human performance, however, may change over the next 30 years, as advances in biotechnology and human performance likely will expand the boundaries of what is possible for humans to achieve. We may see Soldiers – not just their equipment – with superior vision, enhanced cognitive abilities, disease/virus resistance, and increased strength, speed, agility, and endurance. As a result, these advances could provide the Soldier with an edge to survive and thrive on the hyperactive, constantly changing, and increasingly lethal Multi-Domain Battlespace.

Source: The Guardian and Lynsey Irvine/Getty

In addition to potentially changing the individual physiology and abilities of the future Soldier, there are many technological innovations on the horizon that will impact human performance. The convergence of these technologies – artificial intelligence (AI), robotics, augmented reality, brain-machine interface, nanotechnologies, and biological and medical improvements to the human – is referred to as bio convergence. Soldiers of the future will have enhanced capabilities due to technologies that will be installed, instilled, and augmented. This convergence will also make the Army come to terms on what kinds of bio-converged technologies will be accepted in new recruits.

The conference generated the following key findings:

Source: RodMartin.org

• The broad advancement of biotechnologies will provide wide access to dangerous and powerful bioweapons and human enhancements. The low cost and low expertise entry point into gene editing, human performance enhancement, and bioweapon production has spurred a string of new explorations into this arena by countries with large defense budgets (e.g.,  China), non-state criminal and terrorist organizations (e.g., ISIS), and even super-empowered individuals willing to subject their bodies to experimental and risky treatments.

Source: Shutterstock

• Emerging synthetic biology tools (e.g., CRISPR, Talon, and ZFN) present an opportunity to engineer Soldiers’ DNA and enhance their performance, providing  greater  speed, strength, endurance, and resilience.  These tools, however, will also create new vulnerabilities, such as genomic targeting, that can be exploited by an adversary and/or potentially harm the individual undergoing enhancement.  Bioengineering is becoming easier and cheaper as a bevy of developments are reducing biotechnology transaction costs in gene reading, writing, and editing.  Due to the ever-increasing speed and lethality of the future battlefield, combatants will need cognitive and physical enhancement to survive and thrive.

Source: Getty Images

• Ensuring that our land forces are ready to meet future challenges requires optimizing biotechnology and neuroscience advancements.  Designer viruses and diseases will be highly volatile, mutative, and extremely personalized, potentially challenging an already stressed Army medical response system and its countermeasures.  Synthetic biology provides numerous applications that will bridge capability gaps and enable future forces to fight effectively. Future synthetic biology defense applications are numerous and range from sensing capabilities to rapidly developed vaccines and therapeutics.

Source: Rockwell Collins / Aviation Week

• Private industry and academia have become the driving force behind innovation. While there are some benefits to this – such as shorter development times – there are also risks. For example, investments in industry are mainly driven by market demand which can lead to a lack of investment in areas that are vital to National Defense but have low to no consumer demand. In academia, a majority of graduate students in STEM fields are foreign nationals, comprising over 80% of electrical and petroleum engineering programs. The U.S. will need to find a way to maintain its technological superiority even when most of the expertise eventually leaves the country.

Source: World Health Organization

• The advent of new biotechnologies will give rise to moral, regulatory, and legal challenges for the Army of the Future, its business practices, recruiting requirements, Soldier standards, and structure. The rate of technology development in the synthetic biology field is increasing rapidly. Private individuals or small start-ups with minimal capital can create a new organism for which there is no current countermeasure and the development of one will likely take years. This potentiality leads to the dilemma of swiftly creating effective policy and regulation that addresses these concerns, while not stifling creativity and productivity in the field for those conducting legitimate research. Current regulation may not be sufficient, and bureaucratic inflexibility prevents quick reactive and proactive change. Our adversaries may not move as readily to adopt harsher regulations in the bio-technology arena. Rather than focusing on short-term solutions, it may be beneficial to take a holistic approach centered in a world where bio-technology is interacting with everyday life. The U.S. may have to work from a relative “disadvantage,” using safe and legal methods of enhancement, while our adversaries may choose to operate below our defined legal threshold.

Bio Convergence is incredibly important to the Army of the Future because the future Soldier is the Bio. The Warrior of tomorrow’s Army will be given more responsibility, will be asked to do more, will be required to be more capable, and will face more challenges and complexities than ever before. These Soldiers must be able to quickly adapt, change, connect to and disconnect from a multitude of networks – digital and otherwise – all while carrying out multiple mission-sets in an increasingly disrupted, degraded, and arduous environment marred with distorted reality, information warfare, and attacks of a personalized nature.

For additional information regarding this conference:

• Review the Lessons Learned from the Bio Convergence and Soldier 2050 Conference preliminary assessment.

• Read the entire Mad Scientist Bio Convergence and Soldier 2050 Conference Final Report.

• Watch the conference’s video presentations.

• See the associated presentations’ briefing slides.

• Check out the associated “Call for Ideas” writing contest finalist submissions, hosted by our colleagues at Small Wars Journal.

 

60. Mission Engineering and Prototype Warfare: Operationalizing Technology Faster to Stay Ahead of the Threat

[Editor’s Note: Mad Scientist is pleased to present the following post by a team of guest bloggers from The Strategic Cohort at the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). Their post lays out a clear and cogent approach to Army modernization, in keeping with the Chief of Staff of the Army GEN Mark A. Milley’s and Secretary of the Army Mark T. Esper’s guidance “to focus the Army’s efforts on delivering the weapons, combat vehicles, sustainment systems, and equipment that Soldiers need when they need it” and making “our Soldiers more effective and our units less logistically dependent.” — The Army Vision,  06 June 2018 ]

 

 

“Success no longer goes to the country that develops a new fighting technology first, but rather to the one that better integrates it and adapts its way of fighting….” The National Defense Strategy (2018).

 

 

Executive Summary
While Futures Command and legislative changes streamline acquisition bureaucracy, the Army will still struggle to keep pace with the global commercial technology marketplace as well as innovate ahead of adversaries who are also innovating.

Chinese Lijian Sharp Sword Unmanned Combat Air Vehicle (UCAV) — Source: U.S. Naval Institute (USNI) News

Reverse engineering and technology theft make it possible for adversaries to inexpensively copy DoD-specific technology “widgets,” potentially resulting in a “negative return” on investment of DoD research dollars. Our adversaries’ pace of innovation further compounds our challenge. Thus the Army must not only equip the force to confront what is expected,

Northrop Grumman X-47B UCAV — Source: USNI News

but equip the force to confront an adaptable enemy in a wide variety of environments. This paper proposes a framework that will enable identification of strategically relevant problems and provide solutions to those problems at the speed of relevance and invert the cost asymmetry.

To increase the rate of innovation, the future Army must learn to continually assimilate, produce, and operationalize technologies much faster than our adversaries to gain time-domain overmatch. The overarching goal is to create an environment that our adversaries cannot duplicate: integration of advanced technologies with skilled Soldiers and well-trained teams. The confluence of two high level concepts — the Office of the Secretary of Defense’s Mission Engineering and Robert Leonard’s Prototype Warfare (see his Principles of Warfare for the Information Age book) — pave the way to increasing the rate of innovation by operationalizing technology faster to stay ahead of the threat, while simultaneously reducing the cost of technology overmatch.

Mission Engineering
OSD’s Mission Engineering concept, proposed by Dr. Robert Gold, calls for acquisitions to treat the end-to-end mission as the system to optimize, in which individual systems are components. Further, the concept utilizes an assessment framework to measure progress towards mission accomplishment through test and evaluation in the mission context. In fact, all actions throughout the capability development cycle must tie back to the mission context through the assessment framework. It goes beyond just sharing data to consider functions and the strategy for trades, tools, cross-cutting functions, and other aspects of developing a system or system of systems.

Consider the example mission objective of an airfield seizure. Traditional thinking and methods would identify an immediate needed capability for two identical air droppable vehicles, therefore starting with a highly constrained platform engineering solution. Mission Engineering would instead start by asking: what is the best way to seize an airfield? What mix of capabilities are required to do so? What mix of vehicles (e.g.,  Soldiers, exoskeletons, robots, etc.) might you need within space and weight constraints of the delivery aircraft? What should the individual performance requirements be for each piece of equipment?

Mission Engineering breaks down cultural and technical “domain stovepipes” by optimizing for the mission instead of a ground, aviation, or cyber specific solution. There is huge innovation space between the conventional domain seams.

Source: www.defenceimages.mod.uk

For example, ground vehicle concepts would be able to explore looking more like motherships deploying exoskeletons, drone swarms, or other ideas that have not been identified or presented because they have no clear home in a particular domain. It warrants stating twice that there are a series of mission optimized solutions that have not been identified or presented because they have no clear home in the current construct. Focusing the enterprise on the mission context of the problem set will enable solutions development that is relevant and timely while also connecting a network of innovators who each only have a piece of the whole picture.

Prototype Warfare

Prototype Warfare represents a paradigm shift from fielding large fleets of common-one-size-fits-all systems to rapidly fielding small quantities of tailored systems. Tailored systems focus on specific functions, specific geographic areas, or even specific fights and are inexpensively produced and possibly disposable.

MRZR with a tethered Hoverfly quadcopter unmanned aircraft system — Source: DefenseNews / Jen Judson

For example, vehicle needs are different for urban, desert, and mountain terrains. A single system is unlikely to excel across those three terrains without employing exotic and expensive materials and technology (becoming expensive and exquisite). They could comprise the entire force or just do specific missions, such as Hobart’s Funnies during the D-Day landings.

A further advantage of tailored systems is that they will force the enemy to deal with a variety of unknown U.S. assets, perhaps seen for the first time. A tank platoon might have a heterogeneous mix of assets with different weapons and armor. Since protection and lethality will be unknown to the enemy, it will be asymmetrically challenging for them to develop in a timely fashion tactics, techniques, and procedures or materiel to effectively counter such new capabilities.

Potential Enablers
Key technological advances present the opportunity to implement the Mission Engineering and Prototype Warfare concepts. Early Synthetic Prototyping (ESP), rapid manufacturing, and the burgeoning field of artificial intelligence (AI) provide ways to achieve these concepts. Each on its own would present significant opportunities. ESP, AI, and rapid manufacturing, when applied within the Mission Engineering/Prototype Warfare framework, create the potential for an innovation revolution.

Under development by the Army Capabilities Integration Center (ARCIC) and U.S. Army Research, Development, and Engineering Command (RDECOM), ESP is a physics-based persistent game network that allows Soldiers and engineers to collaborate on exploration of the materiel, force structure, and tactics trade space. ESP will generate 12 million hours of digital battlefield data per year.

Beyond the ESP engine itself, the Army still needs to invest in cutting edge research in machine learning and big data techniques needed to derive useful data on tactics and technical performance from the data. Understanding human intent and behaviors is difficult work for current computers, but the payoff is truly disruptive. Also, as robotic systems become more prominent on the battlefield, the country with the best AI to control them will have a great advantage. The best AI depends on having the most training, experimental, and digitally generated data. The Army is also acutely aware of the challenges involved in testing and system safety for AI enabled systems; understanding what these systems are intended to do in a mission context fosters debate on the subject within an agreed upon problem space and associated assessment framework.

Finally, to achieve the vision, the Army needs to invest in technology that allows rapid problem identification, engineering, and fielding of tailored systems. For over two decades, the Army has touted modularity to achieve system tailoring and flexibility. However, any time something is modularized, it adds some sort of interface burden or complexity. A specific-built system will always outperform a modular system. Research efforts are needed to understand the trade-offs of custom production versus modularity. The DoD also needs to strategically grow investment in new manufacturing technologies (to include 3D printing) and open architectures with industry.

Associated Implications
New challenges are created when there is a hugely varied fleet of tailored systems, especially for logistics, training, and maintenance. One key is to develop a well-tracked digital manufacturing database of replacement parts. For maintenance, new technologies such as augmented reality might be used to show mechanics who have never seen a system how to rapidly diagnose and make repairs.

Source: Military Embedded Systems

New Soldier interfaces for platforms should also be developed that are standardized/simplified so it is intuitive for a soldier to operate different systems in the same way it is intuitive to operate an iPhone/iPad/Mac to reduce and possibly eliminate the need for system specific training. For example, imagine a future soldier gets into a vehicle and inserts his or her common access card. A driving display populates with the Soldier’s custom widgets, similar to a smartphone display. The displays might also help soldiers understand vehicle performance envelopes. For example, a line might be displayed over the terrain showing how sharp a soldier might turn without a rollover.

Conclusion
The globalization of technology allows anyone with money to purchase “bleeding-edge,” militarizable commercial technology. This changes the way we think about the ability to generate combat power to compete internationally from the physical domain, to the time domain. Through the proposed mission engineering and prototype warfare framework, the Army can assimilate and operationalize technology quicker to create an ongoing time-domain overmatch and invert the current cost asymmetry which is adversely affecting the public’s will to fight. Placing human thought and other resources towards finding new ways to understand mission context and field new solutions will provide capability at the speed of relevance and help reduce operational surprise through a better understanding of what is possible.

Source: Defence Science and Technology Laboratory / Gov.UK

If you enjoyed this post, join SciTech Futures‘ community of experts, analysts, and creatives on 11-18 June 2018 as they discuss the logistical challenges of urban campaigns, both today and on into 2035. What disruptive technologies and doctrines will blue (and red) forces have available in 2035? Are unconventional forces the future of urban combat? Their next ideation exercise goes live today — watch the associated video here and join the discussion here!

This article was written by Dr. Rob Smith, Senior Research Scientist; Mr. Shaheen Shidfar, Strategic Cohort Lead; Mr. James Parker, Associate Director; Mr. Matthew A. Horning, Mission Engineer; and Mr. Thomas Vern, Associate Director. Collectively, these gentlemen are a subset of The Strategic Cohort, a multi-disciplinary independent group of volunteers located at TARDEC that study the Army’s Operating Concept Framework to understand how we must change to survive and thrive in the future operating environment. The Strategic Cohort analyzes these concepts and other reference materials, then engages in disciplined debate to provide recommendations to improve TARDEC’s alignment with future concepts, educate our workforce, and create dialogue with the concept developers providing a feedback loop for new ideas.

Further Reading:

Gold, Robert. “Mission Engineering.” 19th Annual NDIA Systems Engineering Conference, Oct. 26, 2016, Springfield, VA. Presentation.

Leonard, Robert R. The Principles of War for the Information Age, Presidio Press (2000).

Martin, A., & FitzGerald, B. “Process Over Platforms.” Center for a New American Security, Dec. 13, 2013.

FitzGerald, B., Sander, A. & Parziale, J. “Future Foundry A New Strategic Approach to Military-Technical Advantage.” Center for a New American Security, Dec. 14, 2016.

Kozloski, Robert. “The Path to Prototype Warfare.” War on the Rocks, 17 July 2017.

Hammes, T.X. “The Future of Warfare: Small, Many, Smart vs. Few & Exquisite?” War on the Rocks, 7 Aug. 2015.

Smith, Robert E. “Tactical Utility of Tailored Systems.” Military Review (2016).

Smith, Robert E. and Vogt, Brian. “Early Synthetic Prototyping Digital Warfighting For Systems Engineering.” Journal of Cyber Security and Information Systems 5.4 (2017).

50. Four Elements for Future Innovation

(Editor’s Note: Mad Scientist Laboratory is pleased to present a new post by returning guest blogger Dr. Richard Nabors addressing the four key practices of innovation. Dr. Nabors’ previous guest posts discussed how integrated sensor systems will provide Future Soldiers with the requisite situational awareness to fight and win in increasingly complex and advanced battlespaces, and how Augmented and Mixed Reality are the critical elements required for these integrated sensor systems to become truly operational and support Soldiers’ needs in complex environments.)


For the U.S. military to maintain its overmatch capabilities, innovation is an absolute necessity. As noted in The Operational Environment and the Changing Character of Future Warfare, our adversaries will continue to aggressively pursue rapid innovation in key technologies in order to challenge U.S. forces across multiple domains. Because of its vital necessity, U.S. innovation cannot be left solely to the development of serendipitous discoveries.

The Army has successfully generated innovative programs and transitioned them from the research community into military use. In the process, it has identified four key practices that can be used in the future development of innovative programs. These practices – identifying the need, the vision, the expertise, and the resources – are essential in preparing for warfare in the Future Operational Environment. The recently completed Third Generation Forward Looking Infrared (3rd Gen FLIR) program provides us with a contemporary use case regarding how each of these practices are key to the success of future innovations.


1. Identifying the NEED:
To increase speed, precision, and accuracy of a platform lethality, while at the same time increasing mission effectiveness and warfighter safety and survivability.

As the U.S. Army Training and Doctrine Command (TRADOC) noted in its Advanced Engagement Battlespace assessment, future Advanced Engagements will be…
compressed in time, as the speed of weapon delivery and their associated effects accelerate enormously;
extended in space, in many cases to a global extent, via precision long-range strike and interconnectedness, particularly in the information environment;
far more lethal, by virtue of ubiquitous sensors, proliferated precision, high kinetic energy weapons and advanced area munitions;
routinely interconnected – and contested — across the multiple domains of air, land, sea, space and cyber; and
interactive across the multiple dimensions of conflict, not only across every domain in the physical dimension, but also the cognitive dimension of information operations, and even the moral dimension of belief and values.

Identifying the NEED within the context of these future Advanced Engagement characteristics is critical to the success of future innovations.

The first-generation FLIR systems gave a limited ability to detect objects on the battlefield at night. They were large, slow, and provided low-resolution, short-range images. The need was for greater speed, precision, and range in the targeting process to unlock the full potential of infrared imaging. Third generation FLIR uses multiband infrared imaging sensors combined with multiple fields of view which are integrated with computer software to automatically enhance images in real-time. Sensors can be used across multiple platforms and missions, allowing optimization of equipment for battlefield conditions, greatly enhancing mission effectiveness and survivability, and providing significant cost savings.


Source: John-Stone-Art
2. Identifying the VISION:
To look beyond the need and what is possible to what could be possible.

As we look forward into the Future Operational Environment, we must address those revolutionary technologies that, when developed and fielded, will provide a decisive edge over adversaries not similarly equipped. These potential Game Changers include:
Laser and Radio Frequency Weapons – Scalable lethal and non-Lethal directed energy weapons can counter Aircraft, UAS, Missiles, Projectiles, Sensors, and Swarms.
Swarms – Leverage autonomy, robotics, and artificial intelligence to generate “global behavior with local rules” for multiple entities – either homogeneous or heterogeneous teams.
• Rail Guns and Enhanced Directed Kinetic Energy Weapons (EDKEW) – Non explosive electromagnetic projectile launchers provide high velocity/high energy weapons.
• Energetics – Provides increased accuracy and muzzle energy.
• Synthetic Biology – Engineering and modification of biological entities has potential weaponization.
• Internet of Things – Linked internet “things” create opportunity and vulnerability. Great potential benefits already found in developing U.S. systems also create a vulnerability.
• Power – Future effectiveness depends on renewable sources and reduced consumption. Small nuclear reactors are potentially a cost-effective source of stable power.

Understanding these Future Operational Environment Game Changers is central to identifying the VISION and looking beyond the need to what could be possible.

The 3rd Gen FLIR program struggled early in its development to identify requirements necessary to sustain a successful program. Without the user community’s understanding of a vision of what could be possible, requirements were based around the perceived limitations of what technology could provide. To overcome this, the research community developed a comprehensive strategy for educational outreach to the Army’s requirement developers, military officers, and industry on the full potential of what 3rd Gen FLIR could achieve. This campaign highlighted not only the recognized need, but also a vision for what was possible, and served as the catalyst to bring the entire community together.


3. Identifying the EXPERTISE:
To gather expertise from all possible sources into a comprehensive solution.

Human creativity is the most transformative force in the world; people compound the rate of innovation and technology development. This expertise is fueling the convergence of technologies that is already leading to revolutionary achievements with respect to sensing, data acquisition and retrieval, and computer processing hardware.

Identifying the EXPERTISE leads to the exponential convergence and innovation that will afford strategic advantage to those who recognize and leverage them.

The expertise required to achieve 3rd Gen FLIR success was from the integration of more than 16 significant research and development projects from multiple organizations: Small Business Innovation Research programs; applied research funding, partnering in-house expertise with external communities; Manufacturing Technology (ManTech) initiatives, working with manufacturers to develop the technology and long-term manufacturing capabilities; and advanced technology development funding with traditional large defense contractors. The talented workforce of the Army research community strategically aligned these individual activities and worked with them to provide a comprehensive, interconnected final solution.


4. Identifying the RESOURCES:
To consistently invest in innovative technology by partnering with others to create multiple funding sources.

The 2017 National Security Strategy introduced the National Security Innovation Base as a critical component of its vision of American security. In order to meet the challenges of the Future Operational Environment, the Department of Defense and other agencies must establish strategic partnerships with U.S. companies to help align private sector Research and Development (R&D) resources to priority national security applications in order to nurture innovation.

The development of 3rd Gen FLIR took many years of appropriate, consistent investments into innovations and technology breakthroughs. Obtaining the support of industry and leveraging their internal R&D investments required the Army to build trust in the overall program. By creating partnerships with others, such as the U.S. Army Communications-Electronics Research, Development and Engineering Center (CERDEC) and ManTech, 3rd Gen FLIR was able to integrate multiple funding sources to ensure a secure resource foundation.




CONCLUSION
The successful 3rd Gen FLIR program is a prototype of the implementation of an innovative program, which transitions good ideas into actual capabilities. It exemplifies how identifying the need, the vision, the expertise and the resources can create an environment where innovation thrives, equipping warriors with the best technology in the world. As the Army looks to increase its exploration of innovative technology development for the future, these examples of past successes can serve as models to build on moving forward.

See our Prototype Warfare post to learn more about other contemporary innovation successes that are helping the U.S. maintain its competitive advantage and win in an increasingly contested Operational Environment.

Dr. Richard Nabors is Associate Director for Strategic Planning and Deputy Director, Operations Division, U.S. Army Research, Development and Engineering Command (RDECOM) Communications-Electronics Research, Development and Engineering Center (CERDEC), Night Vision and Electronic Sensors Directorate.

45. Envisioning Future Operational Environment Possibilities through Story Telling

“The only way of discovering the limits of the possible is to venture a little way past them, into the impossible.” — Sir Arthur C. Clarke, 20th Century British science fiction writer, futurist, and inventor








In envisioning Future Operational Environment possibilities, the Mad Scientist Initiative employs the following techniques:

Crowdsourcing: Gathering ideas, thoughts, and concepts from a wide variety of interested individuals assists us in diversifying thoughts and challenging conventional assumptions

Edge Cases: Examining what is at the extreme possible regarding new and emerging technologies allows us to contextualize the future

Historical Analogy: Comparing past events to current and future possibilities allows us to imagine the transformational and sometimes radical changes the Army of the Future may experience

Story Telling: Creative fictional writing and narrative building that helps us explore how technologies are employed and operationalized

While each of these techniques have their own unique merits, Mad Scientist has found that Story Telling serves us especially well in facilitating the exploration of future possibilities. As Mr. Peter David addresses in his Small Wars Journal article entitled “Science Fiction vs. Science Funding: Comparing What We Imagine to What We Invent,” well-written science fiction provides us with more than just a litany of speculative scientific and technological advances. It takes these advances and wickers them seamlessly within an engaging plot. Characters actually employ these advances, enabling us to visualize their effects on both the individual and society as a whole.

In November 2016, Mad Scientist launched its first Science Fiction Writing Competition with the topic “Warfare in 2030 to 2050.” We sought out unconventional thinkers and solicited their unique perspectives — we were not disappointed! With over 150 submissions from authors in 10 different countries around the globe, the diversity of input provided us with a wide variety of thoughts and ideas about warfare and the Future Operational Environment. Through the art of Story Telling, the Army was able to visualize the known, probable, and possible challenges and opportunities that the future holds.

Mad Scientist singled out Mr. Mathison Hall‘s short story entitled “Patrolling the Infosphere” for recognition at our Mad Scientist Visualizing Multi Domain Battle 2030-2050 Conference, co-sponsored by Georgetown University in Washington, D.C., on 25-26 July 2017. The following is an excerpt from his winning submission:

I step into my exoskeleton, my link-suit hooking into the inside of the exoskel. “All systems charged and functional. Left knee joint operating at partial strength, but combat ready,” the exoskel’s voice calmly reports. They hit my knee hard three patrols ago. The contractor jury-rigged it to function…partially. I can still run up to forty-miles-an-hour and jump to the third floor windows, but the outside of the joint started vibrating and pulling oddly to the right on patrol this morning. It’ll be fun trying to hoof it in a one-hundred and fifty-five pound exoskel plus another sixty pounds of gear, weapons, and ammo with my own knee power on the left side if that thing gives out.

Angels, let’s go, I think to myself. My two synched drones lift off the charging shelf and lock into my exoskel’s shoulders. The suit hums softly and each step clinks lightly as I line up with the rest of the squad for our final pre-combat checks.

Staff Sergeant Nguyen’s exoskel head turns and looks over us. I can see her face through the clear polymer face shield. She has a sly smile. I’ve got to hand it to her, she loves patrolling.

“Second squad online and ready,” her voice projects over our intercoms.

“Copy second squad. We have a good synch here in the company operations center. Information operations and intel are both online and monitoring. Your Cyber Force bubbas are up and running ready to save your hides. Air Force drones are airborne and you’ve got priority of fires from one Navy railgun. No news feeds right now. There’s at least one Russian cube-sat up there watching our sector, but it’s not projecting over any social media yet. We’ve let Fort Meade know, and they should have it down soon. Tell us when you’re ready to step and we’ll start chatting.”

That’s my drinking buddy, Coder Second Class Hawkins, for you. He never passes up a chance to say in fifty words what can be said in ten. Makes him a good drinking buddy, especially when he gets going. I like to give him crap for being the only Cyber Force hacker deployed in our sector. His whole service spends most of their careers stateside. But no one doubts that they’re the main effort.

Chatting…damn. He and his reach-back squad in Maryland are going to start lighting up the news feeds and social media soon. Lucia’s going to be pissed. I bet she’s watching right now from Fayetteville. Let’s see, how many hours ahead of the East Coast are we? Five? She probably hasn’t left for work at the intel fusion cell on base yet. Probably at home getting Cindy ready for school and watching #DCo3dBCT82ndAirborne right now, monitoring the Russian cube-sat feed and our chatter at the same time. I bet Fort Meade gets the cube-sat down right about the time we’re wrapping up our patrol, as usual.

“Second squad ready to step.” Staff Sergeant Nguyen.

“Copy, second squad. The public affairs specialist is up and transmitting. We’ve got a foothold into the local internet exchange point, and we’ve got good visual on the whole town from the drones. No abnormal activity. Go ahead and step.”

We leave the tent, the nine of us stepping into the scorching sunlight as two Chinese field hackers march across the courtyard in their suits. Their suits’ exoskels look suspiciously like ours…same design and functions and almost the same weapons systems. Suits look a little sleeker and newer; less used. Two headless mules, our ammo, water, and gear resupply drones, fall in behind us, their legs moving rhythmically and spider-like as their LIDAR sensors navigate the terrain in front of them and keep them locked on to us 20 yards to our rear. They follow us like four-legged mechanical spiders, crawling across the dusty, crumbling streets between our company’s firm base and the center of town…


Video envisioning the world described in Mr. Mathison Hall’s “Patrolling the Infosphere.”

You can read the rest of Mr. Hall’s winning entry, as well as 22 other submissions from this contest at Science Fiction: Visioning the Future of Warfare 2030-2050.

Watch Mr. Hall’s presentation entitled “Patrolling the Infosphere” at the Mad Scientist Visualizing Multi Domain Battle 2030-2050 Conference.

Mad Scientist Laboratory has also explored the benefits of Story Telling in the televisual arts in Dr. Peter Emanuel’s guest blog post.

Harvard Business Review and MIT Technology Review have both realized the merits of Science Fiction; as Mr. Eliot Peper notes in his article in HBR:

“Exploring fictional futures frees our thinking from false constraints. It challenges us to wonder whether we’re even asking the right questions. It forces us to recognize that sometimes imagination is more important than analysis.”

For additional examples of how Story Telling provides us with provocative and unique insights into future possibilities regarding warfare and the Future Operational Environment, read the finalists from our recent Soldier 2050 Call for Ideas, hosted by our colleagues at Small Wars Journal.