105. Emerging Technologies as Threats in Non-Kinetic Engagements

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s post by returning guest blogger and proclaimed Mad Scientist Dr. James Giordano and CAPT (USN – Ret.) L. R. Bremseth, identifying the national security challenges presented by emerging technologies, specifically when employed by our strategic competitors and non-state actors alike in non-kinetic engagements.

Dr. Giordano’s and CAPT Bremseth’s post is especially relevant, given the publication earlier this month of TRADOC Pamphlet 525-3-1, U.S. Army in Multi-Domain Operations 2028, and its solution to the “problem of layered standoff,” namely “the rapid and continuous integration of all domains of warfare to deter and prevail as we compete short of armed conflict; penetrate and dis-integrate enemy anti-access and area denial systems; exploit the resulting freedom of maneuver to defeat enemy systems, formations and objectives and to achieve our own strategic objectives; and consolidate gains to force a return to competition on terms more favorable to the U.S., our allies and partners.”]

“Victorious warriors seek to win first then go to war, while defeated warriors go to war first then seek to win.” — Sun Tzu

Non-kinetic Engagements

Political and military actions directed at adversely impacting or defeating an opponent often entail clandestine operations which can be articulated across a spectrum that ranges from overt warfare to subtle “engagements.” Routinely, the United States, along with its allies (and adversaries), has employed clandestine tactics and operations across the kinetic and non-kinetic domains of warfare. Arguably, the execution of clandestine kinetic operations is employed more readily as these collective activities often occur after the initiation of conflict (i.e., “Right of Bang”), and their effects may be observed (to various degrees) and/or measured. Given that clandestine non-kinetic activities are less visible and insidious, they may be particularly (or more) effective because often they are unrecognized and occur “Left of Bang.” Other nations, especially adversaries, understand the relative economy of force that non-kinetic engagements enable and increasingly are focused upon developing and articulating advanced methods for operations.

Much has been written about the fog of war. Non-kinetic engagements can create unique uncertainties prior to and/or outside of traditional warfare, precisely because they have qualitatively and quantitatively “fuzzy boundaries” as blatant acts of war. The “intentionally induced ambiguity” of non-kinetic engagements can establish plus-sum advantages for the executor(s) and zero-sum dilemmas for the target(s). For example, a limited scale non-kinetic action, which exerts demonstrably significant effects but does not meet defined criteria for an act of war, places the targeted recipient(s) at a disadvantage:  First, in that the criteria for response (and proportionality) are vague and therefore any response could be seen as questionable; and second, in that if the targeted recipient(s) responds with bellicose action(s), there is considerable likelihood that they may be viewed as (or provoked to be) the aggressor(s) (and therefore susceptible to some form of retribution that may be regarded as sanctionable).

Nominally, non-kinetic engagements often utilize non-military means to expand the effect-space beyond the conventional battlefield. The Department of Defense and Joint Staff do not have a well agreed-upon lexicon to define and to express the full spectrum of current and potential activities that constitute non-kinetic engagements. It is unfamiliar – and can be politically uncomfortable – to use non-military terms and means to describe non-kinetic engagements. As previously noted, it can be politically difficult – if not precarious– to militarily define and respond to non-kinetic activities.

Non-kinetic engagements are best employed to incur disruptive effects in and across various dimensions of effect (e.g., biological, psychological, social) that can lead to intermediate to long-term destructive manifestations (in a number of possible domains, ranging from the economic to the geo-political). The latent disruptive and destructive effects should be framed and regarded as “Grand Strategy” approaches that evoke outcomes in a “long engagement/long war” context rather than merely in more short-term tactical situations.1

Thus, non-kinetic operations must be seen and regarded as “tools of mass disruption,” incurring “rippling results” that can evoke both direct and indirect de-stabilizing effects. These effects can occur and spread:  1) from the cellular (e.g., affecting physiological function of a targeted individual) to the socio-political scales (e.g., to manifest effects in response to threats, burdens and harms incurred by individual and/or groups); and 2) from the personal (e.g., affecting a specific individual or particular group of individuals) to the public dimensions in effect and outcome (e.g., by incurring broad scale reactions and responses to key non-kinetic events).2

Given the increasing global stature, capabilities, and postures of Asian nations, it becomes increasingly important to pay attention to aspects of classical Eastern thought (e.g., Sun Tzu) relevant to bellicose engagement. Of equal importance is the recognition of various nations’ dedicated enterprises in developing methods of non-kinetic operations (e.g., China; Russia), and to understand that such endeavors may not comport with the ethical systems, principles, and restrictions adhered to by the United States and its allies.3, 4 These differing ethical standards and practices, if and when coupled to states’ highly centralized abilities to coordinate and to synchronize activity of the so-called “triple helix” of government, academia, and the commercial sector, can create synergistic force-multiplying effects to mobilize resources and services that can be non-kinetically engaged.5 Thus, these states can target and exploit the seams and vulnerabilities in other nations that do not have similarly aligned, multi-domain, coordinating capabilities.

Emerging Technologies – as Threats

Increasingly, emerging technologies are being leveraged as threats for such non-kinetic engagements. While the threat of radiological, nuclear, and (high yield) explosive technologies have been and remain generally well surveilled and controlled to date, new and convergent innovations in the chemical, biological, cyber sciences, and engineering are yielding tools and methods that currently are not completely, or effectively addressed. An overview of these emerging technologies is provided in Table 1 below.

Table 1

Of key interest are the present viability and current potential value of the brain sciences to be engaged in these ways.6, 7, 8 The brain sciences entail and obtain new technologies that can be applied to affect chemical and biological systems in both kinetic (e.g., chemical and biological ‘warfare’ but in ways that may sidestep definition – and governance – by existing treaties and conventions such as the Biological Toxins and Weapons Convention (BTWC), and Chemical Weapons Convention (CWC), and/or non-kinetic ways (which fall outside of, and therefore are not explicitly constrained by, the scope and auspices of the BTWC or CWC).9, 10

As recent incidents (e.g., “Havana Syndrome”; use of novichok; infiltration of foreign-produced synthetic opioids to US markets) have demonstrated, the brain sciences and technologies have utility to affect “minds and hearts” in (kinetic and non-kinetic) ways that elicit biological, psychological, socio-economic, and political effects which can be clandestine, covert, or attributional, and which evoke multi-dimensional ripple effects in particular contexts (as previously discussed). Moreover, apropos current events, the use of gene editing technologies and techniques to modify existing microorganisms11, and/or selectively alter human susceptibility to disease12 , reveal the ongoing and iterative multi-national interest in and considered weaponizable use(s) of emerging biotechnologies as instruments to incur “precision pathologies” and “immaculate destruction” of selected targets.

Toward Address, Mitigation, and Prevention

Without philosophical understanding of and technical insight into the ways that non-kinetic engagements entail and affect civilian, political, and military domains, the coordinated assessment and response to any such engagement(s) becomes procedurally complicated and politically difficult. Therefore, we advocate and propose increasingly dedicated efforts to enable sustained, successful surveillance, assessment, mitigation, and prevention of the development and use of Emerging Technologies as Threats (ETT) to national security. We posit that implementing these goals will require coordinated focal activities to:  1) increase awareness of emerging technologies that can be utilized as non-kinetic threats; 2) quantify the likelihood and extent of threat(s) posed; 3) counter identified threats; and 4) prevent or delay adversarial development of future threats.

Further, we opine that a coordinated enterprise of this magnitude will necessitate a Whole of Nations approach so as to mobilize the organizations, resources, and personnel required to meet other nations’ synergistic triple helix capabilities to develop and non-kinetically engage ETT.

Utilizing this approach will necessitate establishment of:

1. An office (or network of offices) to coordinate academic and governmental research centers to study and to evaluate current and near-future non-kinetic threats.

2. Methods to qualitatively and quantitatively identify threats and the potential timeline and extent of their development.

3. A variety of means for protecting the United States and allied interests from these emerging threats.

4. Computational approaches to create and to support analytic assessments of threats across a wide range of emerging technologies that are leverageable and afford purchase in non-kinetic engagements.

In light of other nations’ activities in this domain, we view the non-kinetic deployment of emerging technologies as a clear, present, and viable future threat. Therefore, as we have stated in the past13, 14, 15 , and unapologetically re-iterate here, it is not a question of if such methods will be utilized but rather questions of when, to what extent, and by which group(s), and most importantly, if the United States and its allies will be prepared for these threats when they are rendered.

If you enjoyed reading this post, please also see Dr. Giordano’s presentations addressing:

War and the Human Brain podcast, posted by our colleagues at Modern War Institute on 24 July 2018.

Neurotechnology in National Security and Defense from the Mad Scientist Visioning Multi-Domain Battle in 2030-2050 Conference, co-hosted by Georgetown University in Washington, D.C., on 25-26 July 2017.

Brain Science from Bench to Battlefield: The Realities – and Risks – of Neuroweapons from Lawrence Livermore National Laboratory’s Center for Global Security Research (CGSR), on 12 June 2017.

Mad Scientist James Giordano, PhD, is Professor of Neurology and Biochemistry, Chief of the Neuroethics Studies Program, and Co-Director of the O’Neill-Pellegrino Program in Brain Science and Global Law and Policy at Georgetown University Medical Center. He also currently serves as Senior Biosciences and Biotechnology Advisor for CSCI, Springfield, VA, and has served as Senior Science Advisory Fellow of the Strategic Multilayer Assessment Group of the Joint Staff of the Pentagon.

R. Bremseth, CAPT, USN SEAL (Ret.), is Senior Special Operations Forces Advisor for CSCI, Springfield, VA. A 29+ years veteran of the US Navy, he commanded SEAL Team EIGHT, Naval Special Warfare GROUP THREE, and completed numerous overseas assignments. He also served as Deputy Director, Operations Integration Group, for the Department of the Navy.

This blog is adapted with permission from a whitepaper by the authors submitted to the Strategic Multilayer Assessment Group/Joint Staff Pentagon, and from a manuscript currently in review at HDIAC Journal. The opinions expressed in this piece are those of the authors, and do not necessarily reflect those of the United States Department of Defense, and/or the organizations with which the authors are involved. 


1 Davis Z, Nacht M. (Eds.) Strategic Latency- Red, White and Blue: Managing the National and international Security Consequences of Disruptive Technologies. Livermore CA: Lawrence Livermore Press, 2018.

2 Giordano J. Battlescape brain: Engaging neuroscience in defense operations. HDIAC Journal 3:4: 13-16 (2017).

3 Chen C, Andriola J, Giordano J. Biotechnology, commercial veiling, and implications for strategic latency: The exemplar of neuroscience and neurotechnology research and development in China. In: Davis Z, Nacht M. (Eds.) Strategic Latency- Red, White and Blue: Managing the National and international Security Consequences of Disruptive Technologies. Livermore CA: Lawrence Livermore Press, 2018.

4 Palchik G, Chen C, Giordano J. Monkey business? Development, influence and ethics of potentially dual-use brain science on the world stage. Neuroethics, 10:1-4 (2017).

5 Etzkowitz H, Leydesdorff L. The dynamics of innovation: From national systems and “Mode 2” to a Triple Helix of university-industry-government relations. Research Policy, 29: 109-123 (2000).

6 Forsythe C, Giordano J. On the need for neurotechnology in the national intelligence and defense agenda: Scope and trajectory. Synesis: A Journal of Science, Technology, Ethics and Policy 2(1): T5-8 (2011).

7 Giordano J. (Ed.) Neurotechnology in National Security and Defense: Technical Considerations, Neuroethical Concerns. Boca Raton: CRC Press (2015).

8 Giordano J. Weaponizing the brain: Neuroscience advancements spark debate. National Defense, 6: 17-19 (2017).

9 DiEuliis D, Giordano J. Why gene editors like CRISPR/Cas may be a game-changer for neuroweapons. Health Security 15(3): 296-302 (2017).

10 Gerstein D, Giordano J. Re-thinking the Biological and Toxin Weapons Convention? Health Security 15(6): 1-4 (2017).

11 DiEuliis D, Giordano J. Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity. Protein and Cell 15: 1-2 (2017).

12 See, for example: https://www.vox.com/science-and-health/2018/11/30/18119589/crispr-technology-he-jiankui (Accessed 2. December, 2018).

13 Giordano J, Wurzman R. Neurotechnology as weapons in national intelligence and defense. Synesis: A Journal of Science, Technology, Ethics and Policy 2: 138-151 (2011).

14 Giordano J, Forsythe C, Olds J. Neuroscience, neurotechnology and national security: The need for preparedness and an ethics of responsible action. AJOB-Neuroscience 1(2): 1-3 (2010).

15 Giordano J. The neuroweapons threat. Bulletin of the Atomic Scientists 72(3): 1-4 (2016).

97. The Cryptoruble as a Stepping Stone to Digital Sovereignty

“By 2038, there won’t just be one internet — there will be many, split along national lines” — An Xiao Mina, 2038 podcast, Episode 2, New York Magazine Intelligencer, 25 October 2018.

[Editor’s Note:  While the prediction above is drawn from a podcast that posits an emerging tech cold war between China and the U.S., the quest for digital sovereignty and national cryptocurrencies is an emerging global trend that portends the fracturing of the contemporary internet into national intranets.  This trend erodes the prevailing Post-Cold War direction towards globalization.  In today’s post, Mad Scientist Laboratory welcomes back guest blogger Dr. Mica Hall, who addresses Russia’s move to adopt a national cryptocurrency, the cryptoruble, as a means of asserting its digital sovereignty and ensuring national security.  The advent of the cryptoruble will have geopolitical ramifications far beyond Mother Russia’s borders, potentially ushering in an era of economic hegemony over those states that embrace this supranational cryptocurrency. (Note:  Some of the embedded links in this post are best accessed using non-DoD networks.)]

At the nexus of monetary policy, geopolitics, and information control is Russia’s quest to expand its digital sovereignty. At the October 2017 meeting of the Security Council, “the FSB [Federal Security Service] asked the government to develop an independent ‘Internet’ infrastructure for BRICS nations [Brazil, Russia, India, China, South Africa], which would continue to work in the event the global Internet malfunctions.” 1 Security Council members argued the Internet’s threat to national security is due to:

“… the increased capabilities of Western nations to conduct offensive operations in the informational space as well as the increased readiness to exercise these capabilities.”2

This echoes the sentiment of Dmitry Peskov, Putin’s Press Secretary, who stated in 2014,

We all know who the chief administrator of the global Internet is. And due to its volatility, we have to think about how to ensure our national security.”3

At that time, the Ministry of Communications (MinCom) had just tested a Russian back-up to the Internet to support a national “Intranet,” lest Russia be left vulnerable if the global Domain Name Servers (DNS) are attacked. MinCom conducted “a major exercise in which it simulated ‘switching off’ global Internet services,” and in 2017, the Security Council decided to create just such a backup system “which would not be subject to control by international organizations” for use by the BRICS countries.4

While an Internet alternative (or Alternet) may be sold to the Russian public as a way to combat the West’s purported advantage in the information war, curb excessive dependency on global DNS, and protect the country from the foreign puppet masters of the Internet that “pose a serious threat to Russia’s security,”5 numerous experts doubt Russia’s actual ability to realize the plan, given its track record.

Take the Eurasian Economic Union (EAEU), for example, an international organization comprised of Russia, Kazakhstan, Kyrgyzstan, Armenia, and Belarus. Russia should be able to influence the EAEU even more than the BRICS countries, given its leading role in establishing the group. The EAEU was stood up in January 2016, and by December, “MinCom and other government agencies were given the order to develop and confirm a program for the ‘Digital Economy,’ including plans to develop [it in] the EAEU.”6 As Slavin observes, commercial ventures have already naturally evolved to embrace the actual digital economy: “The digital revolution has already occurred, business long ago switched to electronic interactions,”7 while the state has yet to realize its Digital Economy platform.

Changing the way the government does business has proven more difficult than changing the actual economy. According to Slavin, “The fact that Russia still has not developed a system of digital signatures, that there’s no electronic interaction between government and business or between countries of the EAEU, and that agencies’ information systems are not integrated – all of that is a problem for the withered electronic government that just cannot seem to ripen.”8 The bridge between the state and the actual digital economy is still waiting for “legislation to support it and to recognize the full equality of electronic and paper forms.”9 Consequently, while the idea to create a supranational currency to be used in the EAEU has been floated many times, the countries within the organization have not been able to agree on what that currency would be.

The cryptoruble could be used to affect geopolitical relationships. In addition to wielding untraceable resources, Russia could also leverage this technology to join forces with some countries against others. According to the plan President Putin laid out upon announcing the launch of a cryptoruble, Russia would form a “single payment space” for the member states of the EAEU, based on “the use of new financial technologies, including the technology of distributed registries.”10 Notably, three months after the plan to establish a cryptoruble was announced, Russia’s Central Bank stated the value of working on establishing a supranational currency to be used either across the BRICS countries or across the EAEU, or both, instead of establishing a cryptoruble per se.11

This could significantly affect the balance of power not only in the region, but also in the world. Any country participating in such an economic agreement, however, would subject themselves to being overrun by a new hegemony, that of the supranational currency.

 

As long as the state continues to cloak its digital sovereignty efforts in the mantle of national security – via the cryptoruble or the Yarovaya laws, which increase Internet surveillance – it can continue to constrict the flow of information without compunction. As Peskov stated, “It’s not about disconnecting Russia from the World Wide Web,” but about “protecting it from external influence.”12 After Presidents Putin and Trump met at the G20 Summit in July 2017, MinCom Nikiforov said the two countries would establish a working group “for the control and security of cyberspace,” which the U.S. Secretary of State said would “develop a framework for cybersecurity and a non-interference agreement.”13 Prime Minister Medvedev, however, said digitizing the economy is both “a matter of Russia’s global competitiveness and national security,”14 thus indicating Russia is focused not solely inward, but on a strategic competitive stance. MinCom Nikiforov makes the shortcut even clearer, stating, “In developing the economy, we need digital sovereignty,”15 indicating a need to fully control how the country interacts with the rest of the world in the digital age.

The Kremlin’s main proponent for digital sovereignty, Igor Ashmanov, claims, “Digital sovereignty is the right of the government to independently determine what is happening in their digital sphere. And make its own decisions.” He adds, “Only the Americans have complete digital sovereignty. China is growing its sovereignty. We are too.”16 According to Lebedev, “Various incarnations of digital sovereignty are integral to the public discourse in most countries,” and in recent years, “The idea of reining in global information flows and at least partially subjugating them to the control of certain traditional or not-so-traditional jurisdictions (the European Union, the nation-state, municipal administrations) has become more attractive.”17   In the Russian narrative, which portrays every nation as striving to gain the upper hand on the information battlefield, Ashmanov’s fear that, “The introduction of every new technology is another phase in the digital colonization of our country,”18 does not sound too far-fetched.

The conspiracy theorists to the right of the administration suggest the “global world order” represented by the International Monetary Fund intends to leave Russia out of its new replacement reference currency, saying “Big Brother is coming to blockchain.”19 Meanwhile, wikireality.ru reports the Russian government could limit web access in the name of national security, because the Internet “is a CIA project and the U.S. is using information wars to destroy governments,” using its “cybertroops.”20 As the site notes, the fight against terrorism has been invoked as a basis for establishing a black list of websites available within Russia. Just as U.S. citizens have expressed concerns over the level of surveillance made legal by the Patriot Act, so Russian netizens have expressed concerns over the Yarovaya laws and moves the state has made to facilitate information sovereignty.

According to the Financial Times, “This interest in cryptocurrencies shows Russia’s desire to take over an idea originally created without any government influence. It was like that with the Internet, which the Kremlin has recently learned to tame.”21 Meanwhile, a healthy contingent of Russian language netizens continue to express their lack of faith in the national security argument, preferring to embrace a more classical skepticism, as reflected in comments in response to a 2017 post by msmash called, “From the Never-Say-Never-But-Never Department,” — “In Putin’s Russia, currency encrypts you!”22 To these netizens, the state looks set to continue to ratchet down on Internet traffic: “It’s really descriptive of just how totalitarian the country has become that they’re hard at work out-Chinaing China itself when it comes to control of the Internet,” but “China is actually enforcing those kind of laws against its people. In Russia, on the other hand, the severity of the laws is greatly mitigated by the fact that nobody gives a **** about the law.”23 In addition to suggesting personal security is a fair price to be paid for national security via surveillance and Internet laws, the state appears poised to argue all information about persons in the country, including about their finances, should also be “transparent” to fight terrorism and crime in general.

If you enjoyed reading this post, please also see:

Dr. Mica Hall is a Russian linguist and holds an MA and PhD in Slavic Linguistics and an MPA.

The views expressed in this article are those of the author and do not reflect the official policy or position of the Department of the Army, DoD, or the U.S. Government.


1 Russia to Launch ‘Independent Internet’ for BRICS Nations – Report, 2017, RT.com, https://www.rt.com/politics/411156-russia-to-launch-independent-internet/, 28 November 2017.

2 Russia to Launch.

3 Russia to Launch.

4 Russia to Launch.

5 Russia to Launch.

6 Boris Slavin, 2017, People or Digits: Which One Do We Need More? vedomosti.ru, https://www.vedomosti.ru/opinion/articles/2017/01/17/673248-lyudi-tsifri-nuzhnee, 17 January 2017.

7 Slavin, People or Digits.

8 Slavin, People or Digits.

9 Slavin, People or Digits.

10 Kyree Leary, 2017, Vladimir Putin Just Revealed Russia’s Plans for Cryptocurrencies, futurism.com, https://futurism.com/vladimir-putin-just-revealed-russias-plans-for-cryptocurrencies/, 26 October 26017.

11 CB is Discussing Creating a Supranational Cryptocurrency Together With EAEU and BRICS, 2017, vedomosti.ru, https://www.vedomosti.ru/finance/news/2017/12/28/746856-sozdanie-kriptovalyuti-v-ramkah-eaes-i-briks-bank-rossii-v-2018-g, 28 December 2017.

12 Russia to Launch.

13 Russia and the US to Create a Working Group for the Regulation of Cyberspace, 2017, RIA Novosti, https://ria.ru/world/20170708/1498126496.html?=inj=1, 8 July 2017.

14 MinComSvyazi: We Need Digital Sovereignty to Develop the Economy, 2017, RIA Novosti, https://ria.ru/soceity/20170905/1501809181.html, 5 September 2017.

15 MinComSvyazi: We Need Digital Sovereignty.

16 Irina Besedovala, 2016, The Yarovaya Laws Will Save Us from the CIA, fontanka.ru, http://www.fontanka.ru/2016/10/22/061/, 22 October 2016.

17 Dmitry Lebedev, 2017, Digital Sovereignty à la Russe, opendemocracy.net, https://www.opendemocracy.net/od-russia/dmitry-lebedev/digital-sovereignty-a-la-russe, 3 November 2017.

18 Igor Ashmanov, 2017, The Recipe for Digital Sovereignty, Rossijskoe Agentstvo Novostej, http://www.ru-an.info/, 22 August 2017.

19 Global Elites’ Secret Plan for Cryptocurrencies, 2017, pravosudija.net, http://www. pravdosudija.net/article/sekretynyy-plan-globalnyh-elit-otnositelno-kriptovalyut, 5 September 2017.

20 Information Sovereignty, 2017, wikireality.ru, http://www.wikireality.ru/wiki/Информационный_сувернитет, 28 March 2017.

21 FT: Russia Is Looking For A Way to “Cut Off” Cryptocurrencies, 2018, Russian RT, https://russian.rt.com/inotv/2018-01-02/FT-Rossiya-ishhet-sposob-ukrotit, 2 January 2018.

22 msmash, 2017, We’ll Never Legalize Bitcoin, Says Russian Minister, yro.slashdot.org, https://yro.slashdot.org/story/17/11/22/2111216/well-never-legalize-bitcoin-says-russian-minister, 22 November 2017.

23 We’ll Never Legalize Bitcoin.

71. Shaping Perceptions with Information Operations: Lessons for the Future

[Editor’s Note: Mad Scientist Laboratory is pleased to present today’s guest post by Ms. Taylor Galanides, TRADOC G-2 Summer Intern, exploring how the increasing momentum of human interaction, events, and actions, driven by the convergence of innovative technologies, is enabling adversaries to exploit susceptibilities and vulnerabilities to manipulate populations and undermine national interests.  Ms. Galanides examines contemporary Information Operations as a harbinger of virtual warfare in the future Operational Environment.]

More information is available than ever before. Recent and extensive developments in technology, media, communication, and culture – such as the advent of social media, 24-hour news coverage, and smart devices – allow people to closely monitor domestic and foreign affairs. In the coming decades, the increased speed of engagements, as well as the precise and pervasive targeting of both civilian and military populations, means that these populations and their respective nations will be even more vulnerable to influence and manipulation attempts, misinformation, and cyber-attacks from foreign adversaries.

The value of influencing and shaping the perceptions of foreign and domestic populations in order to pursue national and military interests has long been recognized. This can be achieved through the employment of information operations, which seek to affect the decision-making process of adversaries. The U.S. Army views information operations as an instrumental part of the broader effort to maintain an operational advantage over adversaries. Information operations is specifically defined by the U.S. Army as “The integrated employment, during military operations, of information-related capabilities in concert with other lines of operation to influence, disrupt, corrupt, or usurp the decision-making of adversaries and potential adversaries while protecting our own.”

The U.S. Army Training and Doctrine Command (TRADOC) G-2’s The Operational Environment and the Changing Character of Future Warfare further emphasizes this increased attention to the information and cognitive domains in the future – in the Era of Contested Equality (2035 through 2050). As a result, it has been predicted that no single nation will hold hegemony over its adversaries, and major powers and non-state actors alike “… will engage in a fight for information on a global scale.” Winning preemptively in the competitive dimension before escalation into armed conflict through the use of information and psychological warfare will become key.

Source: Becoming Human – Artificial Intelligence Magazine

Part of the driving force that is changing the character of warfare includes the rise of innovative technologies such as computer bots, artificial intelligence, and smart devices. Such emerging and advancing technologies have facilitated the convergence of new susceptibilities to individual and international security; as such, it will become increasingly more important to employ defensive and counter information operations to avoid forming misperceptions or being deceived.

Harbinger of the Future:  Information Operations in Crimea

Russia’s invasion of eastern Ukraine and subsequent annexation of Crimea in 2014 effectively serve as cautionary examples of Russia’s evolving information operations and their perception-shaping capabilities. In Crimea, Russia sought to create a “hallucinating fog of war” in an attempt to alter the analytical judgments and perceptions of its adversaries. With the additional help of computer hackers, bots, trolls, and television broadcasts, the Russian government was able to create a manipulated version of reality that claimed Russian intervention in Crimea was not only necessary, but humanitarian, in order to protect Russian speakers. Additionally, Russian cyberespionage efforts included the jamming or shutting down of telecommunication infrastructures, important Ukrainian websites, and cell phones of key officials prior to the invasion. Through the use of large demonstrations called “snap exercises,” the Russians were able to mask military buildups along the border, as well as its political and military intentions. Russia further disguised their intentions and objectives by claiming adherence to international law, while also claiming victimization from the West’s attempts to destabilize, subvert, and undermine their nation.

By denying any involvement in Crimea until after the annexation was complete, distorting the facts surrounding the situation, and refraining from any declaration of war, Russia effectively infiltrated the international information domain and shaped the decision-making process of NATO countries to keep them out of the conflict.  NATO nations ultimately chose minimal intervention despite specific evidence of Russia’s deliberate intervention in order to keep the conflict de-escalated. Despite the West’s refusal to acknowledge the annexation of Crimea, it could be argued that Russia achieved their objective of expanding its sphere of influence.

Vulnerabilities and Considerations

Russia is the U.S.’ current pacing threat, and China is projected to overtake Russia as the Nation’s primary threat as early as 2035. It is important to continue to evaluate the way that the U.S. and its Army respond to adversaries’ increasingly technological attempts to influence, in order to maintain the information and geopolitical superiority of the Nation. For example, the U.S. possesses different moral and ethical standards that restrict the use of information operations. However, because adversarial nations like Russia and China pervasively employ influence and deceptive measures in peacetime, the U.S. and its Army could benefit from developing alternative methods for maintaining an operational advantage against its adversaries.


Adversarial nations can also take advantage of “the [Western] media’s willingness to seek hard evidence and listen to both sides of an argument before coming to a conclusion” by “inserting fabricated or prejudicial information into Western analysis and blocking access to evidence.” The West’s free press will continue to be the primary counter to constructed narratives. Additionally, extensive training of U.S. military and Government personnel, in conjunction with educating its civilian population about Russia and China’s deceitful narratives may decrease the likelihood of perceptions being manipulated:  “If the nation can teach the media to scrutinize the obvious, understand the military, and appreciate the nuances of deception, it may become less vulnerable to deception.” Other ways to exploit Russian and Chinese vulnerabilities could include taking advantage of poor operations security, as well as the use and analysis of geotags to refute and discredit Russian and Chinese propaganda narratives.

A final consideration involves the formation of an interagency committee, similar to the Active Measures Working Group from the 1980s, for the identification and countering of adversarial disinformation and propaganda. The coordination of the disinformation efforts by manipulative countries like Russia is pervasive and exhaustive. Thus, coordination of information operations and counter-propaganda efforts is likewise important between the U.S. Government, the Army, and the rest of the branches of the military. The passing of the Countering Foreign Propaganda and Disinformation Act, part of the 2017 National Defense Authorization Act, was an important first step in the continuing fight to counter foreign information and influence operations that seek to manipulate the U.S. and its decision-makers and undermine its national interests.

For more information on how adversaries will seek to shape perception in the Future Operational Environment, read the following related blog posts:

Influence at Machine Speed: The Coming of AI-Powered Propaganda

Virtual War – A Revolution in Human Affairs (Part I)

Personalized Warfare

Taylor Galanides is a Junior at The College of William and Mary in Virginia, studying Psychology. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the G-2 Futures team.

70. Star Wars 2050

[Editor’s Note:  Mad Scientist Laboratory is pleased to present today’s guest post by returning blogger Ms. Marie Murphy, addressing the implication of space drones and swarms on space-based services critical to the U.S. Army.  Ms. Murphy’s previous post addressed Virtual Nations: An Emerging Supranational Cyber Trend.]

Drone technology continues to proliferate in militaries and industries around the world.  In the deep future, drones and drone swarms may extend physical conflict into the space domain.  As space becomes ever more critical to military operations, states will seek technologies to counter their adversaries’ capabilities.   Drones and swarms can blend in with space debris in order to provide a tactical advantage against vulnerable and expensive assets at a lower cost.

Source: AutoEvolution

Space was recently identified as a battlespace domain in recognition of threats increasing at an unexpected rate and, in 2013, the Army Space Training Strategy was released. The functions of the Army almost entirely depend on space systems for daily and specialized operations, particularly C4ISR and GPS capabilities. “Well over 2,500 pieces of equipment… rely on a space-based capability” in any given combat brigade, so an Army contingency plan for the loss of satellite communication is critical.[I]  It is essential for the Army, in conjunction with other branches of the military and government agencies, to best shield military assets in space and continue to develop technologies, such as outer space drones and swarms, to remain competitive and secure throughout this domain in the future.

Source: CCTV China

Drone swarms in particular are an attractive military option due to their relative inexpensiveness, autonomy, and durability as a whole. The U.S., China, and Russia are the trifecta of advanced drone and drone swarm technology and also pose the greatest threats in space. In May 2018, Chinese Company CETC launched 200 autonomous drones,[II] beating China’s own record of 119 from 2017.[III] The U.S. has also branched out into swarm technology with the testing of Perdix drones, although the U.S. is most known for its use of the high-tech Predator drone.[IV]

Source: thedrive.com

Non-state actors also possess rudimentary drone capabilities. In January 2018, Syrian rebels attacked a Russian installation with 13 drones in an attempt to overwhelm Russian defenses. The Russian military was able to neutralize the attack by shooting down seven and bringing the remaining six down with electronic countermeasures.[V] While this attack was quelled, it proves that drones are being used by less powerful or economically resourceful actors, making them capable of rendering many traditional defense systems ineffective. It is not a far leap to incorporate autonomous communication between vehicles, capitalizing on the advantages of a fully interactive and cooperative drone swarm.

NASA Homemade Drone; Source: NASA Swamp Works

The same logic applies when considering drones and drone swarms in space. However, these vehicles will need to be technologically adapted for space conditions. Potentially most similar to future space drones, the company Swarm Technology launched four nanosats called “SpaceBees” with the intention of using them to create a constellation supporting Internet of Things (IoT) networks; however, they did so from India without FCC authorization.[VI] Using nanosats as examples of small, survivable space vehicles, the issues of power and propulsion are the most dominant technological roadblocks. Batteries must be small and are subject to failure in extreme environmental conditions and temperatures.[VII] Standard drone propulsion mechanisms are not viable in space, where drones will have to rely on cold-gas jets to maneuver.[VIII] Drones and drone swarms can idle in orbit (potentially for weeks or months) until activated, but they may still need hours of power to reach their target. The power systems must also have the ability to direct flight in a specific direction, requiring more energy than simply maintaining orbit.

Source: University of Southampton

There is a distinct advantage for drones operating in space: the ability to hide in plain sight among the scattered debris in orbit. Drones can be sent into space on a private or government launch hidden within a larger, benign payload.[IX] Once in space, these drones could be released into orbit, where they would blend in with the hundreds of thousands of other small pieces of material. When activated, they would lock onto a target or targets, and swarms would converge autonomously and communicate to avoid obstacles. Threat detection and avoidance systems may not recognize an approaching threat or swarm pattern until it is too late to move an asset out of their path (it takes a few hours for a shuttle and up to 30 hours for the ISS to conduct object avoidance maneuvers). In the deep future, it is likely that there will be a higher number of larger space assets as well as a greater number of nanosats and CubeSats, creating more objects for the Space Surveillance Network to track, and more places for drones and swarms to hide.[X]

For outer space drones and drone swarms, the issue of space junk is a double-edged sword. While it camouflages the vehicles, drone and swarm attacks also produce more space junk due to their kinetic nature. One directed “kamikaze” or armed drone can severely damage or destroy a satellite, while swarm technology can be harnessed for use against larger, defended assets or in a coordinated attack. However, projecting shrapnel can hit other military or commercial assets, creating a Kessler Syndrome effect of cascading damage.[XI] Once a specific space junk removal program is established by the international community, the resultant debris effects from drone and swarm attacks can be mitigated to preclude collateral damage.  However, this reduction of space junk will also result in less concealment, limiting drones’ and swarms’ ability to loiter in orbit covertly.

Utilizing drone swarms in space may also present legal challenges.  The original governing document regarding space activities is the Outer Space Treaty of 1967. This treaty specifically prohibits WMDs in space and the militarization of the moon and other celestial bodies, but is not explicit regarding other forms of militarization, except to emphasize that space activities are to be carried out for the benefit of all countries. So far, military space activities have been limited to deploying military satellites and combatting cyber-attacks. Launching a kinetic attack in space would carry serious global implications and repercussions.

Such drastic and potentially destructive action would most likely stem from intense conflict on Earth. Norms about the usage of space would have to change. The Army must consider how widely experimented with and implemented drone and swarm technologies can be applied to targeting critical and expensive assets in orbit. Our adversaries do not have the same moral and ethical compunctions regarding space applications that the U.S. has as the world’s leading democracy. Therefore, the U.S. Army must prepare for such an eventuality.  Additionally, the Army must research and develop a more robust alternative to our current space-based GPS capability.  For now, the only war in space is the one conducted electronically, but kinetic operations in outer space are a realistic possibility in the deep future.

Marie Murphy is a rising junior at The College of William and Mary in Virginia, studying International Relations and Arabic. She is currently interning at Headquarters, U.S. Army Training and Doctrine Command (TRADOC) with the Mad Scientist Initiative.

______________________________________________________

[I] Houck, Caroline, “The Army’s Space Force Has Doubled in Six Years, and Demand Is Still Going Up,” Defense One, 23 August 2017.

[II]China’s Drone Swarms,” OE Watch, Vol. 8.7, July 2018.

[III]China Launches Drone Swarm of 119 Fixed-Wing Unmanned Aerial Vehicles,” Business Standard, 11 June 2017.

[IV] Atherton, Kelsey D., “The Pentagon’s New Drone Swarm Heralds a Future of Autonomous War Machines,” Popular Science, 17 January 2017.

[V] Hruska, Joel, “Think One Military Drone is Bad? Drone Swarms Are Terrifyingly Difficult to Stop,” Extreme Tech, 8 March 2018.

[VI] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[VII] Chow, Eugene K., “America Is No Match for China’s New Space Drones,” The National Interest, 4 November 2017.

[VIII] Murphy, Mike, “NASA Is Working on Drones That Can Fly In Space,” Quartz, 31 July 2015.

[IX] Harris, Mark, “Why Did Swarm Launch Its Rogue Satellites?IEEE Spectrum, 20 March 2018.

[X]Space Debris and Human Spacecraft,” NASA, 26 September 2013.

[XI] Scoles, Sarah, “The Space Junk Problem Is About to Get a Whole Lot Gnarlier,” WIRED, July 31, 2017.

 

 

 

 

 

 

 

 

 

54. A View of the Future: 2035-2050

[Editor’s Note: The following post addresses the Era of Contested Equality (2035-2050) and is extracted from the U.S. Army Training and Doctrine Command (TRADOC) G-2’s The Operational Environment and the Changing Character of Future Warfare, published last summer. This seminal document provides the U.S. Army with a holistic and heuristic approach to projecting and anticipating both transformational and enduring trends that will lend themselves to the depiction of the future.]

Changes encountered during the Future Operational Environment’s Era of Accelerated Human Progress (the present through 2035) begin a process that will re-shape the global security situation and fundamentally alter the character of warfare. While its nature remains constant, the speed, automation, ranges, both broad and narrow effects, its increasingly integrated multi-domain conduct, and the complexity of the terrain and social structures in which it occurs will make mid-century warfare both familiar and utterly alien.

During the Era of Contested Equality (2035-2050), great powers and rising challengers have converted hybrid combinations of economic power, technological prowess, and virulent, cyber-enabled ideologies into effective strategic strength. They apply this strength to disrupt or defend the economic, social, and cultural foundations of the old Post-World War II liberal order and assert or dispute regional alternatives to established global norms. State and non-state actors compete for power and control, often below the threshold of traditional armed conflict – or shield and protect their activities under the aegis of escalatory WMD, cyber, or long-range conventional options and doctrines.

It is not clear whether the threats faced in the preceding Era of Accelerated Human Progress persist, although it is likely that China and Russia will remain key competitors, and that some form of non-state ideologically motivated extremist groups will exist. Other threats may have fundamentally changed their worldviews, or may not even exist by mid-Century, while other states, and combinations of states will rise and fall as challengers during the 2035-2050 timeframe. The security environment in this period will be characterized by conditions that will facilitate competition and conflict among rivals, and lead to endemic strife and warfare, and will have several defining features.

The nation-state perseveres. The nation-state will remain the primary actor in the international system, but it will be weaker both domestically and globally than it was at the start of the century. Trends of fragmentation, competition, and identity politics will challenge global governance and broader globalization, with both collective security and globalism in decline. States share their strategic environments with networked societies which increasingly circumvent governments unresponsive to their citizens’ needs. Many states will face challenges from insurgents and global identity networks – ethnic, religious, regional, social, or economic – which either resist state authority or ignore it altogether.

Super-Power Diminishes. Early-century great powers will lose their dominance in command and control, surveillance, and precision-strike technologies as even non-state actors will acquire and refine their own application of these technologies in conflict and war. Rising competitors will be able to acquire capabilities through a broad knowledge diffusion, cyber intellectual property theft, and their own targeted investments without having to invest into massive “sunken” research costs. This diffusion of knowledge and capability and the aforementioned erosion of long-term collective security will lead to the formation of ad hoc communities of interest. The costs of maintaining global hegemony at the mid-point of the century will be too great for any single power, meaning that the world will be multi-polar and dominated by complex combinations of short-term alliances, relations, and interests.

This era will be marked by contested norms and persistent disorder, where multiple state and non-state actors assert alternative rules and norms, which when contested, will use military force, often in a dimension short of traditional armed conflict.

For additional information on the Future Operational Environment and the Era of Contested Equality:

•  Listen to Modern War Institute‘s podcast where Retired Maj. Gen. David Fastabend and Mr. Ian Sullivan address Technology and the Future of Warfare

•  Watch the TRADOC G-2 Operational Environment Enterprise’s The Changing Character of Future Warfare video.

25. Lessons Learned in Assessing the Operational Environment

(Editor’s Note: The Mad Scientist Laboratory is pleased to present the following guest blog post from Mr. Ian Sullivan.)

During the past year, the U.S. Army Training and Doctrine Command (TRADOC) G-2 has learned a great deal more about the Future Operational Environment (OE). While the underlying assessment of the OE’s trajectory has not changed, as reported in last year’s The Operational Environment and the Changing Character of Future Warfare, we have learned a number of critical lessons and insights that affect Army doctrine, training, and modernization efforts. These findings have been captured in Assessing the Operational Environment: What We Learned Over the Past Year, published in Small Wars Journal last week. This post extracts and highlights key themes from this article.

General Lessons Learned:

We have confirmed our previous analysis of trends and factors that are intensifying and accelerating the transformation of the OE. The rapid innovation, development, and fielding of new technologies promises to radically enhance our abilities to live, create, think, and prosper. The accelerated pace of human interaction and widespread connectivity through the Internet of Things (IoT), and the concept of convergence are also factors affecting these trends. Convergence of societal trends and technologies will create new capabilities or societal implications that are greater than the sum of their individual parts, and at times are unexpected.

This convergence will embolden global actors to challenge US interests. The perceived waning of US military power in conjunction with the increase in capabilities resulting from our adversaries’ rapid proliferation of technology and increased investment in research and development has set the stage for challengers to pursue interests contrary to America’s.

We will face peer, near-peer, and regional hegemons as adversaries, as well as non-state actors motivated by identity, ideology, or interest, and individuals super-empowered by technologies and capabilities once found only among nations. They will directly attack our national will with cyber and sophisticated information operations.

Technologies in the future OE will be disruptive, smart, connected, and self-organizing. Key technologies, once thought to be science fiction, present new opportunities for military operations ranging from human operated / machine-assisted, to human-machine hybrid operations, to human-directed / machine-conducted operations; all facilitated by autonomy, Artificial Intelligence (AI), robotics, enhanced human performance, and advanced computing.

Tactical Lessons Learned:

The tactical lessons we have learned reveal tangible realities found on battlefields around the globe today and our assessments about the future rooted in our understanding of the current OE. Our adversaries already are using weapons and systems that in some cases are superior to our own, providing selective overmatch of some US capabilities, such as long-range fires, air-defense, and electronic warfare. Commercial-off-the shelf (COTS) technologies are being used to rapidly create new and novel methods of warfare (the most ubiquitous are drones and robotics that have been particularly successful in Iraq, Syria, and Ukraine). Our adversaries will often combine technologies or operating principles to create innovative methods of attack, deploying complex combinations of capabilities that create unique challenges to the Army and Joint Forces.

Adversaries, regardless of their resources, are finding ways to present us with multiple tactical dilemmas. They are combining capabilities with new concepts and doctrine, as evidenced by Russia’s New Generation Warfare; China’s active defensive and local wars under “informationized” conditions; Iran’s focus on information operations, asymmetric warfare and anti-access/area denial; North Korea’s combination of conventional, information operations, asymmetric, and strategic capabilities; ISIS’s often improvised yet complex capabilities employed during the Battle of Mosul, in Syria, and elsewhere; and the proliferation of anti-armor capabilities seen in Yemen, Iraq, and Syria, as well as the use of ballistic missiles by state and non-state actors.

Our adversaries have excelled at Prototype Warfare, using new improvised capabilities that converge technologies and COTS systems—in some cases for specific attacks—to great effect. ISIS, for example, has used commercial drones fitted with 40mm grenades to attack US and allied forces near Mosul, Iraq and Raqaa, Syria. While these attacks caused little damage, a Russian drone dropping a thermite grenade caused the destruction of a Ukrainian arms depot at Balakleya, which resulted in massive explosions and fires, the evacuation of 23,000 citizens, and $1 billion worth of damage and lost ordnance.

Additionally, our adversaries continue to make strides in developing Chemical, Biological, Radiological, and Nuclear (CBRN) capabilities. We must, at a tactical level, be prepared to operate in a CBRN environment.

Operational Lessons Learned:

Operational lessons learned are teaching us that our traditional—and heretofore very successful—ways of waging warfare will not be enough to ensure victory on future battlefields. Commanders must now sequence battles and engagements beyond the traditional land, sea, and air domains, and seamlessly, and often simultaneously, orchestrate combat effects across multi-domains, to include space and cyberspace. The multiple tactical dilemmas that our adversaries present us with create operational level challenges. Adversaries are building increasingly sophisticated anti-access/area denial “bubbles” we have to break; extending the scope of operations through the use of cyber, space, and asymmetric activities; and are utilizing sophisticated, and often deniable, methods of using information operations, often enabled by cyber capabilities, to directly target the Homeland and impact our individual and national will to fight. This simultaneous targeting of individuals and segments of populations has been addressed in our Personalized Warfare post.

We will have to operationalize Multi-Domain Battle to achieve victory over peer or near-peer competitors. Additionally, we must plan and be prepared to integrate other government entities and allies into our operations. The dynamism of the future OE is driven by the ever increasing volumes of information; when coupled with sophisticated whole-of-government approaches, information operations — backed by new capabilities with increasing ranges — challenge our national approach to warfare. The importance of information operations will continue, and may become the primary focus of warfare/competition in the future.

When adversaries have a centralized leadership that can send a unified message and more readily adopt a whole-of-government approach, the US needs mechanisms to more effectively coordinate and collaborate among whole-of-government partners. Operations short of war may require the Department of Defense to subordinate itself to other Agencies, depending on the objective. Our adversaries’ asymmetric strategies blur the lines between war and competition, and operate in a gray zone between war and peace below the perceived threshold of US military reaction.

Strategic Lessons Learned:

Strategic lessons learned demonstrate the OE will be more challenging and dynamic then in the past. A robust Homeland defense strategy will be imperative for competition from now to 2050. North Korea’s strategic nuclear capability, if able to range beyond the Pacific theater to CONUS, places a renewed focus on weapons of mass destruction and missile defense. A broader array of nuclear and weapons of mass destruction-armed adversaries will compel us to re-imagine operations in a CBRN environment, and to devise and consider new approaches to deterrence and collective security. Our understanding of deterrence and coercion theory will be different from the lessons of the Cold War.

The Homeland will be an active theater in any future conflict and adversaries will have a host of kinetic and non-kinetic attack options from our home stations all the way to the combat zone. The battlefield of the future will become far more lethal and destructive, and be contested from home station to the Joint Operational Area, requiring ways to sustain operations, and also to rapidly reconstitute combat losses of personnel and equipment. The Army requires resilient smart installations capable of not only training, equipping, preparing, and caring for Soldiers, civilians, and families, but also efficiently and capably serving as the first point of power projection and to provide reach back capabilities.

Trends in demographics and climate change mean we will have to operate in areas we might have avoided in the past. These areas include cities and megacities, or whole new theaters, such as the Arctic.

Personalized warfare will increase over time, specifically targeting the brain, genomes, cultural and societal groups, individuals’ personal interests/lives, and familial ties.




Future conflicts will be characterized by AI vs AI (i.e., algorithm vs algorithm). How AI is structured and integrated will be the strategic advantage, with the decisive edge accruing to the side with more autonomous decision-action concurrency on the “Hyperactive Battlefield.” Due to the increasingly interconnected Internet of Everything and the proliferation of weapons with highly destructive capabilities to lower echelons, tactical actions will have strategic implications, putting even more strain and time-truncation on decision-making at all levels. Cognitive biases can shape our actions despite unprecedented access to information.

The future OE presents us with a combination of new technologies and societal changes that will intensify long-standing international rivalries, create new security dynamics, and foster instability as well as opportunities. The Army recognizes the importance of this moment and is engaged in a modernization effort that rivals the intellectual momentum following the 1973 Starry Report and the resultant changes the “big five” (i.e., M1 Abrams Tank, M2 Bradley Fighting Vehicle, AH-64 Apache Attack Helicopter, UH-60 Black Hawk Utility Helicopter, and Patriot Air Defense System) wrought across leadership development and education, concept, and doctrine development that provided the U.S. Army overmatch into the new millennium.

Based on the future OE, the Army’s leadership is asking the following important questions:

• What type of force do we need?

• What capabilities will it require?

• How will we prepare our Soldiers, civilians, and leaders to operate within this future?

Clearly the OE is the starting point for this entire process.

For additional information regarding the Future OE, please see the following:

Technology and the Future of War podcast, hosted by the Modern War Institute at the U.S. Military Academy in West Point, New York.

An Advanced Engagement Battlespace: Tactical, Operational and Strategic Implications for the Future Operational Environment, posted on Small Wars Journal.

OEWatch, an monthly on-line, open source journal, published by the TRADOC G-2’s Foreign Military Studies Office (FMSO).

Ian Sullivan is the Assistant G-2, ISR and Futures, at Headquarters, TRADOC.